Skip to main content
Log in

How to Deal with Mercury in Sediments? A Critical Review About Used Methods for the Speciation of Mercury in Sediments

  • Review
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

Sediments serve as an indicator of the state of the environment, as they reveal, anthropogenic influences (e.g. industry) over time. The knowledge about the composition of sediments, in particular by the speciation, helps in the assessment of the environmental situation. The speciation of mercury in sediments is still being discussed and continues to pose a great challenge for analytical chemists. Despite a broad number of publications in this area, there is no gold-standard about the speciation of mercury in sediments. The reason for this is the growing interest in new, better methods for the speciation of mercury, which increases the number of publications and the uncertainty among the analysts. Therefore, the methodology of mercury speciation in sediments requires improvement and would benefit from a standardized approach. The goal of this review is to give an overview of the existing methods and to discuss the issues of methodology. Discussed parts in this review article include: (1) available reference material, (2) the methodology of extraction, (3) enrichment procedures, (4) separation and (5) detection.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(adapted from [21])

Fig. 2

(adapted from [32])

Fig. 3

(adapted from [21])

Fig. 4

(adapted from [66])

Fig. 5

(adapted from [102])

Fig. 6

(adapted from [38])

Similar content being viewed by others

References

  1. Kudo A, Miyahara S (1991) Water Sci Technol 23:283–290

    Article  CAS  Google Scholar 

  2. WHO (2010) Public Health and Environment. World Health Organization, Geneva. http://www.who.int/ipcs/features/10chemicals_en.pdf?ua=1

  3. Leermakers M, Baeyens W, Quevauviller P, Horvat M (2005) Trac Trend Anal Chem 24:383–393. https://doi.org/10.1016/j.trac.2004.01.001

    Article  CAS  Google Scholar 

  4. Fitzgerald WF, Lamborg CH, Hammerschmidt CR (2007) Chem Rev 107:641–662. https://doi.org/10.1021/cr050353m

    Article  CAS  PubMed  Google Scholar 

  5. Hursh JB, Clarkson TW, Cherian MG, Vostal JJ, Vandermallie R (1976) Arch Environ Health 31:302–309

    Article  CAS  Google Scholar 

  6. Syversen T, Kaur P (2012) J Trace Elem Med Bio 26:215–226. https://doi.org/10.1016/j.jtemb.2012.02.004

    Article  CAS  Google Scholar 

  7. Gochfeld M (2003) Ecotox Environ Safe 56:174–179. https://doi.org/10.1016/S0147-6513(03)00060-5

    Article  CAS  Google Scholar 

  8. Friberg L, Skog E, Wahlberg JE (1961) Acta Derm Venereol 41:40–52

    CAS  PubMed  Google Scholar 

  9. Magos L, Brown AW, Sparrow S, Bailey E, Snowden RT, Skipp WR (1985) Arch Toxicol 57:260–267. https://doi.org/10.1007/Bf00324789

    Article  CAS  PubMed  Google Scholar 

  10. Clarkson TW (2002) Environ Health Persp 110:11–23

    Article  CAS  Google Scholar 

  11. Kerper LE, Ballatori N, Clarkson TW (1992) Am J Physiol 262:R761–R765

    CAS  PubMed  Google Scholar 

  12. Aberg B, Ekman L, Falk R, Greitz U, Persson G, Snihs JO (1969) Arch Environ Health 19:478–484

    Article  CAS  Google Scholar 

  13. Ullrich SM, Tanton TW, Abdrashitova SA (2001) Crit Rev Environ Sci Technol 31:241–293. https://doi.org/10.1080/20016491089226

    Article  CAS  Google Scholar 

  14. Li WC, Tse HF (2015) Environ Sci Pollut Res 22:192–201. https://doi.org/10.1007/s11356-014-3544-x

    Article  CAS  Google Scholar 

  15. Issaro N, Abi-Ghanem C, Bermond A (2009) Anal Chim Acta 631:1–12. https://doi.org/10.1016/j.aca.2008.10.020

    Article  CAS  PubMed  Google Scholar 

  16. Aceto M, Foglizzo AM, Mentasti E, Sacchero G, Sarzanini C (1995) Int J Environ Anal Chem 60:1–13. https://doi.org/10.1080/03067319508027222

    Article  CAS  Google Scholar 

  17. Mason RP, Reinfelder JR, Morel FMM (1995) Water Air Soil Pollut 80:915–921. https://doi.org/10.1007/Bf01189744

    Article  CAS  Google Scholar 

  18. Malm O, Branches FJP, Akagi H, Castro MB, Pfeiffer WC, Harada M, Bastos WR, Kato H (1995) Sci Total Environ 175:141–150. https://doi.org/10.1016/0048-9697(95)04910-X

    Article  CAS  PubMed  Google Scholar 

  19. Weber JH, Puk R (1994) Appl Organomet Chem 8:709–713. https://doi.org/10.1002/aoc.590080723

    Article  CAS  Google Scholar 

  20. Hintelmann H, Falter R, Ilgen G, Evans RD (1997) Fresen J Anal Chem 358:363–370. https://doi.org/10.1007/s002160050431

    Article  CAS  Google Scholar 

  21. Leopold K, Foulkes M, Worsfold P (2010) Anal Chim Acta 663:127–138. https://doi.org/10.1016/j.aca.2010.01.048

    Article  CAS  Google Scholar 

  22. Bowles KC, Apte SC, Maher WA, Bluhdorn DR (2003) Water Air Soil Pollut 147:25–38. https://doi.org/10.1023/A:1024561830113

    Article  CAS  Google Scholar 

  23. Bisinoti MC, Junior ES, Jardim WF (2007) J Brazil Chem Soc 18:544–553. https://doi.org/10.1590/S0103-50532007000300008

    Article  CAS  Google Scholar 

  24. Araujo BF, Hintelmann H, Dimock B, Sobrinho RD, Bernardes MC, de Almeida MG, Krusche AV, Rangel TP, Thompson F, de Rezende CE (2018) Limnol Oceanogr 63:1134–1145. https://doi.org/10.1002/lno.10758

    Article  CAS  Google Scholar 

  25. He TR, Lu J, Yang F, Feng XB (2007) Sci Total Environ 386:53–64. https://doi.org/10.1016/j.scitotenv.2007.07.022

    Article  CAS  PubMed  Google Scholar 

  26. Kannan K, Smith RG, Lee RF, Windom HL, Heitmuller PT, Macauley JM, Summers JK (1998) Arch Environ Contam Toxicol 34:109–118. https://doi.org/10.1007/s002449900294

    Article  CAS  PubMed  Google Scholar 

  27. Mikac N, Niessen S, Ouddane B, Wartel M (1999) Appl Organomet Chem 13:715–725. https://doi.org/10.1002/(Sici)1099-0739(199910)13:10%3C715::Aid-Aoc918%3E3.0.Co;2-4

    Article  CAS  Google Scholar 

  28. Kannan K, Falandysz J (1998) Water Air Soil Pollut 103:129–136. https://doi.org/10.1023/A:1004967112178

    Article  CAS  Google Scholar 

  29. Wilken RD, Hintelmann H (1991) Water Air Soil Pollut 56:427–437. https://doi.org/10.1007/Bf00342289

    Article  CAS  Google Scholar 

  30. Minganti V, Capelli R, Drava G, De Pellegrini R (2007) Chemosphere 67:1018–1024. https://doi.org/10.1016/j.chemosphere.2006.10.053

    Article  CAS  PubMed  Google Scholar 

  31. Gabriel MC, Williamson DG (2004) Environ Geochem Health 26:421–434. https://doi.org/10.1007/s10653-004-1308-0

    Article  CAS  PubMed  Google Scholar 

  32. Ibanez-Palomino C, Lopez-Sanchez JF, Sahuquillo A (2012) Anal Chim Acta 720:9–15. https://doi.org/10.1016/j.aca.2012.01.015

    Article  CAS  PubMed  Google Scholar 

  33. Le Roux S, Baker P, Crouch A (2016) S Afr J Chem S Afr T 69:124–131. https://doi.org/10.17159/0379-4350/2016/v69a15

    Article  CAS  Google Scholar 

  34. Templeton DM, Ariese F, Cornelis R, Danielsson LG, Muntau H, Van Leeuwen HP, Lobinski R (2000) Pure Appl Chem 72:1453–1470. https://doi.org/10.1351/pac200072081453

    Article  CAS  Google Scholar 

  35. Sarica DY, Turker AR (2012) Clean Soil Air Water 40:523–530. https://doi.org/10.1002/clen.201100535

    Article  CAS  Google Scholar 

  36. Braaten HFV, de Wit HA, Harman C, Hagestrom U, Larssen T (2014) Int J Environ Anal Chem 94:381–384. https://doi.org/10.1080/03067319.2013.823489

    Article  CAS  Google Scholar 

  37. Martinis EM, Wuilloud RG (2010) J Anal Atom Spectrom 25:1432–1439. https://doi.org/10.1039/c004678g

    Article  CAS  Google Scholar 

  38. Amde M, Yin YG, Zhang D, Liu JF (2016) Chem Speciat Bioavailab 28:51–65. https://doi.org/10.1080/09542299.2016.1164019

    Article  CAS  Google Scholar 

  39. Yu LP, Yan XP (2003) Trac Trend Anal Chem 22:245–253. https://doi.org/10.1016/S0165-9936(03)00407-2

    Article  CAS  Google Scholar 

  40. Rosain RM, Wai CM (1973) Anal Chim Acta 65:279–284. https://doi.org/10.1016/S0003-2670(01)82493-4

    Article  CAS  Google Scholar 

  41. Leermakers M, Lansens P, Baeyens W (1990) Fresen J Anal Chem 336:655–662. https://doi.org/10.1007/Bf00331410

    Article  CAS  Google Scholar 

  42. Krivan V, Haas HF (1988) Fresen Z Anal Chem 332:1–6. https://doi.org/10.1007/Bf00487020

    Article  CAS  Google Scholar 

  43. Stoeppler M, Matthes W (1978) Anal Chim Acta 98:389–392. https://doi.org/10.1016/S0003-2670(01)84069-1

    Article  CAS  Google Scholar 

  44. Lansens P, Meuleman C, Baeyens W (1990) Anal Chim Acta 229:281–285. https://doi.org/10.1016/S0003-2670(00)85140-5

    Article  CAS  Google Scholar 

  45. Sedlackova L, Kruzikova K, Svobodova Z (2014) Food Chem 150:360–365. https://doi.org/10.1016/j.foodchem.2013.10.041

    Article  CAS  PubMed  Google Scholar 

  46. Li X, Wang Y, Li BH, Feng CH, Chen YX, Shen ZY (2013) Environ Earth Sci 69:1537–1547. https://doi.org/10.1007/s12665-012-1988-1

    Article  CAS  Google Scholar 

  47. Kim E, Noh S, Lee YG, Kundu SR, Lee BG, Park K, Han S (2014) Mar Chem 158:59–68. https://doi.org/10.1016/j.marchem.2013.11.004

    Article  CAS  Google Scholar 

  48. Zhang T, Kucharzyk KH, Kim B, Deshusses MA, Hsu-Kim H (2014) Environ Sci Technol 48:9133–9141. https://doi.org/10.1021/es500336j

    Article  CAS  PubMed  Google Scholar 

  49. Weiss HV, Shipman WH, Guttman MA (1976) Anal Chim Acta 81:211–217. https://doi.org/10.1016/S0003-2670(00)89480-5

    Article  CAS  Google Scholar 

  50. Avramescu ML, Zhu J, Yumvihoze E, Hintelmann H, Fortin D, Lean DRS (2010) Environ Toxicol Chem 29:1256–1262. https://doi.org/10.1002/etc.158

    Article  CAS  PubMed  Google Scholar 

  51. Leermakers M, Nguyen HL, Kurunczi S, Vanneste B, Galletti S, Baeyens W (2003) Anal Bioanal Chem 377:327–333. https://doi.org/10.1007/s00216-003-2116-6

    Article  CAS  PubMed  Google Scholar 

  52. Fabbri D, Felisatti O, Lombardo M, Trombini C, Vassura I (1998) Sci Total Environ 213:121–128. https://doi.org/10.1016/S0048-9697(98)00083-7

    Article  CAS  Google Scholar 

  53. Quevauviller P, Fortunati GU, Filippelli M, Bortoli A, Muntau H (1998) Appl Organomet Chem 12:531–539. https://doi.org/10.1002/(Sici)1099-0739(199808/09)12:8/9%3C531::Aid-Aoc758%3E3.0.Co;2-I

    Article  CAS  Google Scholar 

  54. Vazquez MJ, Carro AM, Lorenzo RA, Cela R (1997) Anal Chem 69:221–225. https://doi.org/10.1021/ac960513h

    Article  CAS  Google Scholar 

  55. Hintelmann H (1999) Chemosphere 39:1093–1105. https://doi.org/10.1016/S0045-6535(99)00180-0

    Article  CAS  Google Scholar 

  56. Frohne T, Rinklebe J (2013) Water Air Soil Pollut 224:1591. https://doi.org/10.1007/s11270-013-1591-4

    Article  CAS  Google Scholar 

  57. Wallschlager D, Desai MVM, Wilken RD (1996) Water Air Soil Pollut 90:507–520. https://doi.org/10.1007/Bf00282665

    Article  Google Scholar 

  58. Davis A, Bloom NS, Hee SSQ (1997) Risk Anal 17:557–569. https://doi.org/10.1111/j.1539-6924.1997.tb00897.x

    Article  CAS  PubMed  Google Scholar 

  59. Karlsson T, Skyllberg U (2003) Environ Sci Technol 37:4912–4918. https://doi.org/10.1021/es034302n

    Article  CAS  PubMed  Google Scholar 

  60. Ravichandran M (2004) Chemosphere 55:319–331. https://doi.org/10.1016/j.chemosphere.2003.11.011

    Article  CAS  PubMed  Google Scholar 

  61. Khwaja AR, Bloom PR, Brezonik PL (2006) Environ Sci Technol 40:844–849. https://doi.org/10.1021/es051805c

    Article  CAS  PubMed  Google Scholar 

  62. Zhong H, Wang WX (2008) Environ Pollut 151:222–230. https://doi.org/10.1016/j.envpol.2007.01.049

    Article  CAS  PubMed  Google Scholar 

  63. Skyllberg U, Qian J, Frech W, Xia K, Bleam WF (2003) Biogeochemistry 64:53–76. https://doi.org/10.1023/A:1024904502633

    Article  CAS  Google Scholar 

  64. Fiorentino JC, Enzweiler J, Angelica RS (2011) Water Air Soil Pollut 221:63–75. https://doi.org/10.1007/s11270-011-0769-x

    Article  CAS  Google Scholar 

  65. Manohar DM, Krishnan KA, Anirudhan TS (2002) Water Res 36:1609–1619

    Article  CAS  Google Scholar 

  66. Han Y, Kingston HM, Boylan HM, Rahman GMM, Shah S, Richter RC, Link DD, Bhandari S (2003) Anal Bioanal Chem 375:428–436. https://doi.org/10.1007/s00216-002-1701-4

    Article  CAS  PubMed  Google Scholar 

  67. Bloom NS, Preus E, Katon J, Hiltner M (2003) Anal Chim Acta 479:233–248. https://doi.org/10.1016/S0003-2670(02)01550-7

    Article  CAS  Google Scholar 

  68. Saniewska D, Beldowska M (2017) Talanta 168:152–161. https://doi.org/10.1016/j.talanta.2017.03.026

    Article  CAS  PubMed  Google Scholar 

  69. Reis AT, Rodrigues SM, Davidson CM, Pereira E, Duarte AC (2010) Chemosphere 81:1369–1377. https://doi.org/10.1016/j.chemosphere.2010.09.030

    Article  CAS  PubMed  Google Scholar 

  70. Bacon JR, Davidson CM (2008) Analyst 133:25–46. https://doi.org/10.1039/b711896a

    Article  CAS  PubMed  Google Scholar 

  71. Andrews JC (2006) Struct Bond 120:1–35. https://doi.org/10.1007/430_011

    Article  CAS  Google Scholar 

  72. Kim CS, Bloom NS, Rytuba JJ, Brown GE (2003) Environ Sci Technol 37:5102–5108. https://doi.org/10.1021/es0341485

    Article  CAS  PubMed  Google Scholar 

  73. Reis AT, Coelho JP, Rucandio I, Davidson CM, Duarte AC, Pereira E (2015) Geoderma 237:98–104. https://doi.org/10.1016/j.geoderma.2014.08.019

    Article  CAS  Google Scholar 

  74. Barnett MO, Harris LA, Turner RR, Henson TJ, Melton RE, Stevenson RJ (1995) Water Air Soil Pollut 80:1105–1108. https://doi.org/10.1007/Bf01189771

    Article  CAS  Google Scholar 

  75. Martin JM, Nirel P, Thomas AJ (1987) Mar Chem 22:313–341. https://doi.org/10.1016/0304-4203(87)90017-X

    Article  CAS  Google Scholar 

  76. Gleyzes C, Tellier S, Astruc M (2002) Trac Trend Anal Chem 21:451–467. https://doi.org/10.1016/S0165-9936(02)00603-9

    Article  CAS  Google Scholar 

  77. Brombach CC, Gajdosechova Z, Chen B, Brownlow A, Corns WT, Feldmann J, Krupp EM (2015) Anal Bioanal Chem 407:973–981. https://doi.org/10.1007/s00216-014-8254-1

    Article  CAS  PubMed  Google Scholar 

  78. Jagtap R, Krikowa F, Maher W, Foster S, Ellwood M (2011) Talanta 85:49–55. https://doi.org/10.1016/j.talanta.2011.03.022

    Article  CAS  PubMed  Google Scholar 

  79. Bloom NS, Colman JA, Barber L (1997) Fresen J Anal Chem 358:371–377. https://doi.org/10.1007/s002160050432

    Article  CAS  Google Scholar 

  80. Rahman GMM, Kingston HM (2005) J Anal Atom Spectrom 20:183–191. https://doi.org/10.1039/b404581e

    Article  CAS  Google Scholar 

  81. Tseng CM, deDiego A, Martin FM, Donard OFX (1997) J Anal Atom Spectrom 12:629–635. https://doi.org/10.1039/a700832e

    Article  CAS  Google Scholar 

  82. Qian J, Skyllberg U, Tu Q, Bleam WF, Frech W (2000) Fresen J Anal Chem 367:467–473. https://doi.org/10.1007/s002160000364

    Article  CAS  Google Scholar 

  83. Xiang WJ, Liu J, Chang M, Zheng CG (2012) Chem Eng J 200:91–96. https://doi.org/10.1016/j.cej.2012.06.025

    Article  CAS  Google Scholar 

  84. Roulet M, Guimaraes JRD, Lucotte M (2001) Water Air Soil Pollut 128:41–60. https://doi.org/10.1023/A:1010379103335

    Article  CAS  Google Scholar 

  85. Falter R (1999) Chemosphere 39:1051–1073. https://doi.org/10.1016/S0045-6535(99)00178-2

    Article  CAS  Google Scholar 

  86. Quevauviller P (1999) Chemosphere 39:1153–1165. https://doi.org/10.1016/S0045-6535(99)00184-8

    Article  CAS  Google Scholar 

  87. Carrasco L, Vassileva E (2015) Anal Chim Acta 853:167–178. https://doi.org/10.1016/j.aca.2014.10.026

    Article  CAS  PubMed  Google Scholar 

  88. Canario J, Antunes P, Lavrado J, Vale C (2004) Trac Trend Anal Chem 23:799–806. https://doi.org/10.1016/j.trac.2004.08.009

    Article  CAS  Google Scholar 

  89. Dmytriw R, Mucci A, Lucotte M, Pichet P (1995) Water Air Soil Pollut 80:1099–1103. https://doi.org/10.1007/Bf01189770

    Article  CAS  Google Scholar 

  90. Liang L, Horvat M, Feng XB, Shang LH, Lil H, Pang P (2004) Appl Organomet Chem 18:264–270. https://doi.org/10.1002/aoc.617

    Article  CAS  Google Scholar 

  91. Horvat M, Bloom NS, Liang L (1993) Anal Chim Acta 281:135–152. https://doi.org/10.1016/0003-2670(93)85348-N

    Article  CAS  Google Scholar 

  92. Hammerschmidt CR, Fitzgerald WF (2001) Anal Chem 73:5930–5936. https://doi.org/10.1021/ac010721w

    Article  CAS  PubMed  Google Scholar 

  93. Lorenzo RA, Vazquez MJ, Carro AM, Cela R (1999) Trac Trend Anal Chem 18:410–416. https://doi.org/10.1016/S0165-9936(99)00118-1

    Article  CAS  Google Scholar 

  94. Tseng CM, DeDiego A, Martin FM, Amouroux D, Donard OFX (1997) J Anal Atom Spectrom 12:743–750. https://doi.org/10.1039/a700956i

    Article  CAS  Google Scholar 

  95. Bowles KC, Apte SC (2000) Anal Chim Acta 419:145–151. https://doi.org/10.1016/S0003-2670(00)00997-1

    Article  CAS  Google Scholar 

  96. Ramalhosa E, Segade SR, Pereira E, Vale C, Duarte A (2001) Anal Chim Acta 448:135–143. https://doi.org/10.1016/S0003-2670(01)01317-4

    Article  CAS  Google Scholar 

  97. Hintelmann H, Wilken RD (1993) Appl Organomet Chem 7:173–180. https://doi.org/10.1002/aoc.590070303

    Article  CAS  Google Scholar 

  98. Cattani I, Spalla S, Beone GM, Del Re AAM, Boccelli R, Trevisan M (2008) Talanta 74:1520–1526. https://doi.org/10.1016/j.talanta.2007.09.029

    Article  CAS  PubMed  Google Scholar 

  99. Hintelmann H, Evans RD (1997) Fresen J Anal Chem 358:378–385. https://doi.org/10.1007/s002160050433

    Article  CAS  Google Scholar 

  100. Bloom NS (1992) Can J Fish Aquat Sci 49:1010–1017. https://doi.org/10.1139/F92-113

    Article  CAS  Google Scholar 

  101. Tseng CM, de Diego A, Pinaly H, Amouraoux D, Donard OFX (1998) J Anal Atom Spectrom 13:755–764. https://doi.org/10.1039/A802344a

    Article  CAS  Google Scholar 

  102. Jagtap R, Maher W (2015) Microchem J 121:65–98. https://doi.org/10.1016/j.microc.2015.01.010

    Article  CAS  Google Scholar 

  103. Maggi C, Berducci MT, Bianchi J, Giani M, Campanella L (2009) Anal Chim Acta 641:32–36. https://doi.org/10.1016/j.aca.2009.03.033

    Article  CAS  PubMed  Google Scholar 

  104. Rezende PS, Silva NC, Moura WD, Windmoller CC (2018) Microchem J 140:199–206. https://doi.org/10.1016/j.microc.2018.04.006

    Article  CAS  Google Scholar 

  105. Kim CS, Brown GE, Rytuba JJ (2000) Sci Total Environ 261:157–168. https://doi.org/10.1016/S0048-9697(00)00640-9

    Article  CAS  PubMed  Google Scholar 

  106. Sladek C, Gustin MS (2003) Appl Geochem 18:567–576. https://doi.org/10.1016/S0883-2927(02)00115-4

    Article  CAS  Google Scholar 

  107. Kim CS, Rytuba JJ, Brown GE (2004) J Colloid Interf Sci 271:1–15. https://doi.org/10.1016/S0021-9797(03)00330-8

    Article  CAS  Google Scholar 

  108. Biester H, Scholz C (1997) Environ Sci Technol 31:233–239. https://doi.org/10.1021/es960369h

    Article  CAS  Google Scholar 

  109. Bollen A, Wenke A, Biester H (2008) Water Res 42:91–100. https://doi.org/10.1016/j.watres.2007.07.011

    Article  CAS  PubMed  Google Scholar 

  110. Higueras P, Oyarzun R, Biester H, Lillo J, Lorenzo S (2003) J Geochem Explor 80:95–104. https://doi.org/10.1016/S0375-6742(03)00185-7

    Article  CAS  Google Scholar 

  111. Hojdova M, Navratil T, Rohovec J (2008) Bull Environ Contam Toxicol 80:237–241. https://doi.org/10.1007/s00128-007-9352-y

    Article  CAS  PubMed  Google Scholar 

  112. Piani R, Covelli S, Biester H (2005) Appl Geochem 20:1546–1559. https://doi.org/10.1016/j.apgeochem.2005.04.003

    Article  CAS  Google Scholar 

  113. Rallo M, Lopez-Anton MA, Perry R, Maroto-Valer MM (2010) Fuel 89:2157–2159. https://doi.org/10.1016/j.fuel.2010.03.037

    Article  CAS  Google Scholar 

  114. Rumayor M, Diaz-Somoano M, Lopez-Anton MA, Martinez-Tarazona MR (2013) Talanta 114:318–322. https://doi.org/10.1016/j.talanta.2013.05.059

    Article  CAS  PubMed  Google Scholar 

  115. Reis AT, Coelho JP, Rodrigues SM, Rocha R, Davidson CM, Duarte AC, Pereira E (2012) Talanta 99:363–368. https://doi.org/10.1016/j.talanta.2012.05.065

    Article  CAS  PubMed  Google Scholar 

  116. Windmoller CC, Silva NC, Andrade PHM, Mendes LA, do Valle CM (2017) Anal Methods UK 9:2159–2167. https://doi.org/10.1039/c6ay03041f

    Article  CAS  Google Scholar 

  117. Fernandez-Martinez R, Rucandio I (2013) Anal Methods UK 5:4131–4137. https://doi.org/10.1039/c3ay40566d

    Article  CAS  Google Scholar 

  118. Tseng CM, De Diego A, Wasserman JC, Amouroux D, Donard OFX (1999) Chemosphere 39:1119–1136. https://doi.org/10.1016/S0045-6535(99)00182-4

    Article  CAS  Google Scholar 

  119. Martin-Doimeadios RCR, Monperrus M, Krupp E, Amouroux D, Donard OFX (2003) Anal Chem 75:3202–3211. https://doi.org/10.1021/ac026411a

    Article  CAS  Google Scholar 

  120. Delgado A, Prieto A, Zuloaga O, de Diego A, Madariaga JM (2007) Anal Chim Acta 582:109–115. https://doi.org/10.1016/j.aca.2006.08.051

    Article  CAS  PubMed  Google Scholar 

  121. US EPA SW-846 Update V Mercury species fractionation and quantification by microwave assisted extraction, selective solvent extraction and/or solid phase extraction, method 3200, July 2014. https://www.epa.gov/sites/production/files/2015-12/documents/3200.pdf

  122. Liu Y, Chai XL, Hao YX, Gao XF, Lu ZB, Zhao YC, Zhang J, Cai MH (2015) Environ Sci Pollut R 22:8603–8610. https://doi.org/10.1007/s11356-014-3942-0

    Article  CAS  Google Scholar 

  123. He TR, Zhu YZ, Yin DL, Luo GJ, An YL, Yan HY, Qian XL (2015) Environ Sci Pollut R 22:5124–5138. https://doi.org/10.1007/s11356-014-3864-x

    Article  CAS  Google Scholar 

  124. Liang P, Lam CL, Chen Z, Wang HS, Shi JB, Wu SC, Wang WX, Zhang J, Wang HL, Wong MH (2013) J Soil Sediment 13:1301–1308. https://doi.org/10.1007/s11368-013-0719-x

    Article  CAS  Google Scholar 

  125. Schwartz GE, Redfern LK, Ikuma K, Gunsch CK, Ruhl LS, Vengosh A, Hsu-Kim H (2016) Environ Sci Proc Imp 18:1427–1439. https://doi.org/10.1039/c6em00458j

    Article  CAS  Google Scholar 

  126. Nevado JJB, Martin-Doimeadios RCR, Bernardo FJG, Moreno MJ (2008) Anal Chim Acta 608:30–37. https://doi.org/10.1016/j.aca.2007.12.001

    Article  CAS  Google Scholar 

  127. Yin YG, Chen M, Peng JF, Liu JF, Jiang GB (2010) Talanta 81:1788–1792. https://doi.org/10.1016/j.talanta.2010.03.039

    Article  CAS  PubMed  Google Scholar 

  128. Turker AR, Cabuk D, Yalcinkaya O (2013) Anal Lett 46:1155–1170. https://doi.org/10.1080/00032719.2012.753608

    Article  CAS  Google Scholar 

  129. Yang FF, Li JH, Lu WH, Wen YY, Cai XQ, You JM, Ma JP, Ding YJ, Chen LX (2014) Electrophoresis 35:474–481. https://doi.org/10.1002/elps.201300409

    Article  CAS  PubMed  Google Scholar 

  130. Gao ZB, Ma XG (2011) Anal Chim Acta 702:50–55. https://doi.org/10.1016/j.aca.2011.06.019

    Article  CAS  PubMed  Google Scholar 

  131. Chen BB, Wu YL, Guo XQ, He M, Hu B (2015) J Anal Atom Spectrom 30:875–881. https://doi.org/10.1039/c4ja00312h

    Article  CAS  Google Scholar 

  132. Pietila H, Peramaki P, Piispanen J, Majuri L, Starr M, Nieminen T, Kantola M, Ukonmaanaho L (2014) Microchem J 112:113–118. https://doi.org/10.1016/j.microc.2013.10.002

    Article  CAS  Google Scholar 

  133. Taylor VF, Carter A, Davies C, Jackson BP (2011) Anal Methods UK 3:1143–1148. https://doi.org/10.1039/c0ay00528b

    Article  CAS  Google Scholar 

  134. Margetinova J, Houserova-Pelcova P, Kuban V (2008) Anal Chim Acta 615:115–123. https://doi.org/10.1016/j.aca.2008.03.061

    Article  CAS  PubMed  Google Scholar 

  135. Wilken RD, Falter R (1998) Appl Organomet Chem 12:551–557. https://doi.org/10.1002/(Sici)1099-0739(199808/09)12:8/9%3C551::Aid-Aoc760%3E3.0.Co;2-2

    Article  CAS  Google Scholar 

  136. Pietila H, Peramaki P, Piispanen J, Starr M, Nieminen T, Kantola M, Ukonmaanaho L (2015) Chemosphere 124:47–53. https://doi.org/10.1016/j.chemosphere.2014.11.001

    Article  CAS  PubMed  Google Scholar 

  137. Mao YX, Yin YG, Li YB, Liu GL, Feng XB, Jiang GB, Cai Y (2010) Environ Pollut 158:3378–3384. https://doi.org/10.1016/j.envpol.2010.07.031

    Article  CAS  PubMed  Google Scholar 

  138. Leng G, Yin H, Li SB, Chen Y, Dan DZ (2012) Talanta 99:631–636. https://doi.org/10.1016/j.talanta.2012.06.051

    Article  CAS  PubMed  Google Scholar 

  139. Stanisz E, Werner J, Matusiewicz H (2013) Microchem J 110:28–35. https://doi.org/10.1016/j.microc.2013.01.006

    Article  CAS  Google Scholar 

  140. Bravo-Sanchez LR, Encinar JR, Martinez JIF, Sanz-Medel A (2004) Spectrochim Acta B 59:59–66. https://doi.org/10.1016/j.sab.2003.10.001

    Article  CAS  Google Scholar 

  141. Krystek P, Ritsema R (2004) Appl Organomet Chem 18:640–645. https://doi.org/10.1002/aoc.697

    Article  CAS  Google Scholar 

  142. Stoichev T, Martin-Doimeadios RCR, Tessier E, Amouroux D, Donard OFX (2004) Talanta 62:433–438. https://doi.org/10.1016/j.talanta.2003.08.006

    Article  CAS  PubMed  Google Scholar 

  143. Gomez-Ariza JL, Lorenzo F, Garcia-Barrera T, Sanchez-Rodas D (2004) Anal Chim Acta 511:165–173. https://doi.org/10.1016/j.aca.2004.01.051

    Article  CAS  Google Scholar 

  144. Centineo G, Gonzalez EB, Sanz-Medel A (2004) J Chromatogr A 1034:191–197. https://doi.org/10.1016/j.chroma.2004.01.051

    Article  CAS  PubMed  Google Scholar 

  145. Munoz J, Gallego M, Valcarcel M (2004) J Chromatogr A 1055:185–190. https://doi.org/10.1016/j.chroma.2004.09.026

    Article  CAS  PubMed  Google Scholar 

  146. Bloxham MJ, Gachanja A, Hill SJ, Worsfold PJ (1996) J Anal Atom Spectrom 11:145–148. https://doi.org/10.1039/ja9961100145

    Article  CAS  Google Scholar 

  147. Ho YS, Uden PC (1994) J Chromatogr A 688:107–116. https://doi.org/10.1016/S0021-9673(94)89019-6

    Article  CAS  Google Scholar 

  148. Sarzanini C, Sacchero G, Aceto M, Abollino O, Mentasti E (1994) Anal Chim Acta 284:661–667. https://doi.org/10.1016/0003-2670(94)85070-4

    Article  Google Scholar 

  149. Bramanti E, Lomonte C, Onor M, Zamboni R, D’Ulivo A, Raspi G (2005) Talanta 66:762–768. https://doi.org/10.1016/j.talanta.2004.12.031

    Article  CAS  PubMed  Google Scholar 

  150. Wan CC, Chen CS, Jiang SJ (1997) J Anal Atom Spectrom 12:683–687. https://doi.org/10.1039/a605765i

    Article  CAS  Google Scholar 

  151. Ackley KL, Sutton KL, Caruso JA (2000) J Anal Atom Spectrom 15:1069–1073. https://doi.org/10.1039/b000986p

    Article  CAS  Google Scholar 

  152. Shum SCK, Pang HM, Houk RS (1992) Anal Chem 64:2444–2450. https://doi.org/10.1021/ac00044a025

    Article  CAS  PubMed  Google Scholar 

  153. Blanco RM, Villanueva MT, Uria JES, Sanz-Medel A (2000) Anal Chim Acta 419:137–144. https://doi.org/10.1016/S0003-2670(00)01002-3

    Article  CAS  Google Scholar 

  154. Dong LM, Yan XP, Li Y, Jiang Y, Wang SW, Jiang DQ (2004) J Chromatogr A 1036:119–125. https://doi.org/10.1016/j.chroma.2004.02.070

    Article  CAS  PubMed  Google Scholar 

  155. Chen XP, Han C, Cheng HY, Wang YC, Liu JH, Xu ZG, Hu L (2013) J Chromatogr A 1314:86–93. https://doi.org/10.1016/j.chroma.2013.08.104

    Article  CAS  PubMed  Google Scholar 

  156. Tu Q, Qvarnstrom J, Frech W (2000) Analyst 125:705–710. https://doi.org/10.1039/a908880f

    Article  CAS  Google Scholar 

  157. Lee TH, Jiang SJ (2000) Anal Chim Acta 413:197–205. https://doi.org/10.1016/S0003-2670(00)00807-2

    Article  CAS  Google Scholar 

  158. da Rocha MS, Soldado AB, Blanco-Gonzalez E, Sanz-Medel A (2000) J Anal Atom Spectrom 15:513–518

    Article  Google Scholar 

  159. da Rocha MS, Soldado AB, Blanco-Gonzalez E, Sanz-Medel A (2000) Biomed Chromatogr 14:6–63

    Article  Google Scholar 

  160. Medina I, Rubi E, Mejuto MC, Cela R (1993) Talanta 40:1631–1636. https://doi.org/10.1016/0039-9140(93)80077-5

    Article  CAS  PubMed  Google Scholar 

  161. Mercader-Trejo F, de San Miguel ER, de Gyves J (2005) J Anal Atom Spectrom 20:1212–1217. https://doi.org/10.1039/b505000f

    Article  CAS  Google Scholar 

  162. Mercader-Trejo F, Herrera-Basurto R, de San Miguel ER, de Gyves J (2011) Int J Environ Anal Chem 91:1062–1076. https://doi.org/10.1080/03067311003782658

    Article  CAS  Google Scholar 

  163. Nguyen TH, Boman J, Leermakers M, Baeyens W (1998) X-ray Spectrom 27:277–282. https://doi.org/10.1002/(Sici)1097-4539(199807/08)27:4%3C277::Aid-Xrs297%3E3.0.Co;2-U

    Article  CAS  Google Scholar 

  164. Koplik R, Klimesova I, Malisova K, Mestek O (2014) Czech J Food Sci 32:249–259

    Article  CAS  Google Scholar 

  165. Bulska E, Baxter DC, Frech W (1991) Anal Chim Acta 249:545–554. https://doi.org/10.1016/S0003-2670(00)83032-9

    Article  CAS  Google Scholar 

  166. Tao H, Murakami T, Tominaga M, Miyazaki A (1998) J Anal Atom Spectrom 13:1085–1093. https://doi.org/10.1039/a803369b

    Article  CAS  Google Scholar 

  167. Uria JES, Sanz-Medel A (1998) Talanta 47:509–524

    Article  Google Scholar 

  168. Harrington CF (2000) Trac Trend Anal Chem 19:167–179. https://doi.org/10.1016/S0165-9936(99)00190-9

    Article  CAS  Google Scholar 

  169. Kadlecova M, Daye M, Ouddane B (2014) Anal Lett 47:697–706. https://doi.org/10.1080/00032719.2013.848364

    Article  CAS  Google Scholar 

  170. Lambertsson L, Lundberg E, Nilsson M, Frech W (2001) J Anal Atom Spectrom 16:1296–1301. https://doi.org/10.1039/b106878b

    Article  CAS  Google Scholar 

  171. Park JS, Lee JS, Kim GB, Cha JS, Shin SK, Kang HG, Hong EJ, Chung GT, Kim YH (2010) Water Air Soil Pollut 207:391–401. https://doi.org/10.1007/s11270-009-0144-3

    Article  CAS  Google Scholar 

  172. Caricchia AM, Minervini G, Soldati P, Chiavarini S, Ubaldi C, Morabito R (1997) Microchem J 55:44–55. https://doi.org/10.1006/mchj.1996.1357

    Article  CAS  Google Scholar 

  173. Hintelmann H, Evans RD, Villeneuve JY (1995) J Anal Atom Spectrom 10:619–624. https://doi.org/10.1039/ja9951000619

    Article  CAS  Google Scholar 

  174. Lin LY, Chang LF, Jiang SJ (2008) J Agric Food Chem 56:6868–6872. https://doi.org/10.1021/jf801241w

    Article  CAS  PubMed  Google Scholar 

  175. de Souza SS, Rodrigues JL, Souza VCD, Barbosa F (2010) J Anal Atom Spectrom 25:79–83. https://doi.org/10.1039/b911696f

    Article  CAS  Google Scholar 

  176. Houserova P, Matejicek D, Kuban V (2007) Anal Chim Acta 596:242–250. https://doi.org/10.1016/j.aca.2007.06.020

    Article  CAS  PubMed  Google Scholar 

  177. Rahman GMM, Kingston HM (2004) Anal Chem 76:3548–3555. https://doi.org/10.1021/Ac030407x

    Article  CAS  PubMed  Google Scholar 

  178. Rai R, Maher W, Kirkowa F (2002) J Anal Atom Spectrom 17:1560–1563. https://doi.org/10.1039/b208041a

    Article  CAS  Google Scholar 

  179. Tu Q, Johnson W, Buckley B (2003) J Anal Atom Spectrom 18:696–701. https://doi.org/10.1039/b300992k

    Article  CAS  Google Scholar 

  180. Kuban P, Houserova P, Kuban P, Hauser PC, Kuban V (2007) Electrophoresis 28:58–68. https://doi.org/10.1002/elps.200600457

    Article  CAS  PubMed  Google Scholar 

  181. Soliman EM, Saleh MB, Ahmed SA (2006) Talanta 69:55–60. https://doi.org/10.1016/j.talanta.2005.08.070

    Article  CAS  PubMed  Google Scholar 

  182. Jiang HM, Hu B, Jiang ZC, Qin YC (2006) Talanta 70:7–13. https://doi.org/10.1016/j.talanta.2006.02.047

    Article  CAS  PubMed  Google Scholar 

  183. Landi S, Fagioli F, Locatelli C (1992) J AOAC Int 75:1023–1028

    CAS  Google Scholar 

  184. Oda CE, Ingle JD (1981) Anal Chem 53:2305–2309. https://doi.org/10.1021/Ac00237a040

    Article  CAS  Google Scholar 

  185. Leopold K, Foulkes M, Worsfold PJ (2009) Trac Trend Anal Chem 28:426–435. https://doi.org/10.1016/j.trac.2009.02.004

    Article  CAS  Google Scholar 

  186. Logar M, Horvat M, Akagi H, Pihlar B (2002) Anal Bioanal Chem 374:1015–1021. https://doi.org/10.1007/s00216-002-1501-x

    Article  CAS  PubMed  Google Scholar 

  187. Labatzke T, Schlemmer G (2004) Anal Bioanal Chem 378:1075–1082. https://doi.org/10.1007/s00216-003-2416-x

    Article  CAS  PubMed  Google Scholar 

  188. Campbell MJ, Vermeir G, Dams R, Quevauviller P (1992) J Anal Atom Spectrom 7:617–621. https://doi.org/10.1039/ja9920700617

    Article  CAS  Google Scholar 

  189. Seibert EL, Dressler VL, Pozebon D, Curtius AJ (2001) Spectrochim Acta B 56:1963–1971. https://doi.org/10.1016/S0584-8547(01)00334-2

    Article  Google Scholar 

  190. Monperrus M, Tessier E, Veschambre S, Amouroux D, Donard O (2005) Anal Bioanal Chem 381:854–862. https://doi.org/10.1007/s00216-004-2973-7

    Article  CAS  PubMed  Google Scholar 

  191. Jia XY, Han Y, Liu XL, Duan TC, Chen HT (2011) Spectrochim Acta B 66:88–92. https://doi.org/10.1016/j.sab.2010.12.003

    Article  CAS  Google Scholar 

  192. Jia XY, Gong DR, Han Y, Wei C, Duan TC, Chen HT (2012) Talanta 88:724–729. https://doi.org/10.1016/j.talanta.2011.10.026

    Article  CAS  PubMed  Google Scholar 

  193. Cheng HY, Wu CL, Shen LH, Liu JH, Xu ZG (2014) Anal Chim Acta 828:9–16. https://doi.org/10.1016/j.aca.2014.04.042

    Article  CAS  PubMed  Google Scholar 

  194. Nevado JJB, Martin-Doimeadios RCR, Krupp EM, Bernardo FJG, Farinas NR, Moreno MJ, Wallace D, Roper MJP (2011) J Chromatogr A 1218:4545–4551. https://doi.org/10.1016/j.chroma.2011.05.036

    Article  CAS  PubMed  Google Scholar 

  195. Zhao YQ, Zheng JP, Fang L, Lin Q, Wu YN, Xue ZM, Fu FF (2012) Talanta 89:280–285. https://doi.org/10.1016/j.talanta.2011.12.029

    Article  CAS  PubMed  Google Scholar 

  196. Li BH (2011) Anal Methods UK 3:116–121. https://doi.org/10.1039/c0ay00480d

    Article  CAS  Google Scholar 

  197. Trujillo IS, Alonso EV, Pavon JMC, de Torres AG (2015) J Anal Atom Spectrom 30:2429–2440. https://doi.org/10.1039/c5ja00335k

    Article  Google Scholar 

  198. Garcia-Ordiales E, Covelli S, Rico JM, Roqueni N, Fontolan G, Flor-Blanco G, Cienfuegos P, Loredo J (2018) Chemosphere 198:281–289. https://doi.org/10.1016/j.chemosphere.2018.01.146

    Article  CAS  PubMed  Google Scholar 

  199. Nevado JJB, Martin-Doimeadios RCR, Bernardo FJG, Moreno MJ (2005) J Chromatogr A 1093:21–28. https://doi.org/10.1016/j.chroma.2005.07.054

    Article  CAS  PubMed  Google Scholar 

  200. Cai Y, Monsalud S, Furton KG, Jaffe R, Jones RD (1998) Appl Organomet Chem 12:565–569. https://doi.org/10.1002/(Sici)1099-0739(199808/09)12:8/9%3C565::Aid-Aoc762%3E3.0.Co;2-K

    Article  CAS  Google Scholar 

  201. Nevado JJB, Martin-Doimeadios RCR, Moreno MJ (2009) Sci Total Environ 407:2372–2382. https://doi.org/10.1016/j.scitotenv.2008.12.006

    Article  CAS  Google Scholar 

  202. Martin-Doimeadios RCR, Krupp E, Amouroux D, Donard OFX (2002) Anal Chem 74:2505–2512. https://doi.org/10.1021/ac011157s

    Article  CAS  Google Scholar 

  203. Rodrigues JL, Alvarez CR, Farinas NR, Nevado JJB, Barbosa F, Martin-Doimeadios RCR (2011) J Anal Atom Spectrom 26:436–442. https://doi.org/10.1039/c004931j

    Article  CAS  Google Scholar 

  204. Moreno MJ, Pacheco-Arjona J, Rodriguez-Gonzalez P, Preud’Homme H, Amouroux D, Donard OFX (2006) J Mass Spectrom 41:1491–1497. https://doi.org/10.1002/jms.1120

    Article  CAS  PubMed  Google Scholar 

  205. Sanchez-Rodas D, Corns WT, Chen B, Stockwell PB (2010) J Anal Atom Spectrom 25:933–946. https://doi.org/10.1039/b917755h

    Article  CAS  Google Scholar 

  206. Cano-Pavon JM, De Torres AG, Sanchez-Rojas F, Canada-Rudner P (1999) Int J Environ Anal Chem 75:93–106. https://doi.org/10.1080/03067319908047303

    Article  CAS  Google Scholar 

  207. Heumann KG, Gallus SM, Radlinger G, Vogl J (1998) Spectrochim Acta B 53:273–287. https://doi.org/10.1016/S0584-8547(97)00134-1

    Article  Google Scholar 

  208. Castillo A, Roig-Navarro AF, Pozo OJ (2006) Anal Chim Acta 577:18–25. https://doi.org/10.1016/j.aca.2006.06.024

    Article  CAS  PubMed  Google Scholar 

  209. Guo W, Hu SH, Wang XJ, Zhang JY, Jin LL, Zhu ZL, Zhang HF (2011) J Anal Atom Spectrom 26:1198–1203. https://doi.org/10.1039/c1ja00005e

    Article  CAS  Google Scholar 

  210. Jian L, Goessler W, Irgolic KJ (2000) Fresen J Anal Chem 366:48–53. https://doi.org/10.1007/s002160050010

    Article  CAS  Google Scholar 

  211. Brombach CC, Chen B, Corns WT, Feldmann J, Krupp EM (2015) Spectrochim Acta B 105:103–108. https://doi.org/10.1016/j.sab.2014.09.014

    Article  CAS  Google Scholar 

  212. Guzman-Mar JL, Hinojosa-Reyes L, Serra AM, Hernandez-Ramirez A, Cerda V (2011) Anal Chim Acta 708:11–18. https://doi.org/10.1016/j.aca.2011.09.037

    Article  CAS  PubMed  Google Scholar 

  213. Ai X, Wang Y, Hou XD, Yang L, Zheng CB, Wu L (2013) Analyst 138:3494–3501. https://doi.org/10.1039/c3an00010a

    Article  CAS  PubMed  Google Scholar 

  214. Harrington CF, Romeril J, Catterick T (1998) Rapid Commun Mass Spectrom 12:911–916. https://doi.org/10.1002/(Sici)1097-0231(19980731)12:14%3C911::Aid-Rcm254%3E3.0.Co;2-X

    Article  CAS  Google Scholar 

  215. Pena-Pereira F, Lavilla I, Bendicho C, Vidal L, Canals A (2009) Talanta 78:537–541. https://doi.org/10.1016/j.talanta.2008.12.003

    Article  CAS  PubMed  Google Scholar 

  216. Li PJ, He M, Chen BB, Hu B (2015) J Chromatogr A 1415:48–56. https://doi.org/10.1016/j.chroma.2015.08.062

    Article  CAS  PubMed  Google Scholar 

  217. Chen C, Peng MT, Hou XD, Zheng CB, Long Z (2013) Anal Methods UK 5:1185–1191. https://doi.org/10.1039/c2ay26214b

    Article  CAS  Google Scholar 

  218. Li PJ, Zhang X, Hu B (2011) J Chromatogr A 1218:9414–9421. https://doi.org/10.1016/j.chroma.2011.10.071

    Article  CAS  PubMed  Google Scholar 

  219. Ting Y, Chen C, Ch’ng BL, Wang YL, Hsi HC (2018) J Hazard Mater 354:116–124. https://doi.org/10.1016/j.jhazmat.2018.04.074

    Article  CAS  PubMed  Google Scholar 

  220. Gilmour C, Bell JT, Soren AB, Riedel G, Riedel G, Kopec AD, Bodaly RA (2018) Sci Total Environ 640:555–569. https://doi.org/10.1016/j.scitotenv.2018.05.276

    Article  CAS  PubMed  Google Scholar 

  221. Blum PW, Hershey AE, Tsui MTK, Hammerschmidt CR, Agather AM (2018) Biogeochemistry 137:181–195. https://doi.org/10.1007/s10533-017-0408-8

    Article  CAS  Google Scholar 

  222. Cesario R, Hintelmann H, Mendes R, Eckey K, Dimock B, Araujo B, Mota AM, Canario J (2017) Environ Pollut 226:297–307. https://doi.org/10.1016/j.envpol.2017.03.075

    Article  CAS  PubMed  Google Scholar 

  223. Valdes C, Black FJ, Stringham B, Collins JN, Goodman JR, Saxton HJ, Mansfield CR, Schmidt JN, Yang S, Johnson WP (2017) Environ Sci Technol 51:4887–4896. https://doi.org/10.1021/acs.est.6b05790

    Article  CAS  PubMed  Google Scholar 

  224. Kodamatani H, Maeda C, Balogh SJ, Nollet YH, Kanzaki R, Tomiyasu T (2017) Chemosphere 173:380–386. https://doi.org/10.1016/j.chemosphere.2017.01.053

    Article  CAS  PubMed  Google Scholar 

  225. Cesario R, Monteiro CE, Nogueira M, O’Driscoll NJ, Caetano M, Hintelmann H, Mota AM, Canario J (2016) Water Air Soil Pollut 227:475. https://doi.org/10.1007/s11270-016-3179-2

    Article  CAS  Google Scholar 

  226. Mendes LA, de Lena JC, do Valle CM, Fleming PM, Windmoller CC (2016) Appl Geochem 75:32–43. https://doi.org/10.1016/j.apgeochem.2016.10.011

    Article  CAS  Google Scholar 

  227. Monteiro CE, Cesario R, O’Driscoll NJ, Nogueira M, Valega M, Caetano M, Canario J (2016) Mar Pollut Bull 104:162–170. https://doi.org/10.1016/j.marpolbul.2016.01.042

    Article  CAS  PubMed  Google Scholar 

  228. Liu B, Schaider LA, Mason RP, Shine JP, Rabalais NN, Senn DB (2015) Estuar Coast Shelf Sci 159:50–59. https://doi.org/10.1016/j.ecss.2015.03.030

    Article  CAS  Google Scholar 

  229. Ma X, Yin YG, Shi JB, Liu JF, Jiang GB (2014) Anal Methods UK 6:164–169. https://doi.org/10.1039/c3ay41625a

    Article  CAS  Google Scholar 

  230. Kodamatani H, Tomiyasu T (2013) J Chromatogr A 1288:155–159. https://doi.org/10.1016/j.chroma.2013.02.004

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Financial support from the Federal Institute of Hydrology is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. J. Schmitz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Published in Chromatographia's 50th Anniversary Commemorative Issue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hellmann, C., Costa, R.D. & Schmitz, O.J. How to Deal with Mercury in Sediments? A Critical Review About Used Methods for the Speciation of Mercury in Sediments. Chromatographia 82, 125–141 (2019). https://doi.org/10.1007/s10337-018-3625-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-018-3625-y

Keywords

Navigation