Skip to main content
Log in

Analysis of market competition and information asymmetry on selling strategies

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

In this paper, we consider the seller’s selling strategies in a supply chain consisting of one supplier and multiple retailers, who compete in the same consumer market. The production lead time is relatively long compared to the selling season. Therefore, the supplier can choose to sell the products either before production begins (i.e., advance sale) or after production finishes (i.e. regular sale). Different to existing literature, we analyze the selling strategies in a more realistic environment where each buyer has a private demand signal about the consumer market at the beginning of the selling season. Three different scenarios (i.e., the monopoly retailer, the competing retailers with information sharing, and the competing retailers without information sharing) are analyzed to study the effect of competition and information asymmetry on the supplier’s selling strategy. In each scenario, we establish the equilibrium result and investigate how the competition and information asymmetry affect the supply chain and its each party’s profits with the underlying reason explained. Our main findings include: (1) the supplier is optimal to adopt regular sale when the retailers form as a monopoly retailer, or when the retailers competing with each other with demand information sharing; (2) he prefers advance sale when facing competing retailers with private information; (3) competition and private information also influence the retailers’ and the supply chain’s preferences on the supplier’s sale strategies. Moreover, when the retailers have private information under competition, we find interestingly that (1) the supplier’s profit is increasing in the information precision under advance sale, while it is not affected by information precision under regular sale; and (2) the retailers’ profits may decrease in the information precision under regular sale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anand, K., Anupindi, R. & Bassok, Y. (2001). Strategic inventories in procurement contracts. University of Pennsylvania working paper. Philadelphia, PA.

  • Anand, K. S., & Goyal, M. (2009). Strategic information management under leakage in a supply chain. Management Science, 55(3), 438–452.

    Article  Google Scholar 

  • Anupindi, R., & Jiang, L. (2008). Capacity investment under postponement strategies, market competition, and demand uncertainty. Management Science, 54(11), 1876–1890.

    Article  Google Scholar 

  • Aumann, R. J. (1964). Markets with a continuum of traders. Econometrica: Journal of the Econometric Society, 32(1/2), 39–50.

  • Cachon, G. P. (2004). The allocation of inventory risk in a supply chain: Push, pull, and advance-purchase discount contracts. Management Science, 50(2), 222–238.

    Article  Google Scholar 

  • Cachon, G., & Larivire, M. (1999). Capacity choice and allocation: strategic behavior and supply chain performance. Management Science, 45(8), 1091–1108.

    Article  Google Scholar 

  • Cho, S. H., & Tang, C. S. (2013). Advance selling in a supply chain under uncertain supply and demand. Manufacturing and Service Operations Management, 15(2), 305–319.

    Article  Google Scholar 

  • Choi, T. M., Li, L., & Wei, Y. (2013). Will a supplier benefit from sharing good information with a retailer? Decision Support Systems, 56, 131–139.

    Article  Google Scholar 

  • Choi, T. M., Li, D., & Yan, H. M. (2003). Optimal two-stage ordering policy with bayesian information updating. Journal of Operations Research Society, 54, 846–859.

    Article  Google Scholar 

  • Cvsa, V., & Gilbert, S. M. (2002). Strategic commitment versus postponement in a two-tier supply chain. European Journal of Operational Research, 141(3), 526–543.

    Article  Google Scholar 

  • Dong, L., & Zhu, K. (2007). Two-wholesale-price contracts: push, pull, and advance-purchase discount contracts. Manufacturing and Service Operations Management, 9(3), 291–311.

    Article  Google Scholar 

  • Erhun, F., Keskinokak, P. & Tayur, S. (2001). Sequential procurement in a capacitated supply chain facing uncertain demand. Working paper, Graduate School of Industrial Administration, Carnegie Mellon University, Pittsburgh, PA. http://www.gsia.cmu.edu/andrew/stayur/feryal.ps

  • Ferguson, M. E. (2003). When to commit in a serial supply chain with forecast updating. Naval Research Logistics (NRL), 50(8), 917–936.

    Article  Google Scholar 

  • Ferguson, M. E., DeCroix, G. A., & Zipkin, P. H. (2005). Commitment decisions with partial information updating. Naval Research Logistics (NRL), 52(8), 780–795.

    Article  Google Scholar 

  • Gilbert, S. M., & Cvsa, V. (2003). Strategic commitment to price to stimulate downstream innovation in a supply chain. European Journal of Operational Research, 150(3), 617–639.

    Article  Google Scholar 

  • Goyal, M., & Netessine, S. (2007). Strategic technology choice and capacity investment under demand uncertainty. Management Science, 53(2), 192–207.

    Article  Google Scholar 

  • Ha, A. Y., Tong, S., & Zhang, H. (2011). Sharing demand information in competing supply chains with production diseconomies. Management Science, 57(3), 566–581.

    Article  Google Scholar 

  • Kreps, D. M., & Scheinkman, J. A. (1983). Quantity precommitment and Bertrand competition yield Cournot outcomes. The Bell Journal of Economics, 14(2), 326–337.

  • Lagerlf, J. N. (2007). Insisting on a non-negative price: oligopoly, uncertainty, welfare, and multiple equilibria. International Journal of Industrial Organization, 25(4), 861–875.

    Article  Google Scholar 

  • Lariviere, M. A., & Porteus, E. L. (2001). Selling to the newsvendor: An analysis of price-only contracts. Manufacturing and Service Operations Management, 3(4), 293–305.

    Article  Google Scholar 

  • Li, L., McKelvey, R. D., & Page, T. (1987). Optimal research for Cournot oligopolists. Journal of Economic Theory, 42(1), 140–166.

    Article  Google Scholar 

  • Li, L., & Zhang, H. (2008). Confidentiality and information sharing in supply chain coordination. Management Science, 54(8), 1467–1481.

    Article  Google Scholar 

  • Li, T., Tong, L., & Zhang, H. (2014). Transparency of information acquisition in a supply chain. Manufacturing and Service Operations Management, 16(3), 412–424.

    Article  Google Scholar 

  • Novshek, W., & Sonnenschein, H. (1982). Fulfilled expectations Cournot duopoly with information acquisition and release. The Bell Journal of Economics, 13(1), 214–218.

  • Shin, H., & Tunca, T. I. (2010). Do firms invest in forecasting efficiently? The effect of competition on demand forecast investments and supply chain coordination. Operations Research, 58(6), 1592–1610.

    Article  Google Scholar 

  • Taylor, T. (2001). Sale timing in a supply chain: When to sell to the retailer. Manufacturing and Service Operations Management, 8(1), 23–42.

    Article  Google Scholar 

  • Taylor, T. A., & Xiao, W. (2010). Does a manufacturer benefit from selling to a better-forecasting retailer? Management Science, 56(9), 1584–1598.

    Article  Google Scholar 

  • Vives, X. (1988). Aggregation of information in large Cournot markets. Econometrica: Journal of the Econometric Society, 56(4), 851–876.

  • Vives, X. (2007). Information and learning in markets. Princeton: Princeton University Press.

    Google Scholar 

  • Wang, T., Thomas, D. J., & Rudi, N. (2014). The effect of competition on the efficient-responsive choice. Production and Operations Management, 23(5), 829–846.

    Article  Google Scholar 

  • Wu, X., & Zhang, F. (2014). Home or overseas? An analysis of sourcing strategies under competition. Management Science, 60(5), 1223–1240.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the editor and three anonymous referees for their constructive comments and suggestions. The first author was partially supported by the National Natural Science Foundation of China (Nos. 71301023, 71390333), the Humanities and Social Sciences Foundation of Ministry of Education of China (No. 13YJC630197), and the Basic Research Foundation (Natural Science) of Jiangsu Province (No. BK20130582). The third author was partially supported by the National Natural Science Foundation of China (Nos. 71471085, 71171105), and the One-to-one Overseas Scholar Supporting Grant of School of Management, Nanjing University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaolin Xu.

Appendix

Appendix

1.1 Proof to Lemma 1

Proof

Given the true state being \(\theta _H\), the fraction of retailers who get the high signal is \(l\), and \((1-l)\) fraction of retailers get the low signal. On the other hand, given the true state being \(\theta _L\), only \(1-l\) fraction of retailers getting the high signal. Thus, this produces the first part of the lemma.

Now, given the information set \(\{s_i\}, i\in [0,1]\) and the fraction of retailers getting high demand signal, by the Bayesion updating formulation, we have

$$\begin{aligned} P(\theta _H|\{s_i\})=\frac{P(\{s_i\}|\theta _H)\frac{1}{2}}{P(\{s_i\}|\theta _H)\frac{1}{2}+P(\{s_i\}|\theta _L)\frac{1}{2}} \end{aligned}$$

in which \(\{s_i\}\) have a fraction of \(\gamma \) with high demand signal \(s_H\). This produces the desired result. \(\square \)

1.2 Proof to Lemma 2

Proof

We first analyze the retailer’s optimal decisions on \(K\) to maximize \(\pi ^R(K)\). We can explicitly express \(\pi ^R(K)\) as

$$\begin{aligned} \pi ^R(K)&= -\omega _AK+\frac{1}{2}\left( \left( \theta _L-\min \left\{ K,\frac{\theta _L}{2}\right\} \right) \min \left\{ K,\frac{\theta _L}{2}\right\} \right. \nonumber \\&\left. +\left( \theta _H-\min \left\{ K,\frac{\theta _H}{2}\right\} \right) \min \left\{ K,\frac{\theta _H}{2}\right\} \right) \end{aligned}$$

Depending on the value of \(K\), we can further simplify \(\pi ^R(K)\) as

$$\begin{aligned} \pi ^R(K)=-\omega _AK+\left\{ \begin{array}{l@{\quad }l} \frac{1}{2}((\theta _L-K)K+(\theta _H-K)K), &{} \hbox {if}\, K\le \frac{\theta _L}{2};\\ \frac{1}{2}\left( \frac{\theta _L^2}{4}+(\theta _H-K)K\right) , &{} \hbox {if}\, \frac{\theta _L}{2}<K\le \frac{\theta _H}{2};\\ \frac{1}{2}\left( \frac{\theta _L^2}{4}+\frac{\theta _H^2}{4}\right) , &{} \hbox {if}\, K>\frac{\theta _H}{2} \end{array} \right. \end{aligned}$$

Then, by optimizing the above formulation, we can get

$$\begin{aligned} K(\omega _A)=\left\{ \begin{array}{l@{\quad }l} \frac{\theta _H}{2}-\omega _A, &{} \hbox {if}\, \omega _A\le \frac{\theta _H-\theta _L}{2};\\ \frac{\theta _H+\theta _L}{4}-\frac{\omega _A}{2}, &{} \hbox {if}\, \omega _A>\frac{\theta _H-\theta _L}{2} \end{array} \right. \end{aligned}$$

Now we turn back to the decision of the supplier and can express \(\pi ^S(\omega _A)\) as

$$\begin{aligned} \pi ^S(\omega _A)=\left\{ \begin{array}{l@{\quad }l} (\omega _A-c)\left( \frac{\theta _H}{2}-\omega _A\right) , &{} \hbox {if}\, \omega _A\le \frac{\theta _H-\theta _L}{2};\\ (\omega _A-c)\left( \frac{\theta _H+\theta _L}{4}-\frac{\omega _A}{2}\right) , &{} \hbox {if}\, \omega _A> \frac{\theta _H-\theta _L}{2} \end{array} \right. \end{aligned}$$

Optimizing the above formulation, we get

$$\begin{aligned} \omega ^{MA}=\left\{ \begin{array}{l@{\quad }l} \frac{1}{2}\left( \frac{\theta _H}{2}+c\right) , &{} \hbox {if}\, c\le \frac{\theta _H-(1+\sqrt{2})\theta _L}{2};\\ \frac{1}{2}\left( \frac{\theta _H+\theta _L}{2}+c\right) , &{} \hbox {if}\, c> \frac{\theta _H-(1+\sqrt{2})\theta _L}{2} \end{array} \right. \end{aligned}$$

This completes the proof. \(\square \)

1.3 Proof to Lemma 3

Proof

In the second stage, we can express the supplier’s profit function as

$$\begin{aligned} \tilde{\pi }^S(\omega _R)=\left\{ \begin{array}{l@{\quad }l} \min \left\{ \frac{\theta _L-\omega _R}{2},Q\right\} \omega _R, &{} \hbox {if}\, \gamma =1-l;\\ \min \left\{ \frac{\theta _H-\omega _R}{2},Q\right\} \omega _R, &{} \hbox {if}\, \gamma =l \end{array} \right. \end{aligned}$$

Thus, the optimal wholesale price, as a function of \(\gamma \) and \(Q\), is given by

$$\begin{aligned} \omega ^{MR}=\left\{ \begin{array}{l@{\quad }l} \frac{\theta _L}{2}, &{} \hbox {if}\, \gamma =1-l\, \hbox {and}\, Q\ge \frac{\theta _L}{4};\\ \theta _L-2Q, &{} \hbox {if}\, \gamma =1-l\, \hbox {and}\, Q<\frac{\theta _L}{4};\\ \frac{\theta _H}{2}, &{} \hbox {if}\, \gamma =l\, \hbox {and}\, Q\ge \frac{\theta _H}{4};\\ \theta _H-2Q, &{} \hbox {if}\, \gamma =l\, \hbox {and}\, Q<\frac{\theta _H}{4} \end{array} \right. \end{aligned}$$

Given this, the supplier’s profit for the whole planning horizon is given by

$$\begin{aligned} \pi ^S(Q)=-cQ+\left\{ \begin{array}{l@{\quad }l} \frac{1}{2}\left( \frac{\theta _L^2}{8}+\frac{\theta _H^2}{8}\right) , &{} \hbox {if}\, Q\ge \frac{\theta _H}{4};\\ \frac{1}{2}\left( \frac{\theta _L^2}{8}+(\theta _H-2Q)Q\right) , &{} \hbox {if}\, \frac{\theta _L}{4}\le Q<\frac{\theta _H}{4};\\ \frac{1}{2}(Q(\theta _L-2Q)+Q(\theta _H-2Q)), &{} \hbox {if}\, Q< \frac{\theta _L}{4} \end{array} \right. \end{aligned}$$

By optimizing the above objective function, we get the desired result. \(\square \)

1.4 Proof to Theorem 1

Proof

If \(c\le \frac{\theta _H-(1+\sqrt{2})\theta _L}{2}\), then, we have \(\pi _R^{MA}-\pi _R^{MR}=\frac{3}{32}\theta _L^2>0\), \(\pi _S^{MA}-\pi _S^{MR}=-\frac{\theta _L^2}{16}<0\) and \(\varPi ^{MA}-\varPi ^{MR}=\frac{\theta _L^2}{32}>0\), thus, we have \(\pi _R^{MA}>\pi _R^{MR}\),\(\pi _S^{MA}<\pi _S^{MR}\),\(\varPi ^{MA}>\varPi ^{MR}\).

If \(\frac{\theta _H-(1+\sqrt{2})\theta _L}{2}<c\le \frac{\theta _H-\theta _L}{2}\), then, we have

$$\begin{aligned} \pi _R^{MA}-\pi _R^{MR}&= \frac{1}{16}\left( \frac{\theta _H+\theta _L}{2}-c\right) ^2 -\frac{1}{8}\left( \frac{\theta _L^2}{4}+\left( \frac{\theta _H}{2}-c\right) \right) ^2\\&= \frac{1}{16}\left( -\frac{(\theta _H-\theta _L)^2}{4}+c(\theta _H-\theta _L)-c^2\right) = -\frac{1}{16}\left( \frac{\theta _H-\theta _L}{2}-c\right) ^2<0\\ \pi _S^{MA}-\pi _S^{MR}&= \frac{1}{8}\left( \frac{\theta _H+\theta _L}{2}-c\right) ^2 -\frac{1}{4}\left( \frac{\theta _L^2}{4}+\left( \frac{\theta _H}{2}-c\right) \right) ^2\\&= -\frac{1}{8}\left( \frac{\theta _H-\theta _L}{2}-c\right) ^2<0\\ \varPi ^{MA}-\varPi ^{MR}&= \frac{3}{16}\left( \frac{\theta _H+\theta _L}{2}-c\right) ^2 -\frac{3}{8}\left( \frac{\theta _L^2}{4}+\left( \frac{\theta _H}{2}-c\right) \right) ^2\\&= -\frac{3}{16}\left( \frac{\theta _H-\theta _L}{2}-c\right) ^2<0 \end{aligned}$$

Thus, we have \(\pi _R^{MA}<\pi _R^{MR}\),\(\pi _S^{MA}<\pi _S^{MR}\),\(\varPi ^{MA}<\varPi ^{MR}\).

If \(c>\frac{\theta _H-\theta _L}{2}\), we have \(\pi _R^{MA}-\pi _R^{MR}=0\), \(\pi _S^{MA}-\pi _S^{MR}=0\), \(\varPi ^{MA}-\varPi ^{MR}=0\), which implies the results. \(\square \)

1.5 Proof to Lemma 4

Proof

We first analyze the retailer’s optimal decisions on \(K\) to maximize \(\pi _i^R(K)\). We can explicitly express \(\pi _i^R(K)\) as

$$\begin{aligned} \pi ^R_i(K_i)=-\omega _AK_i+\frac{1}{2}((\theta _L-\min \{K_i^{-},\theta _L\})\min \{K_i,\theta _L\}+(\theta _H-\min \{K_i^{-},\theta _H\})\min \{K_i,\theta _H\}) \end{aligned}$$

in which \(K_i^{-}=\int _0^1K_jdj=K_i\) in value as we only focus on \(K_i=K_j\), for any \(i\ne j\). Then, depending on the value of \(K_i\), we can further simplify \(\pi _i^R(K_i)\) as

$$\begin{aligned} \pi ^R_i(K_i)=-\omega _AK_i+\left\{ \begin{array}{l@{\quad }l} \frac{1}{2}((\theta _L-K_i^{-})K_i+(\theta _H-K_i^{-})K_i), &{} \hbox {if}\, K_i\le \theta _L;\\ \frac{1}{2}((\theta _H-K_i^{-})K_i), &{} \hbox {if}\, \theta _L<K_i\le \theta _H;\\ 0, &{} \hbox {if}\, K_i>\theta _H \end{array} \right. \end{aligned}$$

Then, by optimizing the above formulation, we can get that

$$\begin{aligned} \begin{array}{l@{\quad }l} -\omega _A+\frac{\theta _H+\theta _L}{2}=\int _0^1K_idi, &{} \hbox {if}\, K_i\le \theta _L;\\ -\omega _A+\frac{1}{2}(\theta _H-\int _0^1K_idi)=0, &{} \hbox {if}\, \theta _L<K_i\le \theta _H \end{array} \end{aligned}$$

which induces to

$$\begin{aligned} K^{CA}=\left\{ \begin{array}{l@{\quad }l} \theta _H-2\omega _A, &{} \hbox {if}\, \omega _A\le \frac{\theta _H-\theta _L}{2};\\ \frac{\theta _H+\theta _L}{2}-\omega _A, &{} \hbox {if}\, \omega _A>\frac{\theta _H-\theta _L}{2} \end{array} \right. \end{aligned}$$

Now we turn back to the decision of the supplier and can express \(\pi ^S(\omega _A)\) as

$$\begin{aligned} \pi ^S(\omega _A)=\left\{ \begin{array}{l@{\quad }l} 2(\omega _A-c)\left( \frac{\theta _H}{2}-\omega _A\right) , &{} \hbox {if}\, \omega _A\le \frac{\theta _H-\theta _L}{2};\\ 2(\omega _A-c)\left( \frac{\theta _H+\theta _L}{4}-\frac{\omega _A}{2}\right) , &{} \hbox {if}\, \omega _A> \frac{\theta _H-\theta _L}{2} \end{array} \right. \end{aligned}$$

Optimizing the above formulation, we get

$$\begin{aligned} \omega ^{CA}=\left\{ \begin{array}{l@{\quad }l} \frac{1}{2}\left( \frac{\theta _H}{2}+c\right) , &{} \hbox {if}\, c\le \frac{\theta _H-(1+\sqrt{2})\theta _L}{2};\\ \frac{1}{2}\left( \frac{\theta _H+\theta _L}{2}+c\right) , &{} \hbox {if}\, c> \frac{\theta _H-(1+\sqrt{2})\theta _L}{2} \end{array} \right. \end{aligned}$$

This completes the proof. \(\square \)

1.6 Proof to Lemma 5

Proof

In the second stage, we can express the supplier’s value function as

$$\begin{aligned} \tilde{\pi }^S(\omega _R)=\left\{ \begin{array}{l@{\quad }l} \min \{\theta _L-\omega _R,Q\}\omega _R, &{} \hbox {if}\, \gamma =1-l;\\ \min \{\theta _H-\omega _R,Q\}\omega _R, &{} \hbox {if}\, \gamma =l \end{array} \right. \end{aligned}$$

Thus, the optimal wholesale price, as a function of \(\gamma \) and \(Q\), is given by

$$\begin{aligned} \omega ^{CR}=\left\{ \begin{array}{l@{\quad }l} \frac{\theta _L}{2}, &{} \hbox {if}\, \gamma =1-l\, \hbox {and}\, Q\ge \frac{\theta _L}{2};\\ \theta _L-Q, &{} \hbox {if}\, \gamma =1-l\, \hbox {and}\, Q<\frac{\theta _L}{2};\\ \frac{\theta _H}{2}, &{} \hbox {if}\, \gamma =l\, \hbox {and}\, Q\ge \frac{\theta _H}{2};\\ \theta _H-Q, &{} \hbox {if}\, \gamma =l\, \hbox {and}\, Q<\frac{\theta _H}{2} \end{array} \right. \end{aligned}$$

Given this, the supplier’s profit is given by

$$\begin{aligned} \pi ^S(Q)=-cQ+\left\{ \begin{array}{l@{\quad }l} \frac{1}{2}\left( \frac{\theta _L^2}{4}+\frac{\theta _H^2}{4}\right) , &{} \hbox {if}\, Q\ge \frac{\theta _H}{2};\\ \frac{1}{2}\left( \frac{\theta _L^2}{4}+(\theta _H-Q)Q\right) , &{} \hbox {if}\, \frac{\theta _L}{2}\le Q<\frac{\theta _H}{2};\\ \frac{1}{2}(Q(\theta _L-Q)+Q(\theta _H-Q)), &{} \hbox {if}\, Q< \frac{\theta _L}{2} \end{array} \right. \end{aligned}$$

By optimizing the above objective function, we get the desired result. \(\square \)

1.7 Proof to Theorem 2

Proof

The proof is similar to that in Theorem 1 and is omitted here. \(\square \)

1.8 Proof to Lemma 6

Proof

Given all firms have the same order quantity, we analyze retailer \(i\) optimal decision on selling quantity \(q\) by maximizing

$$\begin{aligned} \tilde{\pi }_i^R(q)=\hbox {E}\left[ \left( \theta -\int _0^1q_jdj\right) q|s_i\right] =q\hbox {E}[\theta |s_i]-\hbox {E}\left[ \int _0^1q_jdj|s_i\right] \end{aligned}$$

Depending on whether \(s_i=s_H\) or \(s_i=s_L\), we have

$$\begin{aligned} \tilde{\pi }_i^R(q)=\left\{ \begin{array}{l@{\quad }l} q_H(\hbox {E}[\theta |s_H]-\zeta q_H^{-}-(1-\zeta )q_L^{-}), &{} \hbox {if}\, s_i=s_H;\\ q_L(\hbox {E}[\theta |s_L]-(1-\zeta )q_H^{-}-\zeta q_L^{-}), &{} \hbox {if}\, s_i=s_L. \end{array} \right. \end{aligned}$$

in which \(q_H^{-}, q_L^{-}\) denotes the other retailers’ total order quantity for both states with the same value as \(q_H\) or \(q_L\). Then, in equilibrium,

(Case i) if the unconstraint selling quantities for both states are within the on hand inventory, we have

$$\begin{aligned} \hbox {E}[\theta |s_H]-\zeta q_H-(1-\zeta )q_L&= 0\\ \hbox {E}[\theta |s_L]-(1-\zeta )q_H-\zeta q_L&= 0 \end{aligned}$$

That is, \(q_H=\bar{y}\) and \(q_L=\underline{y}\) if \(K\ge \bar{y}\).

(Case ii) if only the unconstraint selling quantity for the low demand signal state is larger than \(K\), we have

$$\begin{aligned} q_H&= K\\ \hbox {E}[\theta |s_L]-(1-\zeta )q_H-\zeta q_L&= 0 \end{aligned}$$

Note that the second equation holds for \(q_L\le K\).

(Case iii) if the unconstraint selling quantities for both demand signal states are within \(K\), we have \(q_L=q_H=K\).

Combining the three cases, we get the result. \(\square \)

1.9 Proof to Lemma 7

Proof

The monotone properties of \(\underline{y}\) and \(\bar{y}\) are straightforward by taking the first order derivative with respect to \(l\). \(\square \)

1.10 Proof to Lemma 8

Proof

The retailer \(i\)’s profit is

$$\begin{aligned} \pi _i^R(K_i)&= -\omega _AK_i\\&\quad +\left\{ \begin{array}{l@{\quad }l} 0, &{} \hbox {if}\, K_i\ge \bar{y};\\ \frac{1}{2}\left( \left( \hbox {E}[\theta |s_H]\!-\!\frac{1-\zeta }{\zeta } \hbox {E}[\theta |s_L]\!-\!\frac{2\zeta -1}{\zeta }\int _0^1K_jdj\right) K_i\right) , &{} \hbox {if}\, \bar{y}>K_i\ge \hbox {E}[\theta |s_L];\\ \frac{1}{2}\left( \left( \hbox {E}[\theta |s_H]+\hbox {E}[\theta |s_L]-2\int _0^1K_jdj\right) K_i\right) , &{} \hbox {if}\, K_i<\hbox {E}[\theta |s_L]. \end{array} \right. \end{aligned}$$

in which \(\int _0^1K_jdj\) represents the other retailers’ total order quantity. Optimizing \(\pi _i^R(K_i)\) with respect to \(K_i\), we get

$$\begin{aligned} K(\omega _A)=\left\{ \begin{array}{l@{\quad }l} \bar{y}-\frac{2\zeta }{2\zeta -1}\omega _A, &{} \hbox {if}\, c\le \frac{2l-1}{2}(\theta _H-\theta _L);\\ \frac{\theta _H+\theta _L}{2}-\omega _A, &{} \hbox {if}\, c> \frac{2l-1}{2}(\theta _H-\theta _L) \end{array} \right. \end{aligned}$$

Then, the supplier’s objective function is given by

$$\begin{aligned} \pi ^S(\omega _A)=\left\{ \begin{array}{l@{\quad }l} \frac{2\zeta }{2\zeta -1}(\omega _A-c)\left( \frac{2\zeta -1}{2\zeta }\bar{y}-\omega _A\right) , &{} \hbox {if}\, \omega _A\le (2l-1)\frac{\theta _H-\theta _L}{2};\\ (\omega _A-c)\left( \frac{\theta _H+\theta _L}{2}-\omega _A\right) , &{} \hbox {if}\, \omega _A> (2l-1)\frac{\theta _H-\theta _L}{2} \end{array} \right. \end{aligned}$$

Optimizing the above formulation gives out the second part. \(\square \)

1.11 Proof to Lemma 9

Proof

We have

$$\begin{aligned} \pi ^S(Q(\omega _R), \omega _R)= \left\{ \begin{array}{l@{\quad }l} -c(\theta _H-\omega _R)+\omega _R\left( \frac{\theta _H+\theta _L}{2}-\omega _R\right) , &{} \hbox {if}\, \omega _R\ge 2c;\\ (\omega _R-c)(\theta _L-\omega _R), &{} \hbox {if}\, c\le \omega _R<2c \end{array} \right. \end{aligned}$$

Then, we have

$$\begin{aligned} \omega _R=\left\{ \begin{array}{l@{\quad }l} \frac{1}{2}\left( \frac{\theta _H+\theta _L}{2}+c\right) , &{} \hbox {if}\, c\le \frac{\theta _H+3\theta _L}{12};\\ \frac{1}{2}(\theta _L+c), &{} \hbox {if}\, c>\frac{\theta _H+3\theta _L}{12} \end{array} \right. \end{aligned}$$

This leads to the result. \(\square \)

1.12 Proof to Theorem 3

Proof

The proof of the first part is straightforward by noting that both \(-c\theta _H+\frac{1}{4}(c+\frac{\theta _H+\theta _L}{2})^2\) and \(\frac{1}{4}((\theta _L-c)^+)^2\) are less than \(\frac{1}{4}(\frac{\theta _H+\theta _L}{2}-c)^2\). We omit the detail here. For the second part, when \(l\in [1-\frac{1}{2}\frac{\theta _L-c}{\theta _H-c},1]\), we can verify that \(\pi _R^{OR}\) is convex in \(l\). Thus, we only need to compare the supply chain profits for the cases when \(l=1\) and \(l=1-\frac{1}{2}\frac{\theta _L-c}{\theta _H-c}\). A simple calculation reveals the desired results. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, W., Zuo, J. & Xu, X. Analysis of market competition and information asymmetry on selling strategies. Ann Oper Res 257, 395–421 (2017). https://doi.org/10.1007/s10479-015-1809-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-015-1809-5

Keywords

Navigation