Beaumont LJ, Hughes L, Pitman AJ (2008) Why is the choice of future climate scenarios for species distribution modelling important? Ecology Letters 11:1135–1146. https://doi.org/10.1111/j.1461-0248.2008.01231.x
Article
PubMed
Google Scholar
Boria RA, Olson LE, Goodman SM, Anderson RP (2014) Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecological Modelling 275:73–77. https://doi.org/10.1016/j.ecolmodel.2013.12.012
Article
Google Scholar
Braks M, van Ginkel R, Wint W, Sedda L, Sprong H (2013) Climate change and public health policy: Translating the science. International Journal of Environmental Research and Public Health 11:13–29. https://doi.org/10.3390/ijerph110100013
Article
PubMed
PubMed Central
Google Scholar
Castanheira M, Paiva SR, Louvandini H, Landim A, Fiorvanti MCS, Paludo GR, Dallago BS, McManus C (2010) Multivariate analysis for characteristics of heat tolerance in horses in Brazil. Tropical Animal Health and Production 42:185–191. https://doi.org/10.1007/s11250-009-9404-x
Article
PubMed
Google Scholar
Chang HJ, Huang N, Lee CH, Hsu YJ, Hsieh CJ, Chou YJ (2004) The impact of the SARS epidemic on the utilization of medical services: SARS and the fear of SARS. American Journal of Public Health 94:562–564. https://doi.org/10.2105/ajph.94.4.562
Article
PubMed
PubMed Central
Google Scholar
Chong HT, Kunjapan SR, Thayaparan T, Tong J, Petharunam V, Jusoh MR, Tan CT (2002) Nipah encephalitis outbreak in Malaysia, clinical features in patients from Seremban. Canadian Journal of Neurological Sciences Sci 29:83–7
Article
Google Scholar
Chua KB (2003) Nipah virus outbreak in Malaysia. Journal of Clinical Virology 26:265–75
Article
Google Scholar
Cullen BR, Johnson IR, Eckard RJ, Lodge GM, Walker RG, Rawnsley RP, McCaskill MR (2009) Climate change effects on pasture systems in south-eastern Australia. Crop and Pasture Science 60:933–942. https://doi.org/10.1071/cp09019
Article
Google Scholar
Daszak P, Zambrana-Torrelio C, Bogich TL, Fernandez M, Epstein JH, Murray KA, Hamilton H (2013) Interdisciplinary approaches to understanding disease emergence: the past, present, and future drivers of Nipah virus emergence. Proceedings of the National Academy of Sciences of the United States of America 110 Suppl:3681–8. https://doi.org/10.1073/pnas.1201243109
Article
PubMed
Google Scholar
Davies TM, Hazelton ML (2013) Assessing minimum contrast parameter estimation for spatial and spatiotemporal log-gaussian cox processes. Statistica Neerlandica 67:355–389. https://doi.org/10.1111/stan.12011
Article
Google Scholar
Diggle PJ, Moraga P, Rowlingson B, Taylor BM (2013) Spatial and spatio-temporal log-Gaussian Cox processes: extending the geostatistical paradigm. Statistical Science 28:542–563. https://doi.org/10.1214/13-sts441
Article
Google Scholar
Eby P, Law BS (2008) Ranking the feeding habitats of Grey-headed flying foxes for conservation management
Eby P, Richards G, Collins L, Parry-Jones K (1999) The distribution, abundance and vulnerability to population reduction of a nomadic nectarivore, the Grey-headed Flying-fox Pteropus poliocephalus in New South Wales, during a period of resource concentration. Australian Journal of Zoology 31:240–253
Article
Google Scholar
Edson D, Field H, McMichael L, Vidgen M, Goldspink L, Broos A, Melville D, Kristoffersen J, de Jong C, McLaughlin A, Davis R, Kung N, Jordan D, Kirkland P, Smith C (2015) Routes of Hendra virus excretion in naturally-infected flying-foxes: implications for viral transmission and spillover risk. PLoS ONE 10:e0140670. https://doi.org/10.1371/journal.pone.0140670
CAS
Article
PubMed
PubMed Central
Google Scholar
Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ (2011) A statistical explanation of MaxEnt for ecologists. Diversity and Distributions 17:43–57. https://doi.org/10.1111/j.1472-4642.2010.00725.x
Article
Google Scholar
Escobar LE, Craft ME (2016) Advances and limitations of disease biogeography using ecological niche modeling. Frontiers in Microbiology 7:1–21. https://doi.org/10.3389/fmicb.2016.01174
Article
Google Scholar
Field HE, de Jong C, Melville D, Smith C, Smith I, Broos A, Kung N, McLaughlin A, Zeddeman A (2011) Hendra virus infection dynamics in Australian fruit bats. PLoS ONE 6:e28678. https://doi.org/10.1371/journal.pone.0028678
CAS
Article
PubMed
PubMed Central
Google Scholar
Giles JR, Plowright RK, Eby P, Peel AJ, McCallum H (2016) Models of Eucalypt phenology predict bat population flux. Ecology and Evolution 1–16. https://doi.org/10.1002/ece3.2382
Article
Google Scholar
Hahn MB, Epstein JH, Gurley ES, Islam MS, Luby SP, Daszak P, Patz JA (2014) Roosting behaviour and habitat selection of Pteropus giganteus reveal potential links to Nipah virus epidemiology. Journal of Applied Ecology 51:376–387. https://doi.org/10.1111/1365-2664.12212
Article
PubMed
Google Scholar
Halpin K, Hyatt AD, Fogarty R, Middleton D, Bingham J, Epstein JH, Rahman SA, Hughes T, Smith C, Field HE, Daszak P (2011) Pteropid bats are confirmed as the reservoir hosts of henipaviruses: a comprehensive experimental study of virus transmission. American Journal of Tropical Medicine and Hygeine 85:946–51. https://doi.org/10.4269/ajtmh.2011.10-0567
Article
Google Scholar
He J-F, Min J, Yu D, Liang W, Xu R, Wang Z, Fang L, Zhang X, Li H, Yan X, Hu Z, Huang J, Zhou J, Gu B, Zhang X, He M, Zheng K, Wang F, Fu G, Wang X, Chen Z, Liu Q, Kong X, He W, Wu C, Chim SSC, Tong Y, Tam JS, Lo YMD, Road Z, Hospital N, Med- F, Hospital R, Road B, Jiang Z, Tech H, Jiao- S (2004) Molecular evolution of the SARS coronavirus during the course of the SARS epidemic in China. Science 303:1666–1669. https://doi.org/10.1126/science.1092002
CAS
Article
Google Scholar
Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25:1965–1978. https://doi.org/10.1002/joc.1276
Article
Google Scholar
Hudson IL, Kim SW, Keatley MR (2010) Climatic influences on the flowering phenology of four Eucalypts: a GAMLSS approach. In: Phenological Research, Hudson IL, Keatley MR (editors), London: Springer, pp 209–228
Chapter
Google Scholar
Jones K, Patel N, Levy M, Storeygard A, Balk D, Gittleman J, Daszak P (2008) Global trends in emerging infectious diseases. Nature 451:990–993. https://doi.org/10.1038/nature06536
CAS
Article
PubMed
PubMed Central
Google Scholar
Jørgensen GHM, Bøe KE (2007) A note on the effect of daily exercise and paddock size on the behaviour of domestic horses (Equus caballus). Applied Animal Behaviour Science 107:166–173. https://doi.org/10.1016/j.applanim.2006.09.025
Article
Google Scholar
Lafferty KD (2009) The ecology of climate change and infectious diseases. Ecology 90:888–900
Article
Google Scholar
Leroy EM, Kumulungui B, Pourrut X, Rouquet P, Hassanin A, Yaba P, Délicat A, Paweska JT, Gonzalez J-P, Swanepoel R (2005) Fruit bats as reservoirs of Ebola virus. Nature 438:575–576. https://doi.org/10.1038/438575a
CAS
Article
PubMed
PubMed Central
Google Scholar
Li W, Shi Z, Yu M, Ren W, Smith C, Epstein JH, Wang H, Crameri G, Zhihong H, Huajun Z, Jianhong Z, McEachern J, Field HE, Daszak P, Eaton BT, Zhang S, Wang L-F (2005) Bats are natural reservoirs of SARS-like coronaviruses. Science (80-) 310:676–679. https://doi.org/10.1126/science.1118391
CAS
Article
Google Scholar
Luby SP, Gurley ES, Hossain MJ (2009) Transmission of human infection with Nipah Virus. Clinical Infectious Diseases 49:1743–1748. https://doi.org/10.1086/647951.transmission
Article
PubMed
PubMed Central
Google Scholar
Martin GA, Yanez-Arenas C, Roberts BJ, Chen C, Plowright RK, Webb RJ, Skerratt LF (2016) Climatic suitability influences species specific abundance patterns of Australian flying foxes and risk of Hendra virus spillover. One Health. https://doi.org/10.1016/j.onehlt.2016.07.004
Article
Google Scholar
Martin G, Plowright R, Chen C, Kault D, Selleck P, Skerratt L (2015) Hendra virus survival does not explain spillover patterns and implicates relatively direct transmission routes from flying foxes to horses. Journal of General Virology vir.0.000073–. https://doi.org/10.1099/vir.0.000073
CAS
Article
Google Scholar
Martin G, Webb RJ, Chen C, Plowright RK, Skerratt LF (2017) Microclimates might limit indirect spillover of the bat borne zoonotic Hendra virus. Microbial Ecology 74:106–115. https://doi.org/10.1007/s00248-017-0934-x
Article
PubMed
PubMed Central
Google Scholar
Martin G, Yanez-Arenas C, Plowright RK, Chen C, Roberts BJ, Skerratt LF (2018) Hendra virus spillover is a bimodal system driven by climatic factors. EcoHealth. https://doi.org/10.1007/s10393-017-1309-y
Article
PubMed
Google Scholar
McConkey KR, Drake DR (2006) Flying foxes cease to function as seed dispersers long before they become extinct. Ecology 87:271–276
Article
Google Scholar
McFarlane R, Becker N, Field H (2011) Investigation of the climatic and environmental context of Hendra virus spillover events 1994–2010. PLoS ONE 6:e28374. https://doi.org/10.1371/journal.pone.0028374
CAS
Article
PubMed
PubMed Central
Google Scholar
Mesgaran MB, Cousens RD, Webber BL (2014) Here be dragons: a tool for quantifying novelty due to covariate range and correlation change when projecting species distribution models. Diversity and Distributions n/a-n/a. https://doi.org/10.1111/ddi.12209
Article
Google Scholar
Moloney BJ (2011) Overview of the epidemiology of equine influenza in the Australian outbreak. Australian Veterinary Journal 89 Suppl 1:50–6. https://doi.org/10.1111/j.1751-0813.2011.00748.x
Article
PubMed
Google Scholar
Owens HL, Campbell LP, Dornak LL, Saupe EE, Barve N, Soberón J, Ingenloff K, Lira-Noriega A, Hensz CM, Myers CE, Peterson AT (2013) Constraints on interpretation of ecological niche models by limited environmental ranges on calibration areas. Ecological Modelling 263:10–18. https://doi.org/10.1016/j.ecolmodel.2013.04.011
Article
Google Scholar
Páez DJ, Giles J, McCallum H, Field H, Jordan D, Peel AJ, Plowright RK (2017) Conditions affecting the timing and magnitude of Hendra virus shedding across pteropodid bat populations in Australia. Epidemiology & Infection 1–11. https://doi.org/10.1017/s0950268817002138
Article
Google Scholar
Pearman PB, Guisan A, Broennimann O, Randin CF (2008) Niche dynamics in space and time. Trends in Ecology & Evolution 23:149–58. https://doi.org/10.1016/j.tree.2007.11.005
Article
Google Scholar
Pearson RG, Raxworthy CJ, Nakamura M, Townsend Peterson A (2006) Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. Journal of Biogeography 34:102–117. https://doi.org/10.1111/j.1365-2699.2006.01594.x
Article
Google Scholar
Peel AJ, Eby P, Kessler M, Lunn T, Breed AC, Plowright RK (2017) Letter to the editor: Hendra virus spillover risk in horses: heightened vigilance and precautions being urged this winter
Peterson AT (2006) Ecologic niche modeling and spatial patterns of disease transmission. Emerging Infectious Diseases 12:1822–6. https://doi.org/10.3201/eid1212.060373
Article
PubMed
PubMed Central
Google Scholar
Peterson AT (2013) Mapping Risk of Nipah Virus Transmission Across Asia and Across Bangladesh. Asia-Pacific Journal of Public Health https://doi.org/10.1177/1010539512471965
Article
Google Scholar
Peterson AT, Bauer JT, Mills JN (2004) Ecologic and geographic distribution of filovirus disease. Emerging Infectious Diseases 10:40–7. https://doi.org/10.3201/eid1001.030125
Article
PubMed
PubMed Central
Google Scholar
Peterson AT, Lash RR, Carroll DS, Johnson KM (2006) Geographic potential for outbreaks of Marburg hemorrhagic fever. American Journal of Tropical Medicine and Hygiene 75:9–15
Article
Google Scholar
Peterson AT, Papes M, Soberon J (2008) Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecological Modelling 213:63–72. https://doi.org/10.1016/j.ecolmodel.2007.11.008
Article
Google Scholar
Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecological Modelling 190:231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026
Article
Google Scholar
Pigott DM, Golding N, Mylne A, Huang Z, Henry AJ, Weiss DJ, Brady OJ, Kraemer MUG, Smith DL, Moyes CL, Bhatt S, Gething PW, Horby PW, Bogoch II, Brownstein JS, Mekaru SR, Tatem AJ, Khan K, Hay SI (2014) Mapping the zoonotic niche of Ebola virus disease in Africa. Elife 2013:1–29. https://doi.org/10.7554/elife.04395
Article
Google Scholar
Pigott DM, Golding N, Mylne A, Huang Z, Weiss DJ, Brady OJ, Kraemer MUG, Hay SI (2015) Mapping the zoonotic niche of Marburg virus disease in Africa. Transactions of the Royal Society of Tropical Medicine and Hygiene 1–13. https://doi.org/10.1093/trstmh/trv024
Article
Google Scholar
Plowright RK, Eby P, Hudson PJ, Smith I, Westcott D, Bryden W, Middleton DJ, Reid P, McFarlane R, Martin G, Tabor G, Skerratt LF, Anderson D, Cramery G, Quammen D, Jordan D, Freeman P, Lin-Fa W, Epstein JH, Marsh G, Kung N, McCallum H (2015) Ecological dynamics of emerging bat virus spillover. Proceedings of Biological Sciences. https://doi.org/10.1098/rspb.2014.2124
Article
Google Scholar
Plowright RK, Field HE, Smith C, Divljan A, Palmer C, Tabor G, Daszak P, Foley JE (2008) Reproduction and nutritional stress are risk factors for Hendra virus infection in little red flying foxes (Pteropus scapulatus). Proceedings of Biological Sciences 275:861–9. https://doi.org/10.1098/rspb.2007.1260
Article
Google Scholar
Plowright RK, Foley P, Field HE, Dobson AP, Foley JE, Eby P, Daszak P (2011) Urban habituation, ecological connectivity and epidemic dampening: the emergence of Hendra virus from flying foxes (Pteropus spp.). Proceedings of Biological Sciences https://doi.org/10.1098/rspb.2011.0522
Article
Google Scholar
Plowright RK, Parrish CR, McCallum H, Hudson PJ, Ko AI, Graham AL, Lloyd-Smith JO (2017) Pathways to zoonotic spillover. Nature Reviews Microbiology 15:502–510. https://doi.org/10.1038/nrmicro.2017.45
CAS
Article
PubMed
PubMed Central
Google Scholar
Plucisnki MM, Guilavogui T, Sidikiba S, Diakite N, Diakite S, Dioubate M, Bah I, Hennesse I, Butts JK, Halsey E, McElrow P, Kachur SP, Aboulhad J, James R, Moussa K (2015) Effect of the Ebola-virus-disease epidemic on malaria case management in Guinea, 2014: a cross-sectional survey of health facilities. The Lancet Infectious Diseases 15:1–18. https://doi.org/10.1016/b978-0-12-420118-7.00008-1.dopamine
Article
Google Scholar
R Core Team (2016) R: A Language and Environment for Statistical Computing
Renner IW, Elith J, Baddeley A, Fithian W, Hastie T, Phillips SJ, Popovic G, Warton DI (2015) Point process models for presence-only analysis. Methods in Ecology and Evolution 6:366–379. https://doi.org/10.1111/2041-210x.12352
Article
Google Scholar
Renner IW, Warton DI (2013) Equivalence of MAXENT and Poisson point process models for species distribution modeling in ecology. Biometrics 69:274–81. https://doi.org/10.1111/j.1541-0420.2012.01824.x
Article
PubMed
Google Scholar
Roberts BJ, Catterall CP, Eby P, Kanowski J (2012) Latitudinal range shifts in Australian flying-foxes: a re-evaluation. Austral Ecology 37:12–22. https://doi.org/10.1111/j.1442-9993.2011.02243.x
Article
Google Scholar
Sala OE, Chapin III FS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH (2009) Global biodiversity scenarios for the year 2100. Science (80-) 287:1770–1774. https://doi.org/10.1126/science.287.5459.1770
CAS
Article
Google Scholar
Smith C, Skelly C, Kung N, Roberts B, Field H (2014) Flying-fox species density—a spatial risk factor for hendra virus infection in horses in eastern australia. PLoS ONE 9:e99965. https://doi.org/10.1371/journal.pone.0099965
CAS
Article
PubMed
PubMed Central
Google Scholar
Soberón J, Peterson a T (2005) Interpretation of models of fundamental ecological niches and species distributional areas. Biodiversity Informatics 2:1–10. https://doi.org/10.1093/wber/lhm022
Article
Google Scholar
Soberón J, Peterson AT, Soberon J, Peterson AT (2005) Interpretation of models of fundamental ecological niches and species distributional areas. Biodiversity Informatics 2:1–10. https://doi.org/10.1093/wber/lhm022
Article
Google Scholar
Tait J, Perotto-Baldivieso HL, McKeown A, Westcott DA (2014) Are flying-foxes coming to town? Urbanisation of the spectacled flying-fox (Pteropus conspicillatus) in Australia. PLoS ONE 9:1–8. https://doi.org/10.1371/journal.pone.0109810
CAS
Article
Google Scholar
Taylor BM, Rowlingson BS, Davies TM, Diggle PJ (2013) lgcp: an R package for inference with spatial and spatio-temporal log-Gaussian Cox processes
Taylor BM, Rowlingson BS, Davies TM, Diggle PJ (2015) Bayesian inference and data augmentation schemes for spatial, spatiotemporal and multivariate log-Gaussian Cox processes in R. Journal of Statistical Software https://doi.org/10.1359/jbmr.0301229
Book
Google Scholar
Taylor LH, Latham SM, Woolhouse MEJ, Lathamt SM, Bush E (2001) Risk factors for human disease emergence. Philosophical Transactions of the Royal Society B: Biological Sciences 356:983–989. https://doi.org/10.1098/rstb.2001.0888
CAS
Article
Google Scholar
Tidemann CR, Vardon MJ, Loughland R a, Brocklehurst PJ (1999) Dry season camps of flying-foxes (Pteropus spp.) in Kakadu World Heritage Area, north Australia. Journal of Zoology 247:155–163
Article
Google Scholar
van Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K, Hurtt GC, Kram T, Krey V, Lamarque JF, Masui T, Meinshausen M, Nakicenovic N, Smith SJ, Rose SK (2011) The representative concentration pathways: an overview. Climate Change 109:5–31. https://doi.org/10.1007/s10584-011-0148-z
Article
Google Scholar
Vardon MJ, Brocklehurst PS, Woinarski JCZ, Cunningham RB, Donnelly CF, Tidemann CR (2001) Seasonal habitat use by flying-foxes, Pteropus alecto and P. scapulatus (Megachiroptera), in monsoonal Australia. Journal of Zoology 253:525–535
Article
Google Scholar
Walsh MG (2015) Mapping the risk of Nipah virus spillover into human populations in South and Southeast Asia. Transactions of the Royal Society of Tropical Medicine and Hygiene 109:563–571. https://doi.org/10.1093/trstmh/trv055
Article
PubMed
Google Scholar
Wang L-F, Eaton BT (2007) Bats, civets and the emergence of SARS. In: Wildlife and Emerging Zoonotic Diseases: The Biology, Circumstances and Consequences of Cross-Species Transmission, Childs JE, Mackenzie JS, Richt JA (editors), Springers, pp 325–344
Google Scholar
Wickwire K (1977) Mathematical models for the control of pests and infectious disease: a survey. Theoretical Population Biology 11:182–238
CAS
Article
Google Scholar
Wiens JA, Stralberg D, Jongsomjit D, Howell CA, Snyder MA (2009) Niches, models, and climate change: Assessing the assumptions and uncertainties. Proceedings of National Academy of Sciences 106:19729–19736. https://doi.org/10.1073/pnas.0901639106
Article
Google Scholar
Williams SE, Bolitho EE, Fox S (2003) Climate change in Australian tropical rainforests: an impending environmental catastrophe. Proceedings of Biological Sciences 270:1887–92. https://doi.org/10.1098/rspb.2003.2464
Article
PubMed
PubMed Central
Google Scholar
Woodroffe R (1999) Managing disease threats to wild animals. Animal Conservation 2:185–193
Article
Google Scholar
Woolhouse MEJ, Gowtage-Sequeria S (2005) Host range and emerging and reemerging pathogens. Emerging Infectious Diseases 11:1842–7. https://doi.org/10.3201/eid1112.050997
Article
PubMed
PubMed Central
Google Scholar
Young PL, Halpin K, Selleck PW, Field H, Gravel JL, Kelly M a, Mackenzie JS (1996) Serologic evidence for the presence in Pteropus bats of a paramyxovirus related to equine morbillivirus. Emerging Infectious Diseases 2:239–40. https://doi.org/10.3201/eid0203.960315
CAS
Article
PubMed
PubMed Central
Google Scholar