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Abstract: Disease risk mapping is important for predicting and mitigating impacts of bat-borne viruses,

including Hendra virus (Paramyxoviridae:Henipavirus), that can spillover to domestic animals and thence to

humans. We produced two models to estimate areas at potential risk of HeV spillover explained by the climatic

suitability for its flying fox reservoir hosts, Pteropus alecto and P. conspicillatus. We included additional climatic

variables that might affect spillover risk through other biological processes (such as bat or horse behaviour,

plant phenology and bat foraging habitat). Models were fit with a Poisson point process model and a log-

Gaussian Cox process. In response to climate change, risk expanded southwards due to an expansion of P.

alecto suitable habitat, which increased the number of horses at risk by 175–260% (110,000–165,000). In the

northern limits of the current distribution, spillover risk was highly uncertain because of model extrapolation

to novel climatic conditions. The extent of areas at risk of spillover from P. conspicillatus was predicted shrink.

Due to a likely expansion of P. alecto into these areas, it could replace P. conspicillatus as the main HeV

reservoir. We recommend: (1) HeV monitoring in bats, (2) enhancing HeV prevention in horses in areas

predicted to be at risk, (3) investigate and develop mitigation strategies for areas that could experience reservoir

host replacements.
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INTRODUCTION

Emerging zoonotic diseases account for close to 13% of

known human pathogens (Taylor et al. 2001;Woolhouse and

Gowtage-Sequeria 2005). These diseases along with other

emerging pathogens that affect crops and domestic animals
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can have extensive socio-economic consequences (Jones

et al. 2008), especially when they adapt to and transmit

among their new hosts (Taylor et al. 2001). Four diseases that

have spilled over from bats to humans and have resulted in

epidemics are Ebola and Marburg viruses in Africa (Leroy

et al. 2005) and severe acute respiratory syndrome (SARS)

Coronavirus and Nipah virus in east Asia (Chua 2003; He

et al. 2004; Leroy et al. 2005; Li et al. 2005; Wang and Eaton

2007). Some of these outbreaks have had long-term devas-

tating consequences, from the loss of thousands of human

lives to the collapse of the already imperilled public health

systems that prevent, control and treat other diseases (Chang

et al. 2004; Plucisnki et al. 2015).

Hendra virus (HeV, Paramyxoviridae:Henipavirus) is

another bat-borne virus that spills over into domestic

animals, in its case horses, and then people with high case

fatality rates of 50–75% (Halpin et al. 2011; Smith et al.

2014; Edson et al. 2015; Martin et al. 2016). It was dis-

covered in 1994 in a Brisbane suburb in Queensland,

Australia, with two of the four Australian mainland flying

fox species, Pteropus alecto and P. conspicillatus, as its major

reservoir hosts (Halpin et al. 2011; Smith et al. 2014; Edson

et al. 2015; Martin et al. 2016), although antibodies against

HeV are commonly found in P. scapulatus and P. polio-

cephalus (Young et al. 1996; Plowright et al. 2008). HeV is

closely related to Nipah virus, which is also a Henipavirus

from pteropodid bats. Nipah virus occurs in east Asia and

spills over to pigs and humans, where it has been able to

cause epidemic disease outbreaks with case fatality rates

close to 41% in humans (Chong et al. 2002; Chua 2003). In

Bangladesh, spillover occurs directly to humans with even

higher case fatality rates (Luby et al. 2009). The proven

ability of henipaviruses to cause epidemic outbreaks with

high case fatality rates make spillover mitigation highly

necessary.

Mitigation and prevention of impacts of disease spil-

lover depends on our understanding of the transmission

process and ability to predict it (Plowright et al. 2017).

Mechanistic models of infectious diseases have proven

useful frameworks to make informed decisions towards

controlling and mitigating the impacts of epidemics

(Wickwire 1977). These methods require high-quality

longitudinal data rarely available for pathogens that origi-

nate in wild animals (Woodroffe 1999).The poor under-

standing of HeV dynamics in bats (Plowright et al. 2015)

limit our ability to directly predict HeV levels in those

populations. Nevertheless, prediction can be made with

alternative methods to mechanistic models at lower spatial

and temporal resolutions. These methods are based on

readily available data and can be used to model the re-

sponse of the system of interest (Peterson 2006).

One approach to identify areas at risk from emerging

infectious diseases is to model the ecological niche of the

causal agent and its reservoir host with spatiality explicit

climatic data, and to use the model to predict their geo-

graphic distribution (Escobar and Craft 2016). The process

of niche modelling consists of relating the climatic condi-

tions of locations where organisms are able to breed and

persist with the prevailing climatic conditions of areas where

species could occur (Soberón et al. 2005). The relationships

between a species’ presence and climate are usually estab-

lished with statistical models that ultimately represent a

measure of environmental suitability. The spatial represen-

tation of environmental suitability helps visualisation of the

model’s estimates in the form of maps (Peterson 2006).

Assuming that the organisms’ niches being modelled do not

undergo a climatic niche shift, models can be used to predict

future distributions under climate change scenarios (Pear-

man et al. 2008). For instance, using these methods many

diseases have been predicted to impact wider areas with cli-

mate change, expanding or shifting from tropical to sub-

tropical areas (Lafferty 2009). Therefore, identifying areas at

risk and anticipating the potential impacts of climate change

on HeV spillover is critical to adequately allocate resources

and mitigate risk.

Ecological niche modelling has been applied with

varying degrees of success to investigate the distribution of

the zoonotic niches of bat-borne viruses. For instance when

Peterson et al. (2004) initially predicted areas at risk of

Marburg disease spillover in Africa, left out wide areas that

were later on shown to be at risk in updated models with

improved methods and data (Peterson et al. 2006; Pigott

et al. 2015). Previous ecological niche modelling studies of

Henipavirus spillover systems have focused on answering

ecological and epidemiological questions (Hahn et al.

2014), identifying reservoir hosts (Martin et al. 2016);

identifying new populations at risk (Walsh 2015); or gen-

erating broad predictions of risk (Daszak et al. 2013). While

their contribution towards improving our understanding

has been valuable, none have focused on forecasting areas

at risk of spillover in time, which is essential to anticipate

the effects of climate change and inform public health

measures (Braks et al. 2013).

In order to be able to predict the consequences of

climate change, models must rely on climatic data that can

be projected into the future, such as those resulting from

510 G. Martin et al.



global circulation models (Hijmans et al. 2005; Beaumont

et al. 2008; Wiens et al. 2009). Empirical evidence suggests

that HeV spillover is related to climate by several different

mechanisms acting at different temporal and spatial scales.

From broad to fine: the spatial and temporal abundance

patterns of HeV reservoir hosts, flying foxes, are related to

climatic suitability (Martin et al. 2016); the spatial

dynamics of bats are largely governed by food resources

that are dependent on climate (Hudson et al. 2010; Giles

et al. 2016); the levels of HeV shedding may be linked to

low food productivity and availability after severe weather

events (Plowright et al. 2008; McFarlane et al. 2011; Páez

et al. 2017; Peel et al. 2017); and lastly HeV survival in

microclimates which might facilitate indirect transmission,

is also dependent on climate (Martin et al. 2015, 2017).

In this study we present two models that estimate the

areas at risk of Hendra virus spillover to horses under

current and future climatic conditions. The models repre-

sent the climatic requirements for the presence of HeV’s

reservoir hosts and the climatic conditions that have

facilitated HeV’s transmission to horses. We used current

and predicted future climatic conditions to project the

statistical models and predict areas that could be at risk

now and by year 2050 according to two representative

greenhouse gas concentration pathways.

METHODS

Ecological niche models often use presence only data,

resulting in the extensive use of algorithmic modelling (Elith

et al. 2011). A well-known disadvantage of these methods is

their potential for complexity. Recent efforts have made the

application of better understood techniques like generalised

linear models possible for presence only data, in the form of

Poisson point process models (Renner and Warton 2013;

Renner et al. 2015). Taking advantage of these statistically

transparent frameworks, we modelled the risk of HeV spil-

lover as a Poisson point process, including a log-Gaussian

Cox process to model spatial autocorrelation in a Bayesian

hierarchical inference framework. This method allowed us to

use the entire HeV spillover database (55 events between

1994 and 2015) without thinning to control spatial auto-

correlation (Diggle et al. 2013; Boria et al. 2014). The models

represent the relationship between the number of spillover

events per unit area, the climatic suitability for reservoir host

species, and the climatic niche (temperature and precipita-

tion) over which spillover events have occurred to date.

We took the following steps to build these models: (1)

assigned presence points to the most likely reservoir host

species present at spillover locations, (2) computed the

optimal size of spatial units and determined appropriate

explanatory climatic variables, (3) selected the model struc-

ture (linear and quadratic terms and interactions with AIC

and cross-validation), (4) selected priors for the Bayesian

model, (5) fitted the Bayesianmodel, (6) cross-validated, and

(7) transferred models to climate change scenarios (Fig. 1).

Assigning Spillover Events to Reservoir Host Species

HeV spills over to horses from two of the four Australian

flying fox species (Smith et al. 2014; Edson et al. 2015;

Martin et al. 2016). We treated these species as two separate

reservoir host systems (Smith et al. 2014; Edson et al. 2015;

Figure 1. Workflow to construct

the models.
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Martin et al. 2018) that were geographically limited to the

areas colonisable by P. alecto and P. conspicillatus (Soberón

et al. 2005; Martin et al. 2016). The colonisable areas

comprise the climatic regions of Australia (obtained from

the bureau of meteorology, http:www.bom.gov.au) that

contain at least one presence record of each reservoir host.

To assign spillover events to either system (P. alecto,

north and south, and P. conspicillatus, strictly north), we

extracted the Maxent model’s relative probability of pres-

ence of the two flying fox species at the location of spillover

(Martin et al. 2016). The location points were assigned to

the relevant reservoir host system based on a higher relative

probability of presence value for that species. To this data,

from the remaining location points that did not have

greater occurrence probability for either species, we added

the points with the top 5% of occurrence probability (two

spillover events) for that species at spillover locations. With

this final step, we allowed for ambiguity of the most likely

reservoir species that acted as the source of infection in

horses.

Estimating Spatial Resolution and Selecting

Explanatory Climatic Variables

Point process models relate the number of points (inten-

sity) of presence locations to spatial units. Before a model

was fitted, we needed to determine the optimal size of the

spatial units in which spillover intensity would be regressed

against a set of explanatory variables. To estimate the

optimal computational resolution, we used a minimum

contrast method. Briefly, this method consists of compar-

ing the bandwidth of a nonparametric field and the theo-

retical model that describes the spatial process of the data

(Davies and Hazelton 2013). The spatial resolution that

minimises the error between the methods is optimal.

The expected intensity of spillover cases per spatial unit

was explained by the climatic suitability for the two key

reservoir hosts previously modelled with Maxent (Phillips

et al. 2006) by Martin et al. (2016), and a subset of the

Worldclim bioclimatic variables (bio1-19) (Hijmans et al.

2005). To select the explanatory bioclimatic variables less

likely to negatively affect model transference to climate

change conditions for each spillover system, we performed

a Niche views procedure. It consists of an analysis of the

correlations between pairs of explanatory variables and the

location of the presence points within the bivariate clouds

of data points [BIO1-18 and P. alecto or P. conspicillatus

models (Owens et al. 2013)]. The variables less likely to

affect model transference to climate change conditions are

those where the presence points lie close to the centre or

relatively far from the margins of the range of values within

the bivariate cloud of data (Owens et al. 2013). This may

have increased model complexity by excluding variables

with more explanatory power.

Selecting Point Process Model Structure

Parameters for the Poisson point process model and spatial

autocorrelation with a log-Gaussian Cox process were

sampled with a Metropolis-adjusted Langevin algorithm

implemented in the R 3.2.3 ‘lgcp’ package (Taylor et al.

2013; R Core Team 2016). Model selection was performed a

priori with a Poisson regression (Taylor et al. 2013). The

response variable for this part of the process was the

number of points per spatial area unit (e.g. pixels). We

began model selection with four model structures for the

Poisson regression of the P. alecto system; interactions be-

tween all explanatory variables; with linear, quadratic and

cubic terms; and linear and quadratic terms and a series of

interactions between linear, squared and cubed terms. Each

model was then subject to automated step-wise variable

deletion until we obtained the model with the lowest AIC.

We kept the model structure with the lowest AIC. Then we

tested the performance of this model structure on inde-

pendent data with the partial ROC test [described in more

detail below (Peterson et al. 2008)]. If the lowest AIC model

performed better than random according to the test, then

we used its formula in the final Poisson point process. For

the P. conspicillatus system, we only selected one out of

three models given the small number of spillover cases

potentially arising from this species—all linear terms, and

linear with quadratic and cubed probability of P. con-

spicillatus presence (from Martin et al. 2016).

Finding Appropriate Priors and Covariance Func-

tion for the Bayesian Model

To find the appropriate spatial covariance function, we ran

short chains of 5000 iterations of the MCMC sampler, with

500 burn-in iterations and thinning rate of 15 with the

exponential and spiked exponential covariance functions.

The chains were run with a range of priors and number of

neighbouring cells to compute the covariance function.

When the MCMC chains appeared to be well mixed, with

lower values of autocorrelation and no rejected samples

during the run phase, we ran the full MCMC chains. The
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final size of the full-length chains was chosen based upon

the behaviour of the h parameter. For runs with h & 0.3,

we used 5 M iterations, but in cases where h decreased, the

number of iterations was increased up to 20 M. Parameter

priors that resulted in h < 0.1 at the end of the 5 K iter-

ation chain were rejected. The burn-in phase of the full-

length chains included 10% of the number of iterations and

the thinning rate was set up to keep 1% of the posterior

samples (Taylor et al. 2015). To have a model that repre-

sents the underlying risk, regardless of the underlying

population at risk, we corrected for the effect of horse

population on spillover intensity per unit area. This was

done by using a horse population density model as a

Poisson offset. In the absence of more data regarding horse

densities than the 2007 horse census (Moloney 2011), a

critical assumption in the approach is that the horse pop-

ulation of 2007 is still correlated and broadly representative

of the horse population during the time when HeV spil-

lover events have occurred, from 1994 to 2016 at the spatial

scale of the model. Further justification for this approach is

that we aimed to represent the underlying risk for spillover

regardless of the density of the spillover host. This is partly

because we do not have a reliable model for future horse

densities. Hence the Poisson component of the model with

population offset and spatial covariance results in the fol-

lowing Bayesian model: Poisson component:

lðsÞ ¼ exp bZðsÞ þ YðsÞð Þ
RðsÞ ¼ CAkðsÞlðsÞ

XðsÞ � poissonðRðsÞÞ

Spatial covariance function:

cov Y s1ð Þ;Y s2ð Þ½ � ¼ r2r s2 � s1;uð Þ
rðsÞ ¼ exp �s=uð Þ

s ¼ euclidean s2; s1ð Þ
ð1Þ

Parameter priors:

b � normal 0; 106ð Þ
log uð Þ � normal logð500Þ; 2ð Þ
log rð Þ � normal logð1Þ; 0:15ð Þ

where b is the vector of effects of environmental covariates

Z(s); Y(s) is the bivariate (s1, s2) covariance function, CA is

the spatial grid cell size, k(s) is the horse population den-

sity, X(s) is the point intensity data, and r and u are the

exponential covariance function r(s) parameters in Eq. (1)

(Diggle et al. 2013; Taylor et al. 2013).

The horse population density model was built with the

horse population census of 2007 (Moloney 2011). This

horse density model was created by introducing uniformly

distributed noise to the geographical coordinates of the

horse properties, equivalent to 50% of the cell width of the

environmental data. The number of horses per grid cell

after noising the coordinates was rasterised, and the process

was repeated 100 times. When iterations were completed,

the 100 raster layers were averaged to create the final horse

density model (Fig. 2). This method allowed us to account

for the effect of properties spanning more than one grid cell

but whose centroid lied within a single pixel.

Transferring the Model to Climate Change

Scenarios

Once we obtained the converged MCMC chains, we used

the posterior estimates of the environmental covariates to

project the point intensity of spillover per unit area in

geographic and environmental space. For the final spillover

risk model, we calculated the probability that the predicted

intensity exceeds the lower 20th percentile of the median

intensity estimated for the locations with spillover events.

This threshold was chosen because the database contains

location uncertainty in nearly 20% of the spillover loca-

tions. Before we simulated future scenarios of spillover, we

compared the data used for model fitting with the data

from climate change predictions with an extrapolation

analysis [ExDet (Mesgaran et al. 2014)]. Briefly, extrapo-

lation analyses consist of finding extended variable ranges

(type 1 extrapolation) and different correlation structures

(type 2 extrapolation) that might affect the behaviour of

the statistical model. These analyses are performed with the

raster data used for model transference and result in

highlighting geographical areas where the model might

misbehave. We used the extrapolation analysis results to

remove all areas where models faced extrapolation due to

novel climatic conditions. We used the 16 climate change

scenarios under two different greenhouse gas representative

concentration pathways [RCP 45 and 85 (Hijmans et al.

2005)]. This approach has been suggested to represent

degrees of confidence in the potential outcomes of climate

change given the variability between global circulation

models, RCPs and downscaling methods (Beaumont et al.

2008). Concentration pathways are a series of alternative

trajectories that greenhouse gas concentration might follow

depending on a series of ecological, technological, socio-

economic, political and demographic factors that could

result in different degrees of climate change. The number

that accompanies the acronym RCP indicates the severity of

greenhouse gas concentration (van Vuuren et al. 2011).
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To generate the climate change scenarios consensus

maps, we began by setting a threshold of 0.2 for all

exceeding probabilities to coincide with the threshold that

was used to calculate the probabilities and test the models

(see below). The areas predicted absent with this threshold

under current climatic conditions were set to -1 (pres-

ence = 1, absence = - 1). Then, each of the thresholded

climate change projections had 1 added, so that areas

predicted absent = 1, and areas predicted present = 2.

After adding up all the thresholded predictions, we sub-

tracted the probability that there was model extrapolation

to force all extrapolated areas back to 1 (or between 1 and 2

if not all climate change scenarios resulted in extrapolation

for that area). Finally, we multiplied by the values for the

current risk scenario based on current climatic conditions.

For this, areas predicted absent using the 0.2 threshold were

set to -1 and presence to 1 (absence = - 1, presence = 1)).

This multiplication resulted in all areas that were predicted

present in future climatic conditions but were absent in

today’s conditions becoming negative. All areas that were

predicted present both now and into the future got positive

values between 1 and 2; and the areas that became

unsuitable after climate change received values close to 1

(presence today (1) 9 absence future (1) = 1). Future ab-

sence in the areas represented by these calculations was

caused by areas remaining in the same absent state as

Figure 2. Location of spillover events

overlaid on the horse density model

(log10 scale). The symbol for spillover

events represents the reservoir host

species that we attributed spillover

events. Spillover localities were thinned

to improve visualisation.
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currently, areas becoming unsuitable, or by being unable to

predict anything due to extrapolation. To help readers

identify areas where predictions are dubious due to

extrapolation we have provided a map of extrapolation

conditions.

Models’ predictive performance was measured with the

partial ROC (receiver operator characteristic) with a 20%

omission rate (Peterson et al. 2008) for the P. alecto system,

and with a jackknife test (Pearson et al. 2006) for the P.

conspicillatus system. The partial ROC test is a modification

of the traditional ROC area under curve (AUC) that

measures a model’s ability to discriminate zeroes from

ones. An AUC score of 1 means the model is capable of

perfect discrimination (no false positives or negatives). The

partial ROC, however, is based on the spatial performance

of the model projection by contrasting the percent of area

predicted that is used to generate a random predictor with

the proportion of presences predicted. The resulting score

is the quotient of the model’s AUC and the random pre-

dictor’s AUC. Consequently, the maximum partial ROC

score is two (Peterson et al. 2008). To run this test with

independent data, we partitioned the P. alecto system data

in four sets and cross-validated their predictions with

models fit in one chain of 5 M iterations, burn-in of 500 K

and thinning of 4.5 K. We allowed the partial ROC test a

20% omission of the test points to represent the 20%

uncertainty in spillover location according to the Biosecu-

rity Queensland dataset. While desirable, a higher number

of partitions was not possible due to the high computa-

tional intensity of these analyses. For the P. conspicillatus

system, we fitted 8 models, each one omitting one of the

spillover presence points. Then we calculated the minimum

thresholds and their corresponding per cent of area pre-

dicted for the jackknife test (Pearson et al. 2006).

RESULTS

Predicted Distributional Patterns

The predicted spatial patterns of HeV spillover risk under

present climatic conditions for both reservoir host systems,

P. alecto and P. conspicillatus, are consistent with the dis-

tribution of spillover events since 1994. Current risk, as

explained by P. alecto, comprises most of the east coast of

Australia, from northern Queensland to central New South

Wales, and overlaps with parts of the distribution of

P. conspicillatus. Additional areas spanning farther north

than the northernmost known spillover event were also

predicted to be at risk (Fig. 3). Risk driven by P. con-

spicillatus resulted in novel areas predicted to be at risk of

spillover, located in the northernmost location within

Australia (Fig. 4).

In the P. alecto HeV spillover system, when we pro-

jected the models to future climate change scenarios in

2050, all 16 scenarios agree that there could be an

expansion of risk towards the south and slightly farther

inland (red areas in left panels of Fig. 5). At current horse

population levels (estimated during the census 2007–

2011), the areas predicted to experience significantly

greater risk under climate change scenario RCP45

(greenhouse gas representative concentration pathway 45)

contain up to 112 914 horses, and 164 391 horses for

RCP85. These numbers represent a 175–260% increase in

the horse population at risk. The majority of horses at

increased risk occur over 390–425 km of coastline south

of the southernmost known spillover event (Kempsey,

Figs. 2, 3). Expansion of risk under both RCPs reaches the

Hunter Valley (west of Sydney) which has a high density

of horses. The climate change scenario agreement in this

area is very high. Despite the increased geographical ex-

tent of spillover risk model projections predicted average

lower probability of exceeding the specified intensity

threshold for spillover to occur (20th quantile of median

intensity at spillover locations) compared with current

conditions (Figs. 5, 6).

In northern areas, there is consensus that there could

be greater risk levels in novel areas in the P. alecto spillover

system. However, most of these areas could face novel

climatic conditions that would result in model extrapola-

tion, which increases uncertainty (top right corner of right

panels in Fig. 5). We could not identify any areas that

would become completely unsuitable for spillover (marked

with green). The only areas with 100% agreement to be-

come completely free of risk are most likely over predic-

tions because they lie very far from the known distribution

of spillover and P. alecto.

The major difference between the greenhouse gas

representative concentration pathways is a greater inland

expansion of areas at risk in RCP 85 compared with RCP 45

based on the P. alecto HeV spillover system. This means

that in the more severe climate change scenario risk could

increase farther inland.
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With respect to P. conspicillatus, models predicted both

expansion and contraction but with low agreement be-

tween climate change scenarios (left panels Fig. 6). The

northernmost end of areas at risk were predicted to shrink

in both concentration pathways, although these areas were

affected by extrapolation. Other small areas were predicted

to become unsuitable in RCP 85 that were not affected by

extrapolation. Both scenarios, RCP 85 and 45, predict lower

probabilities of exceeding the intensity threshold compared

with current climate scenarios (right panels in Fig. 6). The

areas that experienced no change for P. conspicillatus were

small, and compared with P. alecto they experienced either

no change or expansion (darkest blue Figs. 5, 6). This

indicates that P. conspicillatus habitat is likely to shrink and

become more suitable for P. alecto, which raises concerns

over P. conspicillatus conservation measures that might also

affect HeV epidemiology.

Model Fit and Performance

The model selection procedure resulted in retention of the

variables and interactions in Tables 1 (P. alecto) and 2 (P.

conspicillatus). For the P. alecto system, we could success-

fully implement the best model according to the AIC of the

Poisson regression. However, for the P. conspicillatus sys-

tem all attempts to include linear and quadratic terms or

their interactions resulted in either singularity of the

covariance matrix or in very long MCMC chains. As a re-

sult, we sought to keep a balance between AIC and the

convergence properties of the MCMC chain which resulted

in a simple model of linear terms of the climatic compo-

nents and a cubic term of P. conspicillatus climatic suit-

ability. Estimates of the regression coefficients (b) and

spatial component (u, r) are listed in Tables 1 and 2.

Both models converged with 10 M iterations, burn in

of 1 M and thinning rate of 9 K. Both models performed

better than random based on their respective performance

metrics. The P. alecto HeV spillover system had an area

under the curve ratio of 1.47 that was significantly different

from 1 (P = 0.04, 1 represents the random prediction

threshold) with an omission rate of 20% consistent with the

threshold to calculate the exceeding probabilities. The P.

conspicillatus spillover system that was tested with the

jackknife test also performed better than random with a

prediction rate of 0.75 (P = 2 9 10-6). Given that we were

looking for a 20% omission threshold and a small number

of presence points in the P. conspicillatus data set, the

prediction rate of 0.75 is acceptable, because in a binomial

process with the same sample size it is not significantly

different from 0.8 (P = 0.99).

The models that were tested during the model struc-

ture selection procedure performed better than random.

The AUC ratios of partitions were 1.84 (SD = 0.069, P = 0)

and 1.85 (SD = 0.053, P = 0) with the same 20% omission

rate.

Extrapolation Analysis

All future climate scenarios result in novel conditions for

the models especially in northern areas. Extrapolation af-

fected mostly the projections of the P. alecto HeV spillover

system and occurred in the novel areas in northern

Queensland (top right corner of the right side panels

Fig. 5). All the climatic variables used in the model caused

type 1 novelty in these areas. Type 1 novelty is an increased

range of values than used in model training. Additional

Figure 3. Present probability of exceeding the intensity threshold of

Hendra virus spillover in the P. alecto system.
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areas of extrapolation occurred in southern locations along

the coast. Because extrapolation in these areas was caused

by the model of P. alecto distribution, which can only have

values 0–1, extrapolation artefacts are unlikely. We did not

perform an extrapolation analysis for the P. alecto distri-

bution models, but only compared the predictions of

Maxent models fit with and without clamping and

extrapolation and did not notice any differences.

Extrapolation affecting the P. conspicillatus system was

mostly present in areas accessible to the species, but that are

outside the areas estimated as suitable for P. conspicillatus.

Therefore, extrapolation is unlikely to affect predictions save

for northernmost locations in the study area (Fig. 6). How-

ever, some climate change scenarios predict the occurrence of

extrapolation type 1 and 2 likely caused by P. conspicillatus.

Probability of extrapolation for this system is shown in the

top right corner of the right side panels in Fig. 5.

DISCUSSION

Under climate change, suitability for HeV spillover could

expand southwards. In addition to a southward expansion,

some scenarios predicted inland expansion in the P. alecto

HeV spillover system. However, while the total area at risk

of spillover was predicted to increase, the average proba-

bility of spillover in these areas could slightly decrease,

especially in the P. conspicillatus system. There was high

uncertainty of future risk in areas north of the current

distribution of spillover. In areas currently inhabited by P.

conspicillatus, P. alecto was predicted to remain stable or

expand. In areas where both P. alecto and P. conspicillatus

were predicted to co-occur, average probability of exceed-

ing the intensity threshold was predicted to decrease with

respect to both species. P. alecto’s expansion indicates that

additional mitigation efforts should be allocated where risk

has been predicted to increase (marked as red in the con-

sensus maps in Figs. 5, 6). In addition, the expansion of P.

alecto into P. conspicillatus territory suggests that P. alecto

may replace or become the more predominant HeV host in

those areas.

The current forecasted area at risk of HeV spillover to

horses is wider than the area that contains the detected HeV

spillover events. Based on both P. alecto and P. conspicil-

latus, areas farther north than previously recognised were

predicted to be at risk. Absence of spillover detection in

these areas is probably due to the very low density of horses

(Fig. 2) and relative lack of disease surveillance. While the

effect of horse density on risk of spillover seems negligible

(McFarlane et al. 2011) or negative depending on the

spatial scale (Martin et al. 2018), the presence of horses is

conditional for spillover (Plowright et al. 2015).

Previous niche modelling studies of Henipavirus hosts

predicted broad areas at risk in Australia (Daszak et al.

2013). Our results differ from these predictions because we

used the actual spillover events to fit the model and because

we narrowed down the number of reservoir hosts from four

to two. Before 2014 it was unclear which bat species were

more relevant for HeV epidemiology. Recent findings have

provided epidemiological (Smith et al. 2014; Edson et al.

2015), and ecological (Martin et al. 2016) support for P.

alecto and P. conspicillatus as the main HeV reservoir hosts.

Hence, we have predicted smaller areas at risk.

Poisson point processes have infrequently been used to

model the spatial pattern of spillover of bat-borne viruses.

Walsh (2015) modelled the spatial pattern of Nipah virus

spillover to humans as a point process model in response to

human footprint, the presence of bat reservoirs and envi-

ronmental factors (vegetation). One key difference with our

study is that we focused on modelling HeV spillover driven

by environmental factors in order to be able to project the

Figure 4. Present probability of exceeding the intensity threshold of

Hendra virus spillover in the P. conspicillatus system.
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Figure 5. Predicted distribution

of spillover for 2050 in two

greenhouse gas representative

concentration pathways (RCP)

for the P. alecto system. Top

RCP 45, and bottom RCP 85.

Left panels show areas of expan-

sion and contraction and the level

of agreement between climate

change scenarios. Right panels,

the average predicted probability

of exceeding spillover intensity

among climate change scenarios

(main panels). Top right corners

show the probability of model

extrapolation.
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models into climate change scenarios. This enabled us to

explore the potential consequences of climate change for

HeV spillover. With that in mind we used reservoir host

density (statistically equivalent to the human footprint

variable in Walsh (2015)) as an offset term to specifically

model the isolated effect of climate. We decided to take this

approach because of the lack of data to predict future horse

density and distribution, which precludes its inclusion as a

HeV spillover predictor.

Previous studies of the zoonotic niche of bat-borne

viruses including Marburg and Ebola viruses (Peterson et al.

2004, 2006; Pigott et al. 2014, 2015) and Nipah virus

(Peterson 2013) have used machine learning methods.

Interpretation of these models and the risk management

implications of the predictions were thus limited to visual

analysis of the geographic patterns and associated climatic

factors. The transparent nature and control over model

selection that Poisson point processes confer result in better

understanding of the likely biological meaning of statistical

associations (Renner et al. 2015; Taylor et al. 2015).However,

definitive interpretation is dependent on understanding of

the underlying biological mechanisms (Walsh 2015).

Figure 6. Predicted distribution of spillover for 2050 in two greenhouse gas representative concentration pathways (RCP 45 and 85) for the P.

conspicillatus system. Left panels show the areas of contraction and expansion and the degree of agreement between climate change scenarios.

Right panels show the averaged probability of exceeding the spillover intensity threshold. Top right corner of right panels shows the pixel-wise

probability of extrapolation.
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Although the final models are complex due to a lack of

understanding of the interaction of flying foxes and horses,

the statistical associations in the models of the P. alecto

system are similar with those found in Martin et al. (2018).

First, most of the variables’ interactions that were kept in

the model represent rainfall (bio12) and its seasonality

(bio15). These two interact with Maxent.p.alecto indicating

that interactions between rainfall, its variability, and the

probable presence of this bat species are important for

spillover. Such effects could be due to the climatic differ-

ences between areas used for foraging and establishing a

roost (Tidemann et al. 1999; Vardon et al. 2001). In fact,

high suitability for P. alecto is not enough to explain spil-

lover because Maxent.p.alecto alone had a negative effect

which is reversed when it interacts with rainfall levels

(Table 1). We can infer from these associations that rainfall

levels and their variability with respect to seasonal extremes

could be broad-scale correlates of HeV spillover risk (Páez

et al. 2017; Martin et al. 2018).

In the P. conspicillatus system, the small number of

spillover events, nine, limits the number of variables and

their interactions that could be included in the model.

From the final model structure only Maxent.p.conspicillatus

and bio2 (mean diurnal temperature range) had significant

effects (Table 2). Given the cubic exponent affecting the

positive effect of Maxent.p.conspicillatus, we infer that

transmission from this species to horses occurs in areas

where climatic suitability is very high for P. conspicillatus.

There was complete agreement among climate change

scenarios that there could be a southward increase in

Table 1. Parameter Estimates of the P. alecto System Model.

Parameter Median Credible intervals

2.5% 97.5%

log(r) 3.817497 9 10-2 - 1.568415 7.081970 9 10-1

log(u) 1.588467 2.679587 9 10-1 3.093003

bIntercept 3.922981 - 3.376057 9 101 3.852942 9 101

bbio5 - 9.316293 9 10-2 - 1.890911 9 10-1 1.705975 9 10-2

bbio9 - 8.620517 9 10-3 - 5.012380 9 10-2 3.087590 9 10-2

bbio12 - 1.710871 9 10-2 - 3.934777 9 10-2 3.480018 9 10-3

bbio15 1.840011 9 10-1 9.811339 9 10-2 2.795649 9 10-1

bMaxent.p.alecto - 1.438959 9 102 - 2.504255 9 102 - 3.564127 9 101

bI(Maxent.p.alecto^2) 5.913680 9 101 - 6.198367 1.252079 9 102

bbio5:Maxent.p.alecto 2.524097 9 10-1 4.738640 9 10-2 4.704084 9 10-1

bbio12:Maxent.p.alecto 9.334252 9 10-2 2.171861 9 10-2 1.726844 9 10-1

bbio12:bio15 - 1.433364 9 10-4 - 7.637361 9 10-5 - 2.197990 9 10-4

bbio12:I(Maxent.p.alecto^2) - 7.449967 9 10-2 - 1.408666 9 10-1 - 1.353857 9 10-2

b’s represent the regression coefficients in exponential scale. Parameters r and u are the mean and variance of the spiked exponential covariance function.

Table 2. Parameter estimates of the P. conspicillatus system.

Parameter Median Credible intervals

2.5% 97.5%

log(r) 0.2876164 2.29218438 1.72870463

log(u) 1.5956162 0.17490535 2.93283772

bbio2 - 0.3454483 - 0.82917878 - 0.06260373

bbio5 0.1196481 - 0.09607769 0.48394434

bbio9 - 0.1569954 - 0.48183344 0.04463800

bI(p.consp^3) 10.3125608 2.46454087 28.37984947
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suitability for spillover caused by the response of P. alecto

to climate change. However, the already observed south-

ward expansion of P. alecto is faster than predicted by

changing climate (Roberts et al. 2012), suggesting that

other non-climatic factors like urbanisation (Plowright

et al. 2011; Tait et al. 2014) are also affecting the presence

and density of the bat species. To date the southernmost

recorded spillover events lie within the limits of the current

potential distribution of spillover (blue areas in left panels

of Fig. 5). This shows that even when P. alecto is capable of

occupying areas beyond its optimal climatic niche, spillover

and spillover risk occur within the areas with the highest

climatic suitability in most cases, most likely due to higher

potential densities of P. alecto [climatic suitability is cor-

related with bat density and spillover risk (Smith et al.

2014; Martin et al. 2016)]. Hence, as climatic suitability for

P. alecto continues to increase southwards, potential for

higher population densities could increase southwards as

well as HeV spillover risk.

The cause of predicted expansions under climate

change with high agreement might be related to the higher

temperatures expected at higher altitude and lower lati-

tudes (Lafferty 2009), particularly in Australia (Williams

et al. 2003). This is consistent with the predictions of

tropical diseases expanding or shifting into subtropical

areas (Lafferty 2009). The lower agreement on the inland

expansion indicates that the effect of altitude is less clear

among climate change scenarios. In fact, some of the sce-

narios indicate that there could be a contraction towards

the coast. Consequently, to adequately assess if there will be

expansion or contraction to and from the coast, flying fox

monitoring programs are required.

In model projections, we identified overpredictions

(Figs. 3, 5). These could be due to the inclusion of areas

that are not usually available to P. alecto (Soberón and

Peterson 2005). Accessible areas are usually defined by

physical barriers, however, in the absence of such evident

barriers for pteropodid bats in Australia we assumed that

climate could act as a barrier through its effects on bat

physiology. While the assumption could be valid, the

choice of climatic regions clearly did not eliminate inac-

cessible areas that could be suitable, at least according to

some climatic factors. Alternatively, the most relevant

climatic factors that restrict the distribution of bats and

HeV spillover might have been discarded in the search for

variables that were less likely to impact the model’s

transference to climate change scenarios (Owens et al.

2013).

The ultimate implications of the southward and

probable inland expansion are a greater number of horses

at spillover risk. Depending on the representative concen-

tration pathway (RCP), and based on the 2007 horse cen-

sus, there could be at least 112–165,000 more horses at risk

(175–260% increase). Because there is considerable uncer-

tainty around the potential outcomes of climate change on

disease occurrence in new areas more research is needed,

first to verify predictions and then to better manage the

consequences (Braks et al. 2013). Furthermore, the ultimate

spillover risk scenario by 2050 will also depend on horse

densities and socio-economic processes, and how these

processes interact with climate change. Therefore, one

potential area of ecological and epidemiological research is

the role of novel ecological interactions between flying

foxes and other organisms such as food sources that could

experience distributional shifts and impacts as result of

human activities. We need to understand if these novel

interactions and processes affect the dynamics of bat pop-

ulations, HeV, and spillover risk (Williams et al. 2003; Sala

et al. 2009). Consequently, we emphasise the need to

undertake regular risk assessments to quantify HeV expo-

sure in horse populations and to consider the potential

consequences of a larger horse population at risk.

In light of the potentially larger horse population at

risk, it is clear that direct intervention of the HeV spillover

system is necessary to mitigate risk in response to climate

change such as extending vaccine coverage regardless of the

uncertainties involved (Beaumont et al. 2008). However, a

more holistic approach would include reduction of green-

house gas emissions. Such a management strategy would

positively impact all levels of organisation of the HeV

spillover system studied here and prevent other predicted

consequences of climate change. For instance, the Aus-

tralian tropics are predicted to experience large biodiversity

losses (Williams et al. 2003) and grasslands in southern

Australia could experience increased variability in pro-

ductivity which could affect the cattle and potentially the

horse industry (Cullen et al. 2009).

Our models predicted that spillover frequency could

decrease in response to climate change with respect to P.

conspicillatus. However, the P. alecto HeV spillover system

was predicted to remain or increase within the current

areas suitable for P. conspicillatus. Therefore, these areas of

tropical north Queensland could experience a replacement

of reservoir host species that may result in different epi-

demiological processes that would benefit from different

mitigation strategies. We recommend, therefore, that an
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area of research be the development of specific manage-

ment strategies for the different flying fox species relevant

to Hendra virus spillover. These management strategies

would anticipate and better manage flying fox species’

replacements and changes in the epidemiology of HeV

spillover.

The predicted shrinking of the distribution of P. con-

spicillatus could also affect the dynamics of many ecosystem

processes because flying foxes are important pollinators

and seed dispersers. The absence of such ecosystem services

could result in further biodiversity loss. Such loss of

ecosystem services occurs even before bats become extinct

(McConkey and Drake 2006). Therefore serious additional

conservation issues may arise as a result of P. conspicillatus

decline that could affect HeV epidemiology.

Predicting HeV spillover with the methods we used

carries considerable uncertainty. Sources of uncertainty

may be related to: (1) the type of presence only data used

limits the number of analytical methods that can be used

and hampers the identification of limiting factors; (2) the

effects of climate on HeV spillover act at several different

levels of ecological organisation and are not well under-

stood, for instance temperature, humidity and ground

vegetation might also limit the available pathways for HeV

transmission to horses (Martin et al. 2017), and tempera-

ture can regulate the flowering status of native plants

(Hudson et al. 2010), the main source of food for flying

foxes; (3) flying fox species distributions do not depend

entirely on climate (Tidemann et al. 1999; Vardon et al.

2001), but are greatly affected by native plant phenology

(Giles et al. 2016), and have an apparently innate preference

for fragmented and urbanised landscapes (Tait et al. 2014);

(4) the predicted distributions of flying foxes in response to

climate change do not account for other organisms’ shifting

distributions that affect bats’ distributions. Other organ-

isms shifting distributions might give rise to novel and

unpredictable interactions and effects on bats’ distributions

(Eby et al. 1999; Eby and Law 2008; Giles et al. 2016); and

(5) climate change could also affect horse behaviour and

susceptibility to diseases. For instance, horses have limited

thermal tolerance. Exceeding their comfort levels can alter

their behaviour (Castanheira et al. 2010) and increase the

frequency of interaction with tree shaded areas (Jørgensen

and Bøe 2007), which is where HeV is usually excreted

(Field et al. 2011). All of these issues warrant further re-

search to increase understanding of HeV epidemiology and

bat virus spillover in general.

The strength of our approach lies in its generality.

Possible improvements to our models to make them more

specific might involve: (1) including a model of bat dis-

tribution that better accounts for the effect of urbanisation

(Tait et al. 2014); (2) including other biological interactions

that are crucial for bat species (Giles et al. 2016) that can be

transferred to climate change scenarios; and (3) establishing

direct links between climatic factors and the levels of HeV

infection in bats. Such an analysis would likely result in

smaller areas and populations predicted to be at risk.

Spillover of diseases from wild to domestic animals and

humans comprises several levels of ecological organisation.

The first level includes the distribution of the reservoir

host, and then the distribution of the causal agent within

the reservoir host (Plowright et al. 2015, 2017). By

including the additional layer of spillover host distribution

as an offset during model fit, we have modelled the direct

effect of climate (Taylor et al. 2015) on the biological

processes that affect the reservoir and the causal agent and

result in HeV spillover. Therefore, the models represent the

underlying risk to any spillover hosts present in the areas

predicted to be at risk due to the presence of the reservoir

host and the effects of climate on the HeV spillover system.

The 20% omission threshold indicates that within these

areas at least 80% of spillover cases could occur. The pre-

cise location and timing of spillover cases will depend on

processes that occur at finer scales like the fraction of

susceptible horses (e.g. unvaccinated) that are effectively

exposed (Plowright et al. 2015; Martin et al. 2015, 2017).

Consequently the models should only be used to improve

understanding of spillover risk, identify areas to allocate

resources for mitigation and inform research activities.

CONCLUSIONS

Our results suggest that spillover events could increase

farther south, and inland with climate change. The current

potential distribution of HeV spillover spans farther north,

but the absence of reported events might be due to very low

horse density and less disease surveillance. Spillover events

could potentially increase farther south, and inland with

climate change. These potential expansions and additional

areas of risk should be assessed in the first instance by

monitoring flying fox populations. In northern Queens-

land, the probable replacement of P. conspicillatus by P.

alecto suggests that mitigation strategies of HeV spillover
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risk may have to be adapted to cope with this interaction

and its uncertain effects.
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