Environmental Chemistry Letters

, Volume 16, Issue 2, pp 439–475 | Cite as

Polycyclic aromatic hydrocarbon derivatives in airborne particulate matter: sources, analysis and toxicity

  • Imane Abbas
  • Ghidaa Badran
  • Anthony Verdin
  • Frédéric Ledoux
  • Mohamed Roumié
  • Dominique Courcot
  • Guillaume Garçon
Review

Abstract

Polycyclic aromatic hydrocarbons (PAHs) are worldwide pollutants produced mainly during incomplete combustion and pyrolysis of organic substances. PAH derivatives are components with hydrogen on the aromatic ring substituted by carbonyl-, nitro- and hydroxyl-functional groups (N-PAH, O-PAH or OH-PAH), or a group of heterocyclic PAHs containing one sulfur atom in place of a carbon atom in the aromatic ring. PAHs and their derivatives can be either introduced in the atmosphere directly in this form as primary pollutants, or formed by homogenous and heterogeneous oxidation reactions. During the last decades, interest on studying PAH derivatives has increased because derivatives may be more harmful than parent compounds. PAH derivatives have been detected in the atmospheric particulate matter in numerous cities worldwide. PAH derivatives enter living organisms by inhalation, oral ingestion and dermal contact. In vivo and in vitro experiments together with epidemiological studies have shown the toxic effects of PAH derivatives, notably for compounds present in airborne and diesel exhaust particles. Here we review the sources, the mechanisms of formation, the physicochemical properties, the analytical methods, and the toxicological effects of PAHs and their derivatives in airborne particulate matter.

Keywords

N-PAHs O-PAHs OH-PAHs PASHs Particulate matter Toxicity 

Abbreviations

AhR

Aryl hydrocarbon receptor

APSE

Accelerated/pressurized solvent extraction

B[a]P

Benzo[a]pyrene

CLD

Chemiluminescence detector

CPAHs

Combustion-related PAHs

DPM

Diesel particulate matter

ECD

Electron capture detector

GC–EI/MS

Gas chromatography–electron impact/mass spectrometry

GC

Gas chromatography

HFBA

Heptafluorobutyric anhydride

HPLC

High-performance liquid chromatography

LC-APCI/MS

Liquid chromatography–atmospheric pressure chemical ionization/mass spectrometry

LOH

Loss of heterozygosity

MAE

Microwave-assisted extraction

MDA

Malonaldehyde

MN

Micronuclei

MS

Mass spectrometry

N-PAHs

Nitrated PAHs

NA

Nuclear abnormalities

NCD

Nitrogen chemiluminescence detector

NCI-MS

Ion chemical ionization mass spectrometry

NICI

Negative ion chemical ionization

NPD

Nitrogen and phosphorus selective detector

O-PAHs

Oxygenated PAHs

Oct-4

Octamer-4

OH-PAHs

Hydroxylated PAHs

PASHs

Sulfur heterocycles PAHs

PFE

Pressurized fluid extraction

PM

Particulate matter

QuEChERS

Quick easy cheap effective rugged and safe

SE

Solvent extraction

SFE

Supercritical fluid extraction

SIM

Selective ion monitoring

TID

Thermionic ionization detector

TPAHs

Total PAHs

TSP

Total suspended particles

UE

Ultrasonic extraction

USEPA

United States Environmental Protection Agency

XME

Xenobiotic-metabolizing enzyme

XRE

Xenobiotic element response

Notes

Acknowledgements

This work was supported by the National Council of Scientific Research in Lebanon, especially the Lebanese Atomic Energy Commission. The “Unité de Chimie Environnementale et Interactions sur le Vivant” (UCEIV-EA4492) and the “IMPacts de l’Environnement Chimique sur la Santé Humaine” (IMPECS-EA4483) both participate in the CLIMIBIO project, which is financially supported by the Hauts-de-France Region Council, the French Ministry of Higher Education and Research, and the European Regional Development Funds.”

References

  1. Abbas I, Verdin A, Escande F, Saint-Georges F, Cazier F, Mulliez P, Courcot D, Shirali P, Gosset P, Garçon G (2016) In-vitro short-term exposure to air pollution PM2.5-0.3 induced cell cycle alterations and genetic instability in a human lung cell coculture model. Environ Res 147:146–158.  https://doi.org/10.1016/j.envres.2016.01.041 CrossRefGoogle Scholar
  2. Abramsson-Zetterberg L, Maurer BM (2015) Fluoranthene and phenanthrene, two predominant PAHs in heat-prepared food, do not influence the frequency of micro nucleated mouse erythrocytes induced by other PAHs. Toxicol Rep 5:1057–1063.  https://doi.org/10.1016/j.toxrep.2015.07.016 CrossRefGoogle Scholar
  3. Agency for Toxic Substances and Disease Registry (ATSDR) (2009) Case studies in environmental medicine. Toxicity of polycyclic aromatic hydrocarbons (PAHs). Agency for Toxic Substances and Disease Registry (ATSDR), AtlantaGoogle Scholar
  4. Air Quality in Europe (A.Q.i.E.) (2016) Technical report no. 28/2016, Copenhagen.  https://doi.org/10.2800/80982
  5. Alam MS, Keyte IJ, Yin J, Stark C, Jones AM, Harrison RM (2015) Diurnal variability of polycyclic aromatic compound (PAC) concentrations: relationship with meteorological conditions and inferred sources. Atmos Environ 122:427–436.  https://doi.org/10.1016/j.atmosenv.2015.09.050 CrossRefGoogle Scholar
  6. Albinet A, Leoz-Garziandia E, Budzinski H, ViIlenave E (2007a) Polycyclic aromatic hydrocarbons (PAHs), nitrated PAHs and oxygenated PAHs in ambient air of the Marseilles area (South of France): concentrations and sources. Sci Total Environ 384:280–292.  https://doi.org/10.1016/j.scitotenv.2007.04.028 CrossRefGoogle Scholar
  7. Albinet A, Leoz-Garziandia E, Budzinski H, ViIlenave E (2007b) Simultaneous analysis of oxygenated and nitrated polycyclic aromatic hydrocarbons on standard reference material 1649a (urban dust) and on natural ambient air samples by gas chromatography–mass spectrometry with negative ion chemical ionisation. J Chromatogr A 1121:106–113.  https://doi.org/10.1016/j.chroma.2006.04.043 CrossRefGoogle Scholar
  8. Albinet A, Leoz-Garziandia E, Budzinski H, Villenave E, Jaffrezo J (2008) Nitrated and oxygenated derivatives of polycyclic aromatic hydrocarbons in the ambient air of two French alpine valleys. Part 1: concentrations, sources and gas/particle partitioning. Atmos Environ 42:43–54.  https://doi.org/10.1016/j.atmosenv.2007.10.009 CrossRefGoogle Scholar
  9. Albinet A, Nalin F, Tomaz S, Beaumont J, Lestremau F (2014) A simple QuEChERS-like extraction approach for molecular chemical characterization of organic aerosols: application to nitrated and oxygenated PAH derivatives (NPAH and OPAH) quantified by GC–NICIMS. Anal Bioanal Chem 406:3131–3148.  https://doi.org/10.1007/s00216-014-7760-5 CrossRefGoogle Scholar
  10. Alexandrov K, Rojas M, Satarug S (2010) The critical DNA damage by benzo(a)pyrene in lung tissues of smokers and approaches to preventing its formation. Toxicol Lett 198:63–68.  https://doi.org/10.1016/j.toxlet.2010.04.009 CrossRefGoogle Scholar
  11. Alves C, Vicente A, Gomes J, Nunes T, Duarte M, Bandowe B (2016) Polycyclic aromatic hydrocarbons (PAHs) and their derivatives (oxygenated-PAHs, nitrated-PAHs and azaarenes) in size-fractionated particles emitted in an urban road tunnel. Atmos Res 180:128–137.  https://doi.org/10.1016/j.atmosres.2016.05.013 CrossRefGoogle Scholar
  12. Alves CA, Vicente AM, Custódio D, Cerqueira M, Nunes T, Pio C, Lucarelli F, Calzolai G, Nava S, Diapouli E, Eleftheriadis K, Querol X, Bandowe BM (2017) Polycyclic aromatic hydrocarbons and their derivatives (nitro-PAHs, oxygenated PAHs, and azaarenes) in PM2.5 from Southern European cities. Sci Total Environ 595:494–504.  https://doi.org/10.1016/j.scitotenv.2017.03.256 CrossRefGoogle Scholar
  13. Amador-Muñoz O, Villalobos-Pietrini R, Miranda J, Vera-Avila LE (2011) Organic compounds of PM2.5 in Mexico Valley: spatial and temporal patterns, behavior and sources. Sci Total Environ 409:1453–1465.  https://doi.org/10.1016/j.scitotenv.2010.11.026 CrossRefGoogle Scholar
  14. Anastasopoulos A, Wheeler A, Karman D, Kulka R (2012) Intraurban concentrations, spatial variability and correlation of ambient polycyclic aromatic hydrocarbons (PAH) and PM2.5. Atmos Environ 59:272–283.  https://doi.org/10.1016/j.atmosenv.2012.05.004 CrossRefGoogle Scholar
  15. Arey J (1998) Atmospheric reactions of PAHs including formation of nitroarenes. In: The handbook of environmental chemistry, PAHs and related compounds, vol 3. Springer, Berlin, pp 347–385.  https://doi.org/10.1007/978-3-540-49697-7
  16. Arlt V, Cole K, Phillips D (2004a) Activation of 3-nitrobenzanthrone and its metabolites to DNA-damaging species inhuman B-lymphoblastoid MCL-5 cells. Mutagenesis 19:149–156.  https://doi.org/10.1093/mutage/geh008 CrossRefGoogle Scholar
  17. Arlt V, Zhan L, Schmeiser H, Honma M, Hayashi M, Phillips D, Suzuki T (2004b) DNA adducts and mutagenic specificity of the ubiquitous environmental pollutant 3-nitrobenzanthrone in Muta Mouse. Environ Mol Mutagen 43:186–195.  https://doi.org/10.1002/em.20014 CrossRefGoogle Scholar
  18. Armstrong B, Hutchinson E, Unwin J, Fletcher T (2004) Lung cancer risk after exposure to polycyclic aromatic hydrocarbons: a review and meta-analysis. Environ Health Perspect 112(9):970–978.  https://doi.org/10.1289/ehp.6895 CrossRefGoogle Scholar
  19. Atkinson R, Arey J (1997) Lifetimes and fates of toxic air contaminants in California’s atmosphere. Final report to the California air resources boardGoogle Scholar
  20. Atkinson R, Arey J (2007) Mechanisms of the gas-phase reactions of aromatic hydrocarbons and PAHs with OH and NO3 radicals. Polycycl Aromat Compd 27:15–40.  https://doi.org/10.1080/10406630601134243 CrossRefGoogle Scholar
  21. Avagyan R, Nystrom R, Lindgren R, Boman C, Westerholm R (2016) Particulate hydroxy-PAH emissions from a residential wood log stove using different fuels and burning conditions. Atmos Envrion 140:1–9.  https://doi.org/10.1016/j.atmosenv.2016.05.041 CrossRefGoogle Scholar
  22. Bach P, Kelley M, Tate R, McCrory D (2003) Screening for lung cancer: a review of the current literature. Chest 123:72–82.  https://doi.org/10.1378/chest.123.1_suppl.72S CrossRefGoogle Scholar
  23. Bacolod ET, Uno S, Tanaka H, Koyama J (2013) Micronuclei and other nuclear abnormalities induction in erythrocytes of marbled flounder, Pleuronectes yokohamae, exposed to dietary nitrated polycyclic aromatic hydrocarbons. Jpn J Environ Toxicol 16(2):79–89.  https://doi.org/10.11403/jset.16.79 CrossRefGoogle Scholar
  24. Bacolod ET, Uno S, Villamor SS, Koyama J (2017) Oxidative stress and genotoxicity biomarker responses in tilapia (Oreochromis niloticus) exposed to environmental concentration of 1-nitropyrene. Mar Pollut Bull 124:786–791.  https://doi.org/10.1016/j.marpolbul.2017.01.077 CrossRefGoogle Scholar
  25. Bae S, Yi S, Kim Y (2002) Temporal and spatial variations of the particle size distribution of PAHs and their dry deposition fluxes in Korea. Atmos Environ 36:5491–5500.  https://doi.org/10.1016/S1352-2310(02)00666-0 CrossRefGoogle Scholar
  26. Bamford H, Baker J (2003) Nitro-polycyclic aromatic hydrocarbon concentrations and sources in urban and suburban atmospheres of the Mid-Atlantic region. Atmos Environ 37:2077–2091.  https://doi.org/10.1016/S1352-2310(03)00102-X CrossRefGoogle Scholar
  27. Bandowe BM, Meusel H (2017) Nitrated polycyclic aromatic hydrocarbons (nitro-PAHs) in the environment—a review. Sci Total Environ 581–582:237–257.  https://doi.org/10.1016/j.scitotenv.2016.12.115 CrossRefGoogle Scholar
  28. Bandowe BA, Meusel H, Huang RJ, Ho K, Cao J, Hoffmann T, Wilcke W (2014a) PM2.5-bound oxygenated PAHs, nitro-PAHs and parent-PAHs from the atmosphere of a Chinese megacity: seasonal variation, sources and cancer risk assessment. Sci Total Environ 473–474:77–87.  https://doi.org/10.1016/j.scitotenv.2013.11.108 CrossRefGoogle Scholar
  29. Bandowe B, Lueso M, Wilcke W (2014b) Oxygenated polycyclic aromatic hydrocarbons and azaarenes in urban soils: a comparison of a tropical city (Bangkok) with two temperate cities (Bratislava and Gothenburg). Chemosphere 107:407–414.  https://doi.org/10.1016/j.chemosphere.2014.01.017 CrossRefGoogle Scholar
  30. Bari MA, Baumbach G, Kuch B, Scheffknecht G (2010) Particle-phase concentrations of polycyclic aromatic hydrocarbons in ambient air of rural residential areas in southern Germany. Air Qual Atmos Health 3(22):103–116.  https://doi.org/10.1007/s11869-009-0057-8 CrossRefGoogle Scholar
  31. Barrado A, Garcia S, Barrado E, Perez R (2012a) PM2.5-bound PAHs and hydroxy-PAHs in atmospheric aerosol samples: correlations with season and with physical and chemical factors. Atmos Environ 49:224–232.  https://doi.org/10.1016/j.atmosenv.2011.11.056 CrossRefGoogle Scholar
  32. Barrado A, Garcia S, Castrillejo Y, Perez R (2012b) Hydroxy–PAH levels in atmospheric PM10 aerosol samples correlated with season, physical factors and chemical indicators of pollution. Atmos Pollut Res 3:81–87.  https://doi.org/10.5094/APR.2012.007 CrossRefGoogle Scholar
  33. Barrado A, Garcia S, Castrillejo Y, Barrado E (2013) Exploratory data analysis of PAH, nitro-PAH and hydroxy-PAH concentrations in atmospheric PM10-bound aerosol particles. Correl Phys Chem Factors Atmos Environ 67:385–393.  https://doi.org/10.1016/j.atmosenv.2012.10.030 CrossRefGoogle Scholar
  34. Becker G, Nilsson U, Colmsjo A, Ostman C (1998) Determination of polycyclic aromatic sulfur heterocyclic compounds in airborne particulate by gas chromatography with atomic emission and mass spectrometric detection. J Chromatogr A 826:57–66.  https://doi.org/10.1016/S0021-9673(98)00729-8 CrossRefGoogle Scholar
  35. Beland FA, Heflich RH, Howard PC, Fu PP (1985) The in vitro metabolic activation of nitro polycyclic aromatic hydrocarbons. In: Harvey PG (ed) Polycyclic aromatic hydro-carbons and carcinogenesis. American Chemical Society, Washington, pp 371–396.  https://doi.org/10.1021/bk-1985-0283.ch015 CrossRefGoogle Scholar
  36. Benbrahim-Tallaa L, Baan R, Grosse Y, Lauby-Secretan B, El Ghissassi F, Bouvard V, Guha N, Loomis D, Straif K, International Agency for Research on Cancer Monograph Working Group (2012) Carcinogenicity of diesel-engine and gasoline-engine exhausts and some nitroarenes. Lancet Oncol 13:663–664.  https://doi.org/10.1016/S1470-2045(12)70280-2 CrossRefGoogle Scholar
  37. Benisek M, Blaha L, Hilscherova K (2008) Interference of PAHs and their N-heterocyclic analogs with signaling of retinoids in vitro. Toxicol In Vitro 22:1909–1917.  https://doi.org/10.1016/j.tiv.2008.09.009 CrossRefGoogle Scholar
  38. Benisek M, Kubincova P, Blaha L, Hilscherova K (2011) The effects of PAHs and N-PAHs on retinoid signaling and Oct-4 expression in vitro. Toxicol Lett 200:169–175.  https://doi.org/10.1016/j.toxlet.2010.11.011 CrossRefGoogle Scholar
  39. Beoletto V, Oliva MM, Marioli J, Carezzano M, Demo M (2016) Chapter 14—Antimicrobial natural products against bacterial biofilms. In: Kon K, Rai M (eds) Mechanisms and new antimicrobial approaches. pp 291–307Google Scholar
  40. Bezabeh D, Bamford H, Shantz MM, Wise SA (2003) Determination of nitrated polycyclic aromatic hydrocarbons in diesel particulate-related standard reference materials by using gas chromatography/mass spectrometry with negative ion chemical ionization. Anal Bioanal Chem 375:381–388.  https://doi.org/10.1007/s00216-002-1698-8 CrossRefGoogle Scholar
  41. Bi X, Simoneit B, Sheng G, Fu J (2008) Characterization of molecular markers in smoke from residential coal combustion in China. Fuel 87:112–119.  https://doi.org/10.1016/j.fuel.2007.03.047 CrossRefGoogle Scholar
  42. Bian Q, Alharbi B, Collett J Jr, Kreidenweis S, Pasha MJ (2016) Measurements and source apportionment of particle-associated polycyclic aromatic hydrocarbons in ambient air in Riyadh, Saudi Arabia. Atmos Environ 137:186–198.  https://doi.org/10.1016/j.atmosenv.2016.04.025 CrossRefGoogle Scholar
  43. Billet S, Garçon G, Dagher Z, Verdin A, Ledoux F, Courcot D, Aboukais A, Shirali P (2007) Ambient particulate matter (PM2.5): physicochemical characterization and metabolic activation of the organic fraction in human lung epithelial cells (A549). Environ Res 105(2):212–223.  https://doi.org/10.1016/j.envres.2007.03.001 CrossRefGoogle Scholar
  44. Birgul A, Tasdemir Y (2015) Concentrations, gas-particle partitioning, and seasonal variations of polycyclic aromatic hydrocarbons at four sites in Turkey. Arch Environ Contam Toxicol 68(1):46–63.  https://doi.org/10.1007/s00244-014-0105-8 CrossRefGoogle Scholar
  45. Bockhorn H (2009) Combustion generated fine carbonaceous particles. In Proceedings of an international workshop held in Villa Orlandi, Anacapri, 13–16 May. KIT Scientific PublishingGoogle Scholar
  46. Boers D, Zeegers M, Swaen G, Kant I, Van den Brandt P (2005) The influence of occupational exposure to pesticides, polycyclic aromatic hydrocarbons, diesel exhaust, metal dust, metal fumes, and mineral oil on prostate cancer: a prospective cohort study. Occup Environ Med 62(8):531–537.  https://doi.org/10.1136/oem.2004.018622 CrossRefGoogle Scholar
  47. Boffetta P, Jourenkova N, Gustavsson P (1997) Cancer risk from occupational and environmental exposure to polycyclic aromatic hydrocarbons. Cancer Causes Control 8(3):444–472.  https://doi.org/10.1023/A:101846550 CrossRefGoogle Scholar
  48. Borgie M, Dagher Z, Ledoux F, Verdin A, Cazier F, Martin P, Hachimi A, Shirali P, Greige-Gerges H, Courcot D (2015) Comparison between ultrafine and fine particulate matter collected in Lebanon: chemical characterization, in vitro cytotoxic effects and metabolizing enzymes gene expression in human bronchial epithelial cells. Environ Pollut 205:250–260.  https://doi.org/10.1016/j.envpol.2015.05.027 CrossRefGoogle Scholar
  49. Bortey-Sam N, Ikenaka Y, Akoto O, Nakayama SMM, Asante KA, Baidoo E, Obirikorang C, Saengtienchai A, Isoda N, Nimako C, Mizukawa H, Ishizuka M (2017) Oxidative stress and respiratory symptoms due to human exposure to polycyclic aromatic hydrocarbons (PAHs) in Kumasi, Ghana. Environ Pollut 228:311–320.  https://doi.org/10.1016/j.envpol.2017.05.036 CrossRefGoogle Scholar
  50. Bostrom C, Gerde P, Hanberg A, Jernstrom B, Johansson C, Kyrklund T, Rannug A, Tornqvist M, Victorin K, Westerholm R (2002) Cancer risk assessment, indicators, and guidelines for polycyclic aromatic hydrocarbons in the ambient air. Environ Health Perspect 110:451–488.  https://doi.org/10.1289/ehp.02110s3451 CrossRefGoogle Scholar
  51. Brorström-Lunden E, Remberger M, Kaj L, Hansson K, Palm Cousins A, Andersson H, Haglund P, Ghebremeskel M, Schlabach M (2010) Results from the Swedish National Screening Programme 2008: screening of unintentionally produced organic contaminants. Swedish Environmental Research Institute (IVL) report B1944, Göteborg, SwedenGoogle Scholar
  52. Brown AS, Brown RJ (2012) Correlations in polycyclic aromatic hydrocarbon (PAH) concentrations in UK ambient air and implications for source apportionment. J Environ Monit 14(8):2072–2082.  https://doi.org/10.1039/C2EM10963H CrossRefGoogle Scholar
  53. Burtscher H, Schüepp K (2012) The occurrence of ultrafine particles in the specific environment of children. Paediatr Respir Rev 13:89–94.  https://doi.org/10.1016/j.prrv.2011.07.004 CrossRefGoogle Scholar
  54. Cachon BF, Firmin S, Verdin A, Ayi-Fanou L, Billet S, Cazier F, Martin PJ, Aissi F, Courcot D, Sanni A, Shirali P (2014) Proinflammatory effects and oxidative stress within human bronchial epithelial cells exposed to atmospheric particulate matter (PM2.5 and PM4-2.5) collected from Cotonou, Benin. Environ Pollut 185:340–351.  https://doi.org/10.1016/j.envpol.2013.10.026 CrossRefGoogle Scholar
  55. Castells P, Santos F, Galceran M (2003) Development of a sequential supercritical fluid extraction method for the analysis of nitrated and oxygenated derivatives of polycyclic aromatic hydrocarbons in urban aerosols. J Chromatogr A 1010:141–151.  https://doi.org/10.1016/S0021-9673(03)01121-X CrossRefGoogle Scholar
  56. Cazaunau M, Le Ménach K, Budzinski H, Villenave E (2010) Atmospheric heterogeneous reactions of benzo[a]pyrene. Zeitschrift Fur Physikalische Chemie 224:1151–1170.  https://doi.org/10.1524/zpch.2010.6145 CrossRefGoogle Scholar
  57. Cazier F, Genevray P, Dewaele D, Nouali H, Verdin A, Ledoux F, Hachimi A, Courcot L, Billet S, Bouhsina S, Shirali P, Garçon G, Courcot D (2016) Characterisation and seasonal variations of particles in the atmosphere of rural, urban and industrial areas: organic compounds. J Environ Sci 44:45–56.  https://doi.org/10.1016/j.jes.2016.01.014 CrossRefGoogle Scholar
  58. Cecinato A, Guerriero E, Balducci C, Muto V (2014) Use of the PAH fingerprints for identifying pollution sources. Urban Clim 10:630–643.  https://doi.org/10.1016/j.uclim.2014.04.004 CrossRefGoogle Scholar
  59. Cerniglia C (1997) Fungal metabolism of polycyclic aromatic hydrocarbons: past, present and future applications in bioremediation. J Ind Microbiol Biotechnol 19:324–333.  https://doi.org/10.1038/sj.jim.2900459 CrossRefGoogle Scholar
  60. Chae Y, Thomas T, Guengerich F, Fu P, El Bayoumy K (1999) Comparative metabolism of 1-, 2-, and 4-nitropyrene by human hepatic and pulmonary microsomes. Cancer Res 59:1473–1480Google Scholar
  61. Channell M, Paffett M, Devlin R, Madden M, Campen M (2012) Circulating factors induce coronary endothelial cell activation following exposure to inhaled diesel exhaust and nitrogen dioxide in humans: evidence from a novel translational in vitro model. Toxicol Sci 127:179–186.  https://doi.org/10.1093/toxsci/kfs084 CrossRefGoogle Scholar
  62. Charles GD, Bartels MJ, Zacharewski TR, Gollapudi BB, Freshour NL, Carney EW (2000) Activity of benzo[a]pyrene and its hydroxylated metabolites in an estrogen receptor α receptor gene assay. Toxicol Sci 55:320–326.  https://doi.org/10.1093/toxsci/55.2.320 CrossRefGoogle Scholar
  63. Châtel A, Faucet-Marquis V, Pfohl-Leszkowicz A, Gourlay-Francé C, Vincent-Hubert F (2014) DNA adduct formation and induction of detoxification mechanisms in Dreissena polymorpha exposed to nitro-PAHs. Mutagenesis 29(6):457–465.  https://doi.org/10.1093/mutage/geu040 CrossRefGoogle Scholar
  64. Chen C, Zhao B, Zhou W, Jiang X, Tan ZA (2012) methodology for predicting particle penetration factor through cracks of windows and doors for actual engineering application. Build Environ 47:339–348.  https://doi.org/10.1016/j.buildenv.2011.07.004 CrossRefGoogle Scholar
  65. Chen Y, Zhi G, Feng Y, Tian C, Bi X, Li J, Zhang G (2015) Increase in polycyclic aromatic hydrocarbon (PAH) emissions due to briquetting: a challenge to the coal briquetting policy. Environ Pollut 204:58–63.  https://doi.org/10.1016/j.envpol.2015.04.012 CrossRefGoogle Scholar
  66. Chetwittayachan T, Shimazaki D, Yamamoto K (2002) A comparison of temporal variation of particle-bound polycyclic aromatic hydrocarbons (pPAHs) concentration in different urban environments: Tokyo, Japan, and Bangkok, Thailand. Atmos Environ 36:2027–2037.  https://doi.org/10.1016/S1352-2310(02)00099-7 CrossRefGoogle Scholar
  67. Choi JK, Heo JB, Ban SJ, Yi SM, Zoh KD (2012) Chemical characteristics of PM 2.5 aerosol in Incheon, Korea. Atmos Environ 60:583–592.  https://doi.org/10.1016/j.atmosenv.2012.06.078 CrossRefGoogle Scholar
  68. Chuesaard T, Chetiyanukornkul T, Kameda T, Hayakawa K, Toriba A (2014) Influence of biomass burning on the levels of atmospheric polycyclic aromatic hydrocarbons and their nitro derivatives in Chiang Mai, Thailand. Aerosol Air Qual Res 14:1247–1257.  https://doi.org/10.4209/aaqr.2013.05.0161 CrossRefGoogle Scholar
  69. Chung MY, Lazaro RA, Lim D, Jackson J, Lyon J, Rendulic D, Hasson AS (2006) Aerosol-borne quinones and reactive oxygen species generation by particulate matter extracts. Environ Sci Technol 40:4880–4886.  https://doi.org/10.1021/es0515957 CrossRefGoogle Scholar
  70. Clapp R, Jacobs M, Loechler E (2008) Environmental and occupational causes of cancer: new evidence 2005–2007. Rev Environ Health 23(1):1–37.  https://doi.org/10.1021/es0515957 CrossRefGoogle Scholar
  71. Cochran R, Dongari N, Jeong H, Beranek J, Haddadi S, Shipp J, Kubatova A (2013) Determination of polycyclic aromatic hydrocarbons and their oxy-, nitro-, and hydroxy-oxidation products. Anal Chim Acta 740:93–103.  https://doi.org/10.1016/j.aca.2012.05.050 CrossRefGoogle Scholar
  72. Crane J, Grosenheider K, Wilson C (2010) Contamination of storm water pond sediments by polycyclic aromatic hydrocarbons (PAHs) in Minnesota: the role of coal tar-based sealcoat products as a source of PAHs. Minnesota Pollution Control AgencyGoogle Scholar
  73. Dat ND, Chang MB (2017) Review on characteristics of PAHs in atmosphere, anthropogenic sources and control technologies. Sci Total Environ 609:682–693.  https://doi.org/10.1016/j.scitotenv.2017.07.204 CrossRefGoogle Scholar
  74. Dergham M, Lepers C, Verdin A, Cazier F, Billet S, Courcot D, Shirali P, Garçon G (2015) Temporal–spatial variations of the physicochemical characteristics of air pollution Particulate Matter (PM2.5–0.3) and toxicological effects in human bronchial epithelial cells (BEAS-2B). Environ Res 137:256–267.  https://doi.org/10.1016/j.envres.2014.12.015 CrossRefGoogle Scholar
  75. Dieme D, Cabral-Ndior M, Garcon G, Verdin A, Billet S, Cazier F, Courcot D, Diouf A, Shirali P (2012) Relationship between physicochemical characterization and toxicity of fine particulate matter (PM2.5) collected in Dakar city (Senegal). Environ Res 113:1–13.  https://doi.org/10.1016/j.envres.2011.11.009 CrossRefGoogle Scholar
  76. Dietrich C, Kaina B (2010) The aryl hydrocarbon receptor (AhR) in the regulation of cell–cell contact and tumor growth. Carcinogenesis 31(8):1319–1328.  https://doi.org/10.1093/carcin/bgq028 CrossRefGoogle Scholar
  77. Diggs D, Huderson A, Harris KL, Myers JN, Banks LD, Rekhadevi PV, Ramesh A (2011) Polycyclic aromatic hydrocarbons and digestive tract cancers: a perspective. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 29(4):324–357.  https://doi.org/10.1080/10590501.2011.629974 CrossRefGoogle Scholar
  78. Dihl R, Bereta M, Do Amaral V, Lehmann M, Reguly M, De Andrade H (2008) Nitropolycyclic aromatic hydrocarbons are inducers of mitotic homologous recombination in the wing-spot test of Drosophila melanogaster. Food Chem Toxicol 46:2344–2348.  https://doi.org/10.1016/j.fct.2008.03.014 CrossRefGoogle Scholar
  79. Djuric Z, McGunagle D (1989) Differences in reduction of 1,6-dinitropyrene and l-nitro-6- nitrosopyrene by rat liver cytosolic enzymes and formation of oxygen-reactive metabolites by nitrosoreduction. Cancer Lett 48:13–18.  https://doi.org/10.1016/0304-3835(89)90197-3 CrossRefGoogle Scholar
  80. Drwala E, Raka A, Grochowalskib A, Milewicz T, Gregoraszczuk EL (2017) Cell-specific and dose-dependent effects of PAHs on proliferation, cell cycle, and apoptosis protein expression and hormone secretion by placental cell lines. Toxicol Lett 280:10–19.  https://doi.org/10.1016/j.toxlet.2017.08.002 CrossRefGoogle Scholar
  81. Dusek B, Hajslova J, Kocourek V (2002) Determination of nitrated polycyclic aromatic hydrocarbons and their precursors in biotic matrices. J Chromatogr A 982:127–143.  https://doi.org/10.1016/S0021-9673(02)01340-7 CrossRefGoogle Scholar
  82. Dutcher JS, Sun JD, Bechtold WE, Unkefer C (1985) Excretion and metabolism of l-nitropyrene in rats after oral or intraperitoneal administration. Fundam Appl Toxicol 5:287–296.  https://doi.org/10.1016/0272-0590(85)90076-4 CrossRefGoogle Scholar
  83. Edwards S, Jedrychowski W, Butscher M, Camann D, Kieltyka A, Mroz E, Flak E, Li Z, Wang S, Rauh V, Perrera F (2010) Prenatal exposure to airborne polycyclic aromatic hydrocarbons and children’s intelligence at 5 years of age in a prospective cohort study in Poland. Environ Health Perspect 118(9):1326–1331.  https://doi.org/10.1289/ehp.0901070 CrossRefGoogle Scholar
  84. Environmental Health Criteria (EHC) 229 (2003) In: Kielhorn J, Wahnschaffe U, Mangelsdorf I (eds) Selected nitro- and nitro-oxy-polycyclic aromatic hydrocarbons. Fraunhofer Institute of Toxicology and Aerosol Research, HanoverGoogle Scholar
  85. Eiguren-Fernandez A, Miguel A, Lu R, Purvis K, Grant B, Mayo P, Di Stefano E, Cho A, Froines J (2008) Atmospheric formation of 9,10-phenanthraquinone in the Los Angeles air basin. Atmos Environ 42:2312–2319.  https://doi.org/10.1016/j.atmosenv.2007.12.029 CrossRefGoogle Scholar
  86. Elie MR, Choi J, Nkrumah-Elie YM, Gonnerman GD, Stevens JF, Tanguay RL (2015) Metabolomic analysis to define and compare the effects of PAHs and oxygenated PAHs in developing zebrafish. Environ Res 140:502–510.  https://doi.org/10.1016/j.envres.2015.05.009 CrossRefGoogle Scholar
  87. Enya T, Suzuki H, Watanabe T, Hirayama T, Hisamatsu Y (1997) 3-Nitrobenzanthrone, a powerful bacterial mutagen and suspected human carcinogen found in diesel exhaust and airborne particulates. Environ Sci Technol 31:2772–2776.  https://doi.org/10.1021/es961067i CrossRefGoogle Scholar
  88. Falcon-Rodriguez CI, Osornio-Vargas AR, Ada-Ovalle I, Segura-Medina P (2016) Aeroparticles, composition, and lung diseases. Frontiers Immunol 7(3):1–9.  https://doi.org/10.3389/fimmu.2016.00003 CrossRefGoogle Scholar
  89. Fang G, Wu Y, Chen M, Ho T, Huang S, Rau J (2004) Polycyclic aromatic hydrocarbons study in Taichung, Taiwan, during 2002–2003. Atmos Environ 38:3385–3391.  https://doi.org/10.1016/j.atmosenv.2004.03.036 CrossRefGoogle Scholar
  90. Fang G, Wu Y, Chen J, Chang C, Ho T (2006) Characteristic of polycyclic aromatic hydrocarbon concentrations and source identification for fine and coarse particulates at Taichung Harbor near Taiwan Strait during 2004–2005. Sci Total Environ 366:729–738.  https://doi.org/10.1016/j.scitotenv.2005.09.075 CrossRefGoogle Scholar
  91. Farren NJ, Ramirez N, Lee J, Finessi E, Lewis AC, Hamilton JF (2015) Estimated exposure risks from carcinogenic nitrosamines in urban airborne particulate matter. Environ Sci Technol 49:9648–9656.  https://doi.org/10.1021/acs.est.5b01620 CrossRefGoogle Scholar
  92. Franco CFJ, de Resende MF, de Almeida Furtado L, Brasil TF, Eberlin MN, Netto ADP (2017) Polycyclic aromatic hydrocarbons (PAHs) in street dust of Rio de Janeiro and Niteroi, Brazil: particle size distribution, sources and cancer risk assessment. Sci Total Environ 599–600:305–313.  https://doi.org/10.1016/j.scitotenv.2017.04.060 CrossRefGoogle Scholar
  93. Fu PP, Chou MW, Beland FA (1988) Effects of nitro substitution on the in vitro metabolic activation of polycyclic aromatic hydrocarbons. In: Yang SK, Silverman BD (eds) Polycyclic aromatic-hydrocarbon carcinogenesis: structure activity relationships, vol 2. CRC Press, Boca Raton, pp 38–65Google Scholar
  94. Fu PR, Herreno-Saenz D, Von Tungein LS, Lay JO, Wu YS, Lai JS, Frederick EE (1994) DNA adducts and carcinogenicity of nitro-polycyclic aromatic hydrocarbons. Environ Health Perspect 102(6):177–183.  https://doi.org/10.1080/10406639408031169 CrossRefGoogle Scholar
  95. Garcia KO, Teixeira EC, Agudelo-Castaneda DM, Braga M, Alabarse PG, Wiegand F, Kautzmann RM, Silva LF (2014) Assessment of nitro-polycyclic aromatic hydrocarbons in PM1 near an area of heavy-duty traffic. Sci Total Environ 479–480:57–65.  https://doi.org/10.1016/j.scitotenv.2014.01.126 CrossRefGoogle Scholar
  96. Garrido A, Jiménez-Guerrero P, Ratola N (2014) Levels, trends and health concerns of atmospheric PAHs in Europe. Atmos Environ 99:474–484.  https://doi.org/10.1016/j.atmosenv.2014.10.011 CrossRefGoogle Scholar
  97. Garshick E, Laden F, Hart J, Rosner B, Smith T, Dockery D, Speizer F (2004) Lung cancer in railroad workers exposed to diesel exhaust. Environ Health Perspect 112:1539–1543.  https://doi.org/10.1289/ehp.7195 CrossRefGoogle Scholar
  98. Gonçalves C, Alves C, Fernandes A, Monteiro C, Tarelho L, Evtyugina M, Pio C (2011) Organic compounds in PM2.5 emitted from fireplace and woodstove combustion of typical Portuguese wood species. Atmos Environ 45:4533–4545.  https://doi.org/10.1016/j.atmosenv.2011.05.071 CrossRefGoogle Scholar
  99. Grova N, Salquebre G, Schroeder H, Appenzeller BMR (2011) Determination of PAHs and OH-PAHs in rat brain by gas chromatography tandem (triple quadrupole) mass spectrometry. Chem Res Toxicol 24:1653–1667.  https://doi.org/10.1021/tx2003596 CrossRefGoogle Scholar
  100. Guillon A (2011) Étude de la composition isotopique moléculaire (d13C) comme traceur de source qualitatif et quantitatif des hydrocarbures aromatiques polycycliques (HAP) particulaires dans l’atmosphère, Bordeaux, FranceGoogle Scholar
  101. Guo H, Lee S, Ho K, Wang X, Zou S (2003) Particle-associated polycyclic aromatic hydrocarbons in urban air of Hong Kong. Atmos Environ 37:5307–5317.  https://doi.org/10.1016/j.atmosenv.2003.09.011 CrossRefGoogle Scholar
  102. Hafner WD, Hites RA (2005) Effects of wind and air trajectory directions on atmospheric concentrations of persistent organic pollutants near the Great Lakes. Environ Sci Technol 39:7817–7825.  https://doi.org/10.1021/es0502223 CrossRefGoogle Scholar
  103. Hayakawa K, Terai N, Dinning PG, Akutsu K, Iwamoto Y, Etch R, Murahashi T (1996) An on-line reduction HPLC/chemi- luminescence detection system for nitropolycyclic aromatic hydrocarbons and metabolites. Biomed Chromatogr 10:346–350.  https://doi.org/10.1002/(SICI)1099-0801(199611)10:6<346:AIDBMC605>3.0.CO;2-Y CrossRefGoogle Scholar
  104. Hayakawa K, Onoda Y, Tachikawa C, Hosoi S, Yoshita M, Chung SW, Kizu R, Toriba A, Kameda T, Tanga N (2007) Estrogenic/antiestrogenic activities of polycyclic aromatic hydrocarbons and their monohydroxylated derivatives by yeast two-hybrid assay. J Health Sci 53(5):562–570.  https://doi.org/10.1248/jhs.53.562 CrossRefGoogle Scholar
  105. Hayakawa K, Tang N, Kameda T, Toriba A (2014) Atmospheric behaviors of polycyclic aromatic hydrocarbons in East Asia. Genes Environ 36(3):152–159.  https://doi.org/10.3123/jemsge.2014.016 CrossRefGoogle Scholar
  106. Haynes B (1991) In: Bartock W, Sarofim A (eds) Fossil fuel combustion. Wiley, New York, pp 261–326Google Scholar
  107. Hecht S (1999) Tobacco smoke carcinogens and lung cancer. J Natl Cancer Inst 91(14):1194–1210.  https://doi.org/10.1093/jnci/91.14.1194 CrossRefGoogle Scholar
  108. Hegazi A, Andersson J, El-Gayar M (2003) Application of gas chromatography with atomic emission detection to the geochemical investigation of polycyclic aromatic sulfur heterocycles in Egyptian crude oils. Fuel process Technol 85:1–19.  https://doi.org/10.1016/S0378-3820(03)00093-6 CrossRefGoogle Scholar
  109. Hien TT, Thanh LT, Kameda T, Takenaka N, Bandow H (2007) Nitro-polycyclic aromatic hydrocarbons and polycyclic aromatic hydrocarbons in particulate matter in an urban area of a tropical region: Ho Chi Minh City, Vietnam. Atmos Environ 41:7715–7725.  https://doi.org/10.1016/j.atmosenv.2007.06.020 CrossRefGoogle Scholar
  110. Huang W, Huang B, Bi X, Lin Q, Liu M, Ren Z, Zhang G, Wang X, Sheng G, Fu J (2014) Emission of PAHs, NPAHs and OPAHs from the residential honeycomb coal briquettes combustion. Energy Fuel 28:636–642.  https://doi.org/10.1021/ef401901d CrossRefGoogle Scholar
  111. Imaida K, Lee M, Land S, Wang C, King C (1995) Carcinogenicity of nitropyrenes in the newborn female rat. Carcinogenesis 16:3027–3030.  https://doi.org/10.1093/carcin/16.12.3027 CrossRefGoogle Scholar
  112. Jacob J (1990) Sulfur analogues of polycyclic aromatic hydrocarbons (Thiaarenes). Cambridge University Press, Cambridge, pp 1–281Google Scholar
  113. Jakober C, Riddle S, Robert M, Destaillats H, Charles M, Green P, Kleeman M (2007) Quinone emissions from gasoline and diesel motor vehicles. Environ Sci Technol 41:4548–4554.  https://doi.org/10.1021/es062967u CrossRefGoogle Scholar
  114. Jankowiak R, Rogan E, Cavalieri E (2004) Role of fluorescence line-narrowing spectroscopy and related luminescence-based techniques in the elucidation of mechanisms of tumor initiation by polycyclic aromatic hydrocarbons and estrogens. J Phys Chem B 108:10266–10283.  https://doi.org/10.1021/jp0402838 CrossRefGoogle Scholar
  115. Jinhuia X, Lee F (2000) Quantification of nitrated polynuclear aromatic hydrocarbons in atmospheric particulate matter. Anal Chim Acta 416:111–115.  https://doi.org/10.1016/S0003-2670(00)00745-5 CrossRefGoogle Scholar
  116. Jong WH, Kroese E, Vos J, Loveren H (1999) Detection of immunotoxicity of benzo[a]pyrene in a subacute toxicity study after oral exposure in rats. Toxicol Sci 50(2):214–220.  https://doi.org/10.1093/toxsci/50.2.214 CrossRefGoogle Scholar
  117. Jongeneelen FJ (2001) Benchmark guideline for urinary 1-hydroxypyrene as biomarker of occupational exposure to polycyclic aromatic hydrocarbons. Ann Occup Hyg 45(1):3–13.  https://doi.org/10.1016/S0003-4878(00)00009-0 CrossRefGoogle Scholar
  118. Jung KH, Yan B, Chillrud SN, Perera FP, Whyatt R, Camann D, Kinney PL, Miller RL (2010) Assessment of benzo[a]pyrene-equivalent carcinogenicity and mutagenicity of residential indoor versus outdoor polycyclic aromatic hydrocarbons exposing young children in New York City. Int J Environ Res Public Health 7:1889–1900.  https://doi.org/10.3390/ijerph7051889 CrossRefGoogle Scholar
  119. Kaisarevic S, Dakic V, Hrubik J, Glisic B, Lubcke-von Varel U, Pogrmic-majkic S, Fa S, Teodorovic I, Brack W, Kovacevic R (2015) Differential expression of CYP1A1 and CYP1A2 genes in H4IIE rat hepatoma cells exposed to TCDD and PAHs. Environ Toxicol Pharmacol 39(1):358–368.  https://doi.org/10.1016/j.etap.2014.11.031 CrossRefGoogle Scholar
  120. Kameda T (2011) Atmospheric chemistry of polycyclic aromatic hydrocarbons and related compounds. J Health Sci 57(6):504–511.  https://doi.org/10.1248/jhs.57.504 CrossRefGoogle Scholar
  121. Kameda T, Azumi E, Fukushima A, Tang N, Matsuki A, Kamiya Y, Toriba A, Hayakawa K (2016) Mineral dust aerosols promote the formation of toxic nitropolycyclic aromatic compounds. Sci. Rep. 6:24427.  https://doi.org/10.1038/srep24427 CrossRefGoogle Scholar
  122. Kamiya M, Toriba A, Onoda Y, Kizu R, Hayakawa K (2005) Evaluation of estrogenic activities of hydroxylated polycyclic aromatic hydrocarbons in cigarette smoke condensate. Food Chem Toxicol 43:1017–1027.  https://doi.org/10.1016/j.fct.2005.02.004 CrossRefGoogle Scholar
  123. Karavalakis G, Deves G, Fontaras G, Stournas S, Samaras Z, Bakeas E (2010) The impact of soy-based biodiesel on PAH, nitro-PAH and oxy-PAH emissions from a passenger car operated over regulated and nonregulated driving cycles. Fuel 89:3876–3883.  https://doi.org/10.1016/j.fuel.2010.07.002 CrossRefGoogle Scholar
  124. Kavouras I, Koutrakis P, Tsapakis M, Lagoudaki E, Stephanou E, Von Baer D, Oyola P (2001) Source apportionment of urban particulate aliphatic and polynuclear aromatic hydrocarbons (PAHs) using multivariate methods. Environ Sci Technol 35:2288–2294.  https://doi.org/10.1021/es001540z CrossRefGoogle Scholar
  125. Kawanishi M, Fujikawa Y, Ishii H, Nishida H, Igashigaki YH, Kanno TM, Takamura-Enyac T, Yagi T (2013) Adduct formation and repair, and translesion DNA synthesis across the adducts in human cells exposed to 3-nitrobenzanthrone. Mutat Res 753:93–100.  https://doi.org/10.1016/j.mrgentox.2013.03.005 CrossRefGoogle Scholar
  126. Keyte I, Harrison R, Lammel G (2013) Chemical reactivity and long-range transport potential of polycyclic aromatic hydrocarbons—a review. Chem Soc Rev 42:9333–9391.  https://doi.org/10.1039/C3CS60147A CrossRefGoogle Scholar
  127. Keyte IJ, Albinet A, Harrison RM (2016) On-road traffic emissions of polycyclic aromatic hydrocarbons and their oxy-and nitro-derivative compounds measured in road tunnel environments. Sci Total Environ 566:1131–1142.  https://doi.org/10.1016/j.scitotenv.2016.05.152 CrossRefGoogle Scholar
  128. Kim Y, Ko Y, Kawamoto T, Kim H (2005) The effects of 1-nitropyrene on oxidative DNA damage and expression of DNA repair enzymes. J Occup Health 47:261–266.  https://doi.org/10.1539/joh.47.261 CrossRefGoogle Scholar
  129. Kim KH, Woo D, Lee SB, Bae GN (2015) On-road measurements of ultrafine particles and associated air pollutants in a densely populated area of Seoul, Korea. Aerosol Air Qual Res 15:142–153.  https://doi.org/10.4209/aaqr.2014.01.0014 CrossRefGoogle Scholar
  130. King L, Kohan M, Brooks L, Nelson G, Ross J, Allison J, Adams L, Desai D, Amin S, Padgett W, Lambert G, Richard A, Nesnow S (2001) An evaluation of the mutagenicity, metabolism, and DNA adduct formation of 5-nitrobenzo[b]naphtho[2,1-d]thiophene. Chem Res Toxicol 14:661–671.  https://doi.org/10.1021/tx0001373 CrossRefGoogle Scholar
  131. Kishikawa N, Morita S, Wada M, Ohba Y, Nakashima K, Kuroda N (2004) Determination of hydroxylated polycyclic aromatic hydrocarbons in airborne particulates by high-performance liquid chromatography with fluorescence detection. Anal Sci 20:129–132.  https://doi.org/10.2116/analsci.20.129 CrossRefGoogle Scholar
  132. Knecht AL, Goodale BC, Truong L, Simonich MT, Swanson AJ, Matzke MM, Anderson KA, Waters KM, Tanguay RL (2013) Comparative developmental toxicity of environmentally relevant oxygenated PAHs. Toxicol Appl Pharmacol 271:266–275.  https://doi.org/10.1016/j.taap.2013.05.006 CrossRefGoogle Scholar
  133. Kochany J, Maguire RJ (1994) Abiotic transformations of polynuclear aromatic hydrocarbons and polynuclear aromatic nitrogen heterocycles in aquatic environments. Sci Total Environ 144:17–31.  https://doi.org/10.1016/0048-9697(94)90424-3 CrossRefGoogle Scholar
  134. Koike E, Yanagisawa R, Takano H (2014) Toxicological effects of polycyclic aromatic hydrocarbons and their derivatives on respiratory cells. Atmos Environ 97:529–536.  https://doi.org/10.1016/j.atmosenv.2014.04.003 CrossRefGoogle Scholar
  135. Kojima Y, Inazu K, Hisamatsu Y, Okochi H, Baba T, Nagoya T (2010) Comparison of PAHs, nitro-PAHs and oxy-PAHs associated with airborne particulate matter at roadside and urban background sites in downtown Tokyo, Japan. Polycycl Aromat Compd 30:321–333.  https://doi.org/10.1080/10406638.2010.525164 CrossRefGoogle Scholar
  136. Kong S, Ding X, Bai Z, Han B, Chen L, Shi J, Li Z (2010) A seasonal study of polycyclic aromatic hydrocarbons in PM2.5 and PM2.5–10 in five typical cities of Liaoning Province, China. J Hazard Mater 183:70–80.  https://doi.org/10.1016/j.jhazmat.2010.06.107 CrossRefGoogle Scholar
  137. Kooter IM, Alblas MJ, Jedynska AD, Steenhof M, Houtzager MM, Van Ras M (2013) Alveolar epithelial cells (A549) exposed at the air–liquid interface to diesel exhaust: first study in TNO’s powertrain test center. Toxicol In Vitro 27:2342–2349.  https://doi.org/10.1016/j.tiv.2013.10.007 CrossRefGoogle Scholar
  138. Krugly E, Martuzevicius D, Sidaraviciute R, Ciuzas D, Prasauskas T, Kauneliene V, Stasiulaitiene I, Kliucininkas L (2014) Characterization of particulate and vapor phase polycyclic aromatic hydrocarbons in indoor and outdoor air of primary schools. Atmos Environ 82:298–306.  https://doi.org/10.1016/j.atmosenv.2013.10.042 CrossRefGoogle Scholar
  139. Kuo CY, Chien PS, Kuo WC, Wei CT, Rau JY (2012) Comparison of polycyclic aromatic hydrocarbon emissions on gasoline- and diesel-dominated routes. Environ Monit Assess 185(7):5749–5761.  https://doi.org/10.1007/s10661-012-2981-6. CrossRefGoogle Scholar
  140. Laali K, Chun J-H, Okazaki T, Kumar S, Borosky G, Swartz C (2007) Electrophilic chemistry of thia-PAHs: stable carbocations (NMR and DFT), S-alkylated onium salts, model electrophilic substitutions (nitration and bromination), and mutagenicity assay. J Org Chem 72:8383–8393.  https://doi.org/10.1021/jo701502y CrossRefGoogle Scholar
  141. Ladji R, Yassaa N, Balducci C, Cecinato A, Meklati BY (2009) Annual variation of particulate organic compounds in PM10 in the urban atmosphere of Algiers. Atmos Res 92:258–269.  https://doi.org/10.1016/j.atmosres.2008.12.002 CrossRefGoogle Scholar
  142. Lafontaine S, Schrlau J, Butler J, Jia Y, Harper B, Harris S, Bramer LM, Harding A, Simonich SLM, Waters KM (2015) Relative influence of trans-pacific and regional at- mospheric transport of PAHs in the Pacific Northwest. US Environ Sci Technol 49:13807–13816.  https://doi.org/10.1021/acs.est.5b00800 CrossRefGoogle Scholar
  143. Lai YC, Tsai CH, Chen YL, Chang-Chien GP (2017) Distribution and sources of atmospheric polycyclic aromatic hydrocarbons at an industrial region in Kaohsiung, Taiwan. Aerosol Air Qual Res 17:776–787.  https://doi.org/10.4209/aaqr.2016.11.0482 CrossRefGoogle Scholar
  144. Lamy E, Kassie F, Gminski R, Schmeiser H, Mersch-Sundermann V (2004) 3-Nitrobenzanthrone (3-NBA) induced micronucleus formation and DNA damage in human hepatoma (HepG2) cells. Toxicol Lett 146:103–109.  https://doi.org/10.1016/j.toxlet.2003.07.001 CrossRefGoogle Scholar
  145. Landkocz Y, Ledoux F, Andre V, Cazier F, Genevray P, Dewaele D, Martin PJ, Lepers C, Verdin A, Courcot L, Boushina S, Sichel F, Gualtieri M, Shirali P, Courcot D, Billet S (2017) Fine and ultrafine atmospheric particulate matter at a multi-influenced urban site: physicochemical characterization, mutagenicity and cytotoxicity. Environ Pollut 221:130–140.  https://doi.org/10.1016/j.envpol.2016.11.054 CrossRefGoogle Scholar
  146. Landvik NE, Gorria M, Arlt VM, Asare N, Solhaug A, Lagadic-Gossmann D, Holme JA (2007) Effects of nitrated-polycyclic aromatic hydrocarbons and diesel exhaust particle extracts on cell signalling related to apoptosis: possible implications for their mutagenic and carcinogenic effects. Toxicology 231:159–174.  https://doi.org/10.1016/j.tox.2006.12.009 CrossRefGoogle Scholar
  147. Latif I, Karim A, Zuki A, Zamri-Saad M, Niu JNM (2010) Pulmonary modulation of benzo[a]pyrene-induced hemato- and hepatotoxicity in broilers. Poult Sci 89(7):1379–1388.  https://doi.org/10.3382/ps.2009-00622 CrossRefGoogle Scholar
  148. Laumbach R, Tong J, Zhang L, Ohman-Strickland P, Stern A, Fiedler N, Kipen H, Kelly-McNeil K, Lioy P, Zhang J (2009) Quantification of 1-aminopyrene in human urine after a controlled exposure to diesel exhaust. J Environ Monit 11(1):153–159.  https://doi.org/10.1039/b810039j CrossRefGoogle Scholar
  149. Layshock J, Wilson G, Anderson K (2010) Ketone and quinone-substituted polycyclic aromatic hydrocarbons in mussel tissue, sediment, urban dust, and diesel particulate matrices. Environ Toxicol Chem 29:2450–2460.  https://doi.org/10.1002/etc.30 CrossRefGoogle Scholar
  150. Leclercq B, Happillon M, Antherieu S, Hardy E, Alleman L, Grova N, Perdrix E, Appenzeller B, Lo Guidice JM, Coddeville P, Garçon G (2016) Differential responses of healthy and chronic obstructive pulmonary diseased human bronchial epithelial cells repeatedly exposed to air pollution-derived PM4. Environ Pollut 218:1074–1088.  https://doi.org/10.1016/j.envpol.2016.08.059 CrossRefGoogle Scholar
  151. Leclercq B, Allemana LY, Perdrix E, Riffault V, Happillon M, Strecker A, Lo-Guidice JM, Garçon G, Coddeville P (2017) Particulate metal bioaccessibility in physiological fluids and cell culture media: toxicological perspectives. Environ Res 156:148–157.  https://doi.org/10.1016/j.envres.2017.03.029 CrossRefGoogle Scholar
  152. Lee S, Ho KF, Chan LY, Zielinska B, Chow JC (2001) Polycyclic aromatic hydrocarbons (PAHs) and carbonyl compounds in urban atmosphere of Hong Kong. Atmos Environ 35:5949–5960.  https://doi.org/10.1016/S1352-2310(01)00374-0 CrossRefGoogle Scholar
  153. Lee HH, Choi NR, Lim HB, Yi SM, Kim YP, Lee JY (2017) Characteristics of oxygenated PAHs in PM10 at Seoul, Korea. Atmos Pollut Res 30:1–7.  https://doi.org/10.1016/j.apr.2017.07.007 CrossRefGoogle Scholar
  154. Leskinen J, Tissari J, Uski O, Virén A, Torvela T, Kaivosoja T, Lamberg H, Nuutinen I, Kettunen T, Joutsensaari J, Jalava P, Sippula O, Hirvonen M, Jokiniemi J (2014) Fine particle emissions in three different combustion conditions of a wood chip-fired appliance—particulate physico-chemical properties and induced cell death. Atmos Environ 86:129–139.  https://doi.org/10.1016/j.atmosenv.2013.12.012 CrossRefGoogle Scholar
  155. Levesque S, Surace M, McDonald J, Block M (2011) Air pollution and the brain: subchronic diesel exhaust exposure causes neuroinflammation and elevates early markers of neurodegenerative disease. J Neuroinflamm 8:105.  https://doi.org/10.1186/1742-2094-8-105 CrossRefGoogle Scholar
  156. Li M, Wang T-G, Simoneit BR, Shi S, Zhang L, Yang F (2012) Qualitative and quantitative analysis of dibenzothiophene, its methylated homologues, and benzonaphthothiophenes in crude oils, coal, and sediment extracts. J Chromatogr A 1233:126–136.  https://doi.org/10.1016/j.chroma.2012.01.086 CrossRefGoogle Scholar
  157. Li W, Wang C, Shen H, Su S, Shen G, Huang Y, Zhang Y, Chen Y, Chen H, Lin N, Zhuo S, Zhong Q, Wang X, Liu J, Li B, Liu W, Tao S (2015) Concentrations and origins of nitro-polycyclic aromatic hydrocarbons and oxy-polycyclic aromatic hydrocarbons in ambient air in urban and rural areas in northern China. Environ Pollut 197:156–164.  https://doi.org/10.1016/j.envpol.2014.12.019 CrossRefGoogle Scholar
  158. Li R, Zhaoa L, Zhanga L, Chena M, Donga C, Caib Z (2017) DNA damage and repair, oxidative stress and metabolism biomarker responses in lungs of rats exposed to ambient atmospheric 1-nitropyrene. Environ Toxicol Pharmacol 54:14–20.  https://doi.org/10.1016/j.etap.2017.06.009 CrossRefGoogle Scholar
  159. Liang F, Lu M, Birch ME, Keener TC, Liu Z (2006) Determination of polycyclic aromatic sulfur heterocycles in diesel particulate matter and diesel fuel by gas chromatography with atomic emission detection. J Chromatogr A 1114:145–153.  https://doi.org/10.1016/j.chroma.2006.02.096 CrossRefGoogle Scholar
  160. Lima ALC, Farrington JW, Reddy CM (2005) Combustion-derived polycyclic aromatic hydro- carbons in the environment. Rev Environ Forensic 6(2):109–131.  https://doi.org/10.1080/15275920590952739 CrossRefGoogle Scholar
  161. Lin Y, Qiu X, Ma Y, Ma J, Zheng M, Shao M (2015) Concentrations and spatial distribution of polycyclic aromatic hydrocarbons (PAHs) and nitrated PAHs (NPAHs) in the atmosphere of North China, and the transformation from PAHs to NPAHs. Environ Pollut 196:164–170.  https://doi.org/10.1016/j.envpol.2014.10.005 CrossRefGoogle Scholar
  162. Liu LB, Liu Y, Lin JM, Tang N, Hayakawa K, Maeda T (2007) Development of analytical methods for polycyclic aromatic hydrocarbons (PAHs) in airborne particulates: a review. J Environ Sci 19:1–11.  https://doi.org/10.1016/S1001-0742(07)60001-1 CrossRefGoogle Scholar
  163. Loomis D, Grosse Y, Lauby-Secretan B, Ghissassi F, Bouvard V, Benbrahim-Tallaa L, Guha N, Baan R, Mattock H, Straif K (2013) The carcinogenicity of outdoor air pollution. Lancet Oncol 14:1262–1263.  https://doi.org/10.1016/S1470-2045(13)70487-X CrossRefGoogle Scholar
  164. Lundstedt S, White P, Lemieux C, Lynes K, Lambert L, Oberg L, Haglund P, Tysklind M (2007) Sources, fate, and toxic hazards of oxygenated polycyclic aromatic hydrocarbons (PAHs) at PAH-contaminated sites. AMBIO 36:475–485.  https://doi.org/10.1579/0044-7447(2007)36%5B475:SFATHO%5D2.0.CO;2 CrossRefGoogle Scholar
  165. Lynch SM, Rebbeck TR (2013) Bridging the gap between biologic, individual, and macro-environmental factors in cancer: a multilevel approach. Cancer Epidemiol Biomark Prev 22(4):485–495.  https://doi.org/10.1158/1055-9965 CrossRefGoogle Scholar
  166. Maliszewska-Kordybach B (1999) Sources, concentrations, fate and effects of polycyclic aromatic hydrocarbons (PAHs) in the environment. Part A: pAHs in air. Polish J Environ Stud 8(3):131–136Google Scholar
  167. Mandalakis M, Tsapakis M, Tsoga A, Stephanou E (2002) Gas-particle concentrations and distribution of aliphatic hydrocarbons, PAHs, PCBs and PCDD/Fs in the atmosphere of Athens (Greece). Atmos Environ 36:4023–4035.  https://doi.org/10.1016/S1352-2310(02)00362-X CrossRefGoogle Scholar
  168. Manoli E, Voutsa D, Samara C (2002) Chemical characterization and source identification/apportionment of fine and coarse air particles in Thessaloniki, Greece. Atmos Environ 36:949–961.  https://doi.org/10.1016/S1352-2310(01)00486-1 CrossRefGoogle Scholar
  169. Maria J, Segner H (2000) Antiestrogenicity of β-naphthoflavone and PAHs in cultured rainbow trout hepatocytes: evidence for a role of the arylhydrocarbon receptor. Aquat Toxicol 51:79–92.  https://doi.org/10.1016/S0166-445X(00)00100-4 CrossRefGoogle Scholar
  170. Marino F, Cecinato A, Siskos PA (2000) Nitro-PAH in ambient particulate matter in the atmosphere of Athens. Chemosphere 40:533–537.  https://doi.org/10.1016/S0045-6535(99)00308-2 CrossRefGoogle Scholar
  171. Mastral AM, Callen M, Murillo R (1996) Assessment of PAH emissions as a function of coal combustion variables. Fuel 75(13):1533–1536.  https://doi.org/10.1016/0016-2361(96)00120-2 CrossRefGoogle Scholar
  172. Mcclean M, Rinehart R, Ngo L, Eisen E (2004) Urinary 1-hydroxypyrene and polycyclic aromatic hydrocarbon exposure among asphalt paving workers. Ann Occup Hyg 48(6):565–578.  https://doi.org/10.1093/annhyg/meh044 CrossRefGoogle Scholar
  173. McDougal A, Wormke M, Calvin J, Safe S (2001) Tamoxifen-induced antitumorigenic/antiestrogenic action synergized by a selective aryl hydrocarbon receptor modulator. Cancer Res 61:3902–3907Google Scholar
  174. McFall T, Booth G, Lee M, Tominaga Y, Pratap R, Tedjamulia M, Castle R (1984) Mutagenic activity of methyl-substituted tri- and tetracyclic aromatic sulfur heterocycles. Mutat Res 135:97–103.  https://doi.org/10.1016/0165-1218(84)90161-7 CrossRefGoogle Scholar
  175. Miet K, Le Menach K, Flaud PM, Budzinski H, Villenave E (2009) Heterogeneous reactions of ozone with pyrene, 1-hydroxypyrene and 1-nitropyrene adsorbed on particles. Atmos Environ 43:3699–3707.  https://doi.org/10.1016/j.atmosenv.2009.04.032 CrossRefGoogle Scholar
  176. Miller-Schulze J, Kameda T, Toriba A, Tang N, Tamura K, Dong L, Zhang X, Hayakawa K, Yost M, Simpson C (2013) Evaluation of urinary metabolites of 1-nitropyrene as biomarkers for exposure to diesel exhaust in taxi drivers of Shenyang, China. J Expo Sci Environ Epidemiol 23(2):170–175.  https://doi.org/10.1038/jes.2012.40 CrossRefGoogle Scholar
  177. Miller-Schulze JP, Paulsen M, Kameda T, Toriba A, Hayakawa K, Cassidy B, Naeher L, Villalobos MA, Simpson CD (2016) Nitro-PAH exposures of occupationally-exposed traffic workers and associated urinary 1-nitropyrene metabolite concentrations. J Environ Sci 49:213–221.  https://doi.org/10.1016/j.jes.2016.06.007 CrossRefGoogle Scholar
  178. Moorthy B, Chu C, Carlin DJ (2015) Polycyclic aromatic hydrocarbons: from metabolism to lung cancer. Toxicol Sci 145(1):5–15.  https://doi.org/10.1093/toxsci/kfv040 CrossRefGoogle Scholar
  179. Mossner SG, Lopez de Alda MJ, Sander LC, Lee ML, Wise SA (1999) Gas chromatographic retention behavior of polycyclic aromatic sulfur heterocyclic compounds, (dibenzothiophene, naphtho[b]thiophenes, benzo[b]naphthothiophenes and alkyl- substituted derivatives) on stationary phases of different selectivity. J Chromatogr A 841:207–228.  https://doi.org/10.1016/S0021-9673(99)00363-5 CrossRefGoogle Scholar
  180. Nagy E, Johansson C, Zeisig M, Moller L (2005a) Oxidative stress and DNA damage caused by the urban air pollutant 3-NBA and its isomer 2-NBA in human lung cells analyzed with three independent methods. J Chromatogr B 827:94–103.  https://doi.org/10.1016/j.jchromb.2005.03.014 CrossRefGoogle Scholar
  181. Nagy E, Zeisig M, Kawamura K, Hisamatsu Y, Sugeta A, Adachi S, Moller L (2005b) DNA-adduct and tumor formations in rats after intratracheal administration of the urban air pollutant 3-nitrobenzanthrone. Carcinogenesis 26:1821–1828.  https://doi.org/10.1093/carcin/bgi141 CrossRefGoogle Scholar
  182. Nalin F, Golly B, Besombes JL, Pelletier C, Aujay R, Verlhac S, Dermigny A, Fievet A, Karoski N, Dubois P, Collet S, Favez O, Albinet A (2016) Fast oxidation processes from emission to ambient air introduction of aerosol emitted by residential log wood stoves. Atmos Environ 143:15–26.  https://doi.org/10.1016/j.atmosenv.2016.08.002 CrossRefGoogle Scholar
  183. Nebert D, Dalton T (2006) The role of cytochrome P450 enzymes in endogenous signalling pathways and environmental carcinogenesis. Nat Rev Cancer 6:947–960.  https://doi.org/10.1038/nrc2015 CrossRefGoogle Scholar
  184. Nebert D, Dalton T, Okey A, Gonzalez F (2004) Role of aryl hydrocarbon receptor-mediated induction of the CYP1 enzymes in environmental toxicity and cancer. J Biol Chem 279:23847–23850.  https://doi.org/10.1074/jbc.R400004200 CrossRefGoogle Scholar
  185. Nemmar A, Al-Salam S, Zia S, Marzouqi F, Al-Dhaheri A, Subramaniyan D, Dhanasekaran S, Yasin J, Ali BH, Kazzam EE (2011) Contrasting actions of diesel exhaust particles on the pulmonary and cardiovascular systems and the effects of thymoquinone. Br J Pharmacol 164:1871–1882.  https://doi.org/10.1111/j.1476-5381.2011.01442.x CrossRefGoogle Scholar
  186. Neophytou A, Hart J, Cavallari J, Smith T, Dockery D, Coull B, Garshick E, Laden F (2013) Traffic-related exposures and biomarkers of systemic inflammation, endothelial activation and oxidative stress: a panel study in the US trucking industry. Environ Health 12:105–115.  https://doi.org/10.1186/1476-069X-12-105 CrossRefGoogle Scholar
  187. Neophytou AM, Hart JE, Chang Y, Zhang J, Smith TJ, Garshick E, Laden F (2014) Short-term traffic related exposures and biomarkers of nitro- PAH exposure and oxidative DNA damage. Toxics. 2(3):377–390.  https://doi.org/10.3390/toxics2030377 CrossRefGoogle Scholar
  188. Niu X, Ho SSH, Ho KF, Huang Y, Sun J, Wang Q, Zhou Y, Zhao Z, Cao J (2017) Atmospheric levels and cytotoxicity of polycyclic aromatic hydrocarbons and oxygenated-PAHs in PM2.5 in the Beijing–Tianjin–Hebei region. Environ Pollut 231:1075–1084.  https://doi.org/10.1016/j.envpol.2017.08.099 CrossRefGoogle Scholar
  189. O’Connell SG, Haigh T, Wilson G, Anderson KA (2013) An analytical investigation of 24 oxygenated-PAHs (OPAHs) using liquid and gas chromatography–mass spectrometry. Anal Bioanal Chem 405:8885–8896.  https://doi.org/10.1007/s00216-013-7319-x CrossRefGoogle Scholar
  190. Oda J, Nomura S, Yasuhara A, Shibamoto T (2001) Mobile sources of atmospheric polycyclic aromatic hydrocarbons in a roadway tunnel. Atmos Environ 35:4819–4827.  https://doi.org/10.1016/S1352-2310(01)00262-X CrossRefGoogle Scholar
  191. Oliveira C, Martins N, Tavares J, Pio C, Cerqueira M, Matos M, Silva H, Oliveira C, Camoes F (2011) Size distribution of polycyclic aromatic hydrocarbons in a roadway tunnel in Lisbon, Portugal. Chemospheres 83:1588–1596.  https://doi.org/10.1016/j.chemosphere.2011.01.011 CrossRefGoogle Scholar
  192. Olsson A, Fevotte JFT, Cassidy A, Mannetje A, Zaridze D, Szeszenia-Dabrowska N, Rudnai P, Lissowska J, Fabianova E, Mates D, Bencko V, Foretova L, Janout V, Brennan P, Boffetta P (2010) Occupational exposure to polycyclic aromatic hydrocarbons and lung cancer risk: a multicenter study in Europe. Occup Environ Med 67:98–103.  https://doi.org/10.1136/oem.2009.046680 CrossRefGoogle Scholar
  193. Onduka T, Ojima D, Ito K, Mochida K, Koyoma J, Fujii K (2015) Reproductive toxicity of 1-nitronaphthalene and 1-nitropyrene exposure in the mummichog, Fundus heteroclitus. Ecotoxicology 24:648–656.  https://doi.org/10.1007/s10646-014-1412-6 CrossRefGoogle Scholar
  194. Ovrevik J, Arlt VM, Oya E, Nagy E, Mollerup S, Phillips DH, Lag M, Holme JA (2010) Differential effects of nitro-PAHs and amino-PAHs on cytokine and chemokine responses in human bronchial epithelial BEAS-2B cells. Toxicol Appl Pharmacol 242:270–280.  https://doi.org/10.1016/j.taap.2009.10.017 CrossRefGoogle Scholar
  195. Oya E, Ovrevik J, Arlt VM, Nagy E, Phillips DH, Holme A (2011) DNA damage and DNA damage response in human bronchial epithelial BEAS-2B cells following exposure to 2-nitrobenzanthrone and 3-nitrobenzanthrone: role in apoptosis. Mutagenesis 26(6):697–708.  https://doi.org/10.1093/mutage/ger035 CrossRefGoogle Scholar
  196. Park E, Park K (2009) Induction of pro-inflammatory signals by 1-nitropyrene in cultured BEAS-2B cells. Toxicol Lett 184:126–133.  https://doi.org/10.1016/j.toxlet.2008.10.028 CrossRefGoogle Scholar
  197. Park S, Kim Y, Kang C (2002) Atmospheric polycyclic aromatic hydrocarbons in Seoul, Korea. Atmos Environ 36:2917–2924.  https://doi.org/10.1016/S1352-2310(02)00206-6 CrossRefGoogle Scholar
  198. Park SS, Bae M-S, Schauer JJ, Kim YJ, Cho SY, Kim SJ (2006) Molecular composition of PM 2.5 organic aerosol measured at an urban site of Korea during the ACE-Asia campaign. Atmos Environ 40:4182–4198.  https://doi.org/10.1016/j.atmosenv.2006.02.012 CrossRefGoogle Scholar
  199. Paturel L, Saber A, Combet E, Joumard R (1996) Analysis of PAH emissions from passenger cars by high resolution Shpol’skii spectrofluorimetry. Polycycl Aromat Compd 9:331–339.  https://doi.org/10.1080/10406639608031235 CrossRefGoogle Scholar
  200. Pederson T, Siak J (1981) The role of nitroaromatic compounds in the direct-acting mutagenicity of diesel particle extracts. J Appl Toxicol 1:54–60.  https://doi.org/10.1002/jat.2550010203 CrossRefGoogle Scholar
  201. Pelroy R, Stewart D, Tominaga Y, Iwao M, Castle R, Lee M (1983) Microbial mutagenicity of 3- and 4-ring polycyclic aromatic sulfur heterocycles. Mutat Res 117(1–2):31–40.  https://doi.org/10.1016/0165-1218(83)90150-7 CrossRefGoogle Scholar
  202. Perera F, Tang D, Whyatt R, Lederman S, Jedrychowski W (2005) DNA damage from polycyclic aromatic hydrocarbons measured by benzo[a]pyrene-DNA adducts in mothers and newborns from Northern Manhattan, the World Trade Center Area, Poland, and China. Cancer Epidemiol Biomark Prev 14(3):709–714.  https://doi.org/10.1158/1055-9965.EPI-04-0457 CrossRefGoogle Scholar
  203. Perera FP, Wang S, Vishnevetsky J, Zhang B, Cole KJ, Tang D, Rauh V, Phillips DH (2011) Polycyclic aromatic hydrocarbons-aromatic DNA adducts in cord blood and behavior scores in New York city children. Environ Health Perspect 119(8):1176–1181.  https://doi.org/10.1289/ehp.1002705 CrossRefGoogle Scholar
  204. Phousongphouang P, Grosovsky A, Eastmond D, Covarrubias M, Arey J (2000) The genotoxicity of 3-nitrobenzanthrone and the nitropyrene lactones in human lymphoblasts. Mutat Res 472:93–103.  https://doi.org/10.1016/S1383-5718(00)00135-2 CrossRefGoogle Scholar
  205. Pluquet O, Hainaut P (2001) Genotoxic and non-genotoxic pathways of p53 induction. Cancer Lett 174:1–15.  https://doi.org/10.1016/S0304-3835(01)00698-X CrossRefGoogle Scholar
  206. Pope C III, Burnett R, Thun M, Calle E, Krewski D, Ito K, Thurston G (2002) Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA 287:1132–1141CrossRefGoogle Scholar
  207. Purohit V, Basu A (2000) Mutagenicity of nitroaromatic compounds. Chem Res Toxicol 13:673–692.  https://doi.org/10.1021/tx000002x CrossRefGoogle Scholar
  208. Ramirez N, Cuadras A, Rovira E, Marce RM, Borrull F (2011) Risk assessment related to atmospheric polycyclic aromatic hydrocarbons in gas and particle phases near industrial sites. Environ Health Perspect 119:1110–1116.  https://doi.org/10.1289/ehp.1002855 CrossRefGoogle Scholar
  209. Ravindra K, Bencs L, Wauters E, De Hoog J, Deutsch F, Roekens E, Bleux N, Bergmans P, Van Grieken R (2006a) Seasonal and site specific variation in vapor and aerosol phase PAHs over Flanders (Belgium) and their relation with anthropogenic activities. Atmos Environ 40:771–785.  https://doi.org/10.1016/j.atmosenv.2005.10.011 CrossRefGoogle Scholar
  210. Ravindra K, Wauters E, Taygi S, Mor S, Van Grieken R (2006b) Assessment of air quality after the implementation of CNG as fuel in public transport in Delhi, India. Environ Monit Assess 115:405–417.  https://doi.org/10.1007/s10661-006-7051-5 CrossRefGoogle Scholar
  211. Ravindra K, Sokhia R, Grieken RV (2008) Review: atmospheric polycyclic aromatic hydrocarbons: source attribution, emission factors and regulation. Atmos Environ 42:2895–2921.  https://doi.org/10.1016/j.atmosenv.2007.12.010 CrossRefGoogle Scholar
  212. Reisen F, Arey J (2005) Atmospheric reactions influence seasonal PAH and nitro-PAH concentrations in the Los Angeles basin. Environ Sci Technol 39:64–73.  https://doi.org/10.1021/es035454l CrossRefGoogle Scholar
  213. Ren H, Kawagoe T, Jia H, Endo H, Kitazawa A, Goto S, Hayashi T (2010) Continuous surface seawater surveillance on poly aromatic hydrocarbons (PAHs) and mutagenicity of East and South China Seas. Estuarine Coast Shelf Sci 86:395–400.  https://doi.org/10.1016/j.ecss.2009.09.025 CrossRefGoogle Scholar
  214. Ren A, Qiu X, Jin L, Ma J, Li Z, Zhang L, Zhuc H, Finnell R, Zhub T (2011) Association of selected persistent organic pollutants in the placenta with the risk of neural tube defects. Proc Natl Acad Sci USA 108(31):12770–12775.  https://doi.org/10.1073/pnas.1105209108 CrossRefGoogle Scholar
  215. Ren Y, Zhou B, Tao J, Cao J, Zhang Z, Wu C, Wang J, Li J, Zhang L, Han Y, Liu L, Cao C, Wang G (2017) Composition and size distribution of airborne particulate PAHs and oxygenated PAHs in two Chinese megacities. Atmos Res 183:322–330.  https://doi.org/10.1016/j.atmosres.2016.09.015 CrossRefGoogle Scholar
  216. Ringuet J, Albinet A, Leoz-Garziandia E, Budzinski H, Villenave E (2012) Diurnal/nocturnal concentrations and sources of particulate-bound PAHs, OPAHs and NPAHs at traffic and suburban sites in the region of Paris (France). Sci Total Environ 437:297–305.  https://doi.org/10.1016/j.scitotenv.2012.07.072 CrossRefGoogle Scholar
  217. Sanderson E, Farant J (2005) Atmospheric size distribution of PAHs: evidence of a high-volume sampling artifact. Environ Sci Technol 39:7631–7637.  https://doi.org/10.1021/es0510111 CrossRefGoogle Scholar
  218. Sarti E, Pasti L, Scaroni I, Casali P, Cavazzini A, Rossi M (2017) Determination of n- alkanes, PAHs and nitro-PAHs in PM2.5 and PM1 sampled in the surroundings of a municipal waste incinerator. Atmos Environ 149:12–23.  https://doi.org/10.1016/j.atmosenv.2016.11.016 CrossRefGoogle Scholar
  219. Scipioni C, Villanueva F, Pozo K, Mabilia R (2012) Preliminary characterization of polycyclic aromatic hydrocarbons, nitrated polycyclic aromatic hydrocarbons and polychlorinated dibenzo-p-dioxins and furans in atmospheric PM10 of an urban and a remote area of Chile. Environ Technol 33:809–820.  https://doi.org/10.1080/09593330.2011.597433 CrossRefGoogle Scholar
  220. Shen G, Wang W, Yang Y, Zhu C, Min Y, Xue M, Ding J, Li W, Wang B, Shen H, Wang R, Wang X, Tao S (2010) Emission factors and particulate matter size distribution of polycyclic aromatic hydrocarbons from residential coal combustions in rural northern China. Atmos Environ 44:5237–5243.  https://doi.org/10.1016/j.atmosenv.2010.08.042 CrossRefGoogle Scholar
  221. Shen G, Wang W, Yang Y, Ding J, Xue M, Min Y, Zhu C, Shen H, Li W, Wang B, Wang R, Wang X, Tao S, Russell A (2011) Emissions of PAHs from indoor crop residue burning in a typical rural stove: emission factors, size distributions, and gas-particle partitioning. Environ. Sci. Technol. 45:1206–1212.  https://doi.org/10.1021/es102151w CrossRefGoogle Scholar
  222. Sheu CW, Dobras SN, Rodriguez I, Lee JK, Fu PP (1994) Transforming activity of selected polycyclic aromatic hydrocarbons and their nitro-derivatives in BALB/3T3 A31-1-1 cells. Food Chem Toxicol 32(7):611–615.  https://doi.org/10.1016/0278-6915(94)90004-3 CrossRefGoogle Scholar
  223. Shi S, Zhao B (2012) Comparison of the predicted concentration of outdoor originated indoor polycyclic aromatic hydrocarbons between a kinetic partition model and a linear instantaneous model for gas–particle partition. Atmos Environ 59:93–101.  https://doi.org/10.1016/j.atmosenv.2012.05.007 CrossRefGoogle Scholar
  224. Shimada T, Fujii-Kuriyama Y (2004) Metabolic activation of polycyclic aromatic hydrocarbons to carcinogens by cytochromes P450 1A1 and 1B1. Cancer Sci 95(1):1–6.  https://doi.org/10.1111/j.1349-7006.2004.tb03162.x CrossRefGoogle Scholar
  225. Shuzhen L, Tao S, Liu W, Liu Y, Dou H, Zhao J, Wang LWJ, Tian Z, Gao Y (2007) Atmospheric polycyclic aromatic hydrocarbons in North China: a wintertime study. Environ Sci Technol 41:8256–8261.  https://doi.org/10.1021/es0716249 CrossRefGoogle Scholar
  226. Siegmund B, Weiss R, Pfannhauser W (2003) Sensitive method for the determination of nitrated polycyclic aromatic hydrocarbons in the human diet. Anal Bioanal Chem 375:175–181.  https://doi.org/10.1007/s00216-002-1653-8 CrossRefGoogle Scholar
  227. Sienra MR (2006) Oxygenated polycyclic aromatic hydrocarbons in urban air particulate matter. Atmos Environ 40:2374–2384.  https://doi.org/10.1016/j.atmosenv.2005.12.009 CrossRefGoogle Scholar
  228. Simoneit B, Bi X, Oros D, Medeiros P, Sheng G, Fu J (2007) Phenols and hydroxy-PAHs (arylphenols) as tracers for coal smoke particulate matter: source tests and ambient aerosol assessments. Environ Sci Technol 41:7294–7302.  https://doi.org/10.1021/es071072u CrossRefGoogle Scholar
  229. Sklorz M, Briede J, Schnelle-Kreis J, Liu Y, Cyrys J, De Kok T, Zimmermann R (2007) Concentration of oxygenated polycyclic aromatic hydrocarbons and oxygen free radical formation from urban particulate matter. J Toxicol Environ Health A 70:1866–1869.  https://doi.org/10.1080/15287390701457654 CrossRefGoogle Scholar
  230. Sobus J, McClean M, Herrick RF, Waidyanatha S, Nylander-French LA, Kupper LL, Rappaport SM (2009) Comparing urinary biomarkers of airborne and dermal exposure to polycyclic aromatic compounds in asphalt-exposed workers. Ann Occup Hyg 53(6):561–571.  https://doi.org/10.1093/annhyg/mep042 CrossRefGoogle Scholar
  231. Souza KF, Carvalho LR, Allen AG, Cardoso AA (2014) Diurnal and nocturnal measurements of PAH, nitro-PAH, and oxy-PAH compounds in atmospheric particulate matter of a sugar cane burning region. Atmos Environ 83:193–201.  https://doi.org/10.1016/j.atmosenv.2013.11.007 CrossRefGoogle Scholar
  232. Stcha KR, Staretz ME, Wang M, Liang L, Kenney PM, Hecht SS (2000) Effects of benzyl isothiocyanate and phenethyl isothiocyanate on benzo[a]pyrene metabolism and DNA adduct formation in the A/J mouse. Carcinogenesis 21:1711–1719.  https://doi.org/10.1093/carcin/21.9.1711 CrossRefGoogle Scholar
  233. Stroomberg G, Ariese F, Van Gestel C, Van Hattum B, Velthorst N, Van Straalen N (2003) Pyrene biotransformation products as biomarkers of polycyclic aromatic hydrocarbon exposure in terrestrial Isopoda: concentration-response relationship, and field study in a contaminated forest. Environ Toxicol Chem 22(1):224–231.  https://doi.org/10.1002/etc.5620220130 CrossRefGoogle Scholar
  234. Swartz CD, King LC, Nesnow S, Umbach DM, Kumard S, DeMarini DM (2009) Mutagenicity, stable DNA adducts, and abasic sites induced in Salmonella by phenanthro[3,4-b]- and phenanthro[4,3-b]thiophenes, sulfur analogs of benzo[c]phenanthrene. Mutat Res 661:47–56.  https://doi.org/10.1016/j.mrfmmm.2008.11.001 CrossRefGoogle Scholar
  235. Tang N, Hattori T, Taga R, Igarashi K, Yang XY, Tamura K, Kakimoto H, Mishukov VF, Toriba A, Kizu R, Hayakawa K (2015) Polycyclic aromatic hydrocarbons and nitropolycyclic aromatic hydrocarbons in urban air particulates and their relationship to emission sources in the Pan-Japan Sea countries. Atmos Environ 39:5817–5826.  https://doi.org/10.1016/j.atmosenv.2005.06.018 CrossRefGoogle Scholar
  236. Teixeira E, Garcia K, Meincke L, Leal KA (2011) Study of nitro-polycyclic aromatic hydrocarbons in fine and coarse atmospheric particles. Atmos Res 101:631–639.  https://doi.org/10.1016/j.atmosres.2011.04.010 CrossRefGoogle Scholar
  237. Tokiwa H, Ohnishi Y (1986) Mutagenicity and carcinogenicity of nitroarenes and their sources in the environment. CRC Crit Rev Toxicol 17:23–60.  https://doi.org/10.3109/10408448609037070 CrossRefGoogle Scholar
  238. Tokiwa H, Nakagawa R, Morita K, Ohnishi Y (1981) Mutagenicity of nitro derivatives induced by exposure of aromatic compounds to nitrogen dioxide. Mutation Res 85:195–205.  https://doi.org/10.1016/0165-1161(81)90036-4 CrossRefGoogle Scholar
  239. Tomaz S, Jaffrezo J-L, Favez O, Perraudin E, Villenave E, Albinet A (2017) Sources and atmospheric chemistry of oxy- and nitro-PAHs in the ambient air of Grenoble (France). Atmos Environ 161:144–154.  https://doi.org/10.1016/j.atmosenv.2017.04.042 CrossRefGoogle Scholar
  240. Topinka J, Schwarz L, Kiefer F, Wiebel F, Gajdgo O, Vidova P, Dobias L, Fried M, Sram R, Wolff T (1998) DNA adduct formation in mammalian cell cultures by polycyclic aromatic hydrocarbons (PAH) and nitro-PAH in coke oven emission extract. Mutat Res 419:91–105.  https://doi.org/10.1016/S1383-5718(98)00127-2 CrossRefGoogle Scholar
  241. Toriba A, Kitaoka H, Dills R, Mizukami S, Tanabe K, Takeuchi N, Ueno M, Kameda T, Tang N, Hayakawa K, Simpson C (2007) Identification and quantification of 1-nitropyrene metabolites in human urine as a proposed biomarker for exposure to diesel exhaust. Chem Res Toxicol 20(7):999–1007.  https://doi.org/10.1021/tx700015q CrossRefGoogle Scholar
  242. Travares J, Pinto J, Souza ASI, Silci M (2004) Emission of polycyclic aromatic hydrocarbons from diesel engine in a bus station, Londrina, Brazil. Atmos Environ 38:5039–5044.  https://doi.org/10.1016/j.atmosenv.2004.06.020 CrossRefGoogle Scholar
  243. Traversi D, Schiliro T, Degan R, Pignata C, Alessandria L, Gilli G (2011) Involvement of nitro-compounds in the mutagenicity of urban Pm2.5 and Pm10 in Turin. Mutat Res 726:54–59.  https://doi.org/10.1016/j.mrgentox.2011.09.002 CrossRefGoogle Scholar
  244. Tsakas MP, Sitaras IE, Siskos PA (2010) Nitro polycyclic aromatic hydrocarbons in atmospheric particulate matter of Athens, Greece. Chem Ecol 26:251–261.  https://doi.org/10.1080/02757540.2010.495061 CrossRefGoogle Scholar
  245. Unwin J, Cocker J, Scobbie E, Chambers H (2006) An assessment of occupational exposure to polycyclic aromatic hydrocarbons in the UK. Ann Occup Hyg 50(4):395–403.  https://doi.org/10.1093/annhyg/mel010 CrossRefGoogle Scholar
  246. U.S. Department of Health and Human Services Secretary Kathleen Sebelius, 12th report on Carcinogens (RoC), 2011Google Scholar
  247. Valle-Hernandez BL, Mugica-Alvarez V, Salinas-Talavera E, Amador-Munoz O, Murillo-Tovar MA, Villalobos-Pietrini R, De Vizcaya-Ruíz A (2010) Temporal variation of nitro-polycyclic aromatic hydrocarbons in PM10 and PM2.5 collected in Northern Mexico City. Sci Total Environ 408:5429–5438.  https://doi.org/10.1016/j.scitotenv.2010.07.065 CrossRefGoogle Scholar
  248. Van Drooge BL, Fernandez P, Grimalt JO, Stuchlik E, Garcia CJT, Cuevas E (2010) Atmospheric polycyclic aromatic hydrocarbons in remote European and Atlantic sites located above the boundary mixing layer. Environ Sci Pollut Res 17:1207–1216.  https://doi.org/10.1007/s11356-010-0296-0 CrossRefGoogle Scholar
  249. Varga C, Szendi K (2006) In-vivo mutagenicity of the carcinogenic 1-nitropyrene: a model of a potential asbestos exposure. Magy Onkol 50:337–340Google Scholar
  250. Vasconcellos PDC, Sanchez-Ccoyllo O, Balducci C, Mabilia R, Cecinato A (2008) Occurrence and concentration levels of nitro-PAH in the air of three Brazilian cities experiencing different emission impacts. Water Air Soil Pollut 190:87–94.  https://doi.org/10.1007/s11270-007-9582-y CrossRefGoogle Scholar
  251. Vestenius M, Leppänen S, Anttila P, Kyllönen K, Hatakka J, Hellén H, Hyvärinen AP, Hakola H (2011) Background concentrations and source apportionment of 109 polycyclic aromatic hydrocarbons in south-eastern Finland. Atmos Environ 45(20):3391–3399.  https://doi.org/10.1016/j.atmosenv.2011.03.050 CrossRefGoogle Scholar
  252. Vicente E, Alves C (2018) An overview of particulate emissions from residential biomass combustion. Atmos Res 199:159–185.  https://doi.org/10.1016/j.atmosres.2017.08.027 CrossRefGoogle Scholar
  253. Vicente E, Vicente A, Bandowe BM, Alves C (2016) Particulate phase emission of parent polycyclic aromatic hydrocarbons (PAHs) and their derivatives (alkyl-PAHs, oxygenated-PAHs, azaarenes and nitrated PAHs) from manually and automatically fired combustion appliances. Air Qual Atmos Health 9:653–668.  https://doi.org/10.1007/s11869-015-0364-1 CrossRefGoogle Scholar
  254. Vineis P, Forastiere F, Hoek G, Lipsett M (2004) Outdoor air pollution and lung cancer: recent epidemiologic evidence. Int J Cancer 111:647–652.  https://doi.org/10.1002/ijc.20292 CrossRefGoogle Scholar
  255. Vione D, Barra S, De Gennaro G, De Rienzo M, Gillardoni S, Perrone M, Pozzoli L (2004) Polycyclic aromatic hydrocarbons in the atmosphere: monitoring, sources, sinks and fate. Ann Chim (Rome) 94:257–268.  https://doi.org/10.1002/adic.200490031 CrossRefGoogle Scholar
  256. Wada M, Kido H, Kishikawa N, Tou T, Tanaka M, Tsubokura J, Shironita M, Matsui M, Kuroda N, Nakashima K (2001) Assessment of air pollution in Nagasaki city: determination of polycyclic aromatic hydrocarbons and their nitrated derivatives, and some metals. Environ Pollut 115:139–147.  https://doi.org/10.1016/S0269-7491(01)00093-8 CrossRefGoogle Scholar
  257. Walgraeve C, Demeestere K, Dewulf J, Zimmermann R, Langenhove HV (2010) Oxygenated polycyclic aromatic hydrocarbons in atmospheric particulate matter: molecular characterization and occurrence. Atmos Environ 44:1831–1846.  https://doi.org/10.1016/j.atmosenv.2009.12.004 CrossRefGoogle Scholar
  258. Wang G, Kawamura K, Zhao X, Dai L, Niu Z (2007) Identification, abundance and seasonal variation of anthropogenic organic aerosols from a mega-city in China. Atmos Environ 41:407–416.  https://doi.org/10.1016/j.atmosenv.2006.07.033 CrossRefGoogle Scholar
  259. Wang LR, Wang Y, Chen J-W, Guo LH (2009) A structure-based investigation on the binding interaction of hydroxylated polycyclic aromatic hydrocarbons with DNA. Toxicology 262(3):250–257.  https://doi.org/10.1016/j.tox.2009.06.015 CrossRefGoogle Scholar
  260. Wang W, Jariyasopit N, Schrlau J, Jia Y, Tao S, Yu TW, Dashwood R, Zhang W, Wang X, Simonich S (2011) Concentration and photochemistry of PAHs, NPAHs, and OPAHs and toxicity of PM2.5 during the Beijing Olympic Games. Environ Sci Technol 45:6887–6895. https://doi.org/10.1021/es201443z CrossRefGoogle Scholar
  261. Wang W, Huang MJ, Chan C, Cheung K, Wong M (2013a) Risk assessment of non-dietary exposure to polycyclic aromatic hydrocarbons (PAHs) via house PM2.5, TSP and dust and the implications from human hair. Atmos Environ 73:204–213.  https://doi.org/10.1016/j.atmosenv.2013.03.007 CrossRefGoogle Scholar
  262. Wang Z, Ren P, Sun Y, Ma X, Liu X, Na G, Yao Z (2013b) Gas/particle partitioning of polycyclic aromatic hydrocarbons in coastal atmosphere of the north Yellow Sea, China. Environ Sci Pollut Res 20(8):5753–5763.  https://doi.org/10.1007/s11356-013-1588-y CrossRefGoogle Scholar
  263. Wang W, Jing L, Zhan J, Wang B, Zhang D, Zhang H, Wang D, Yang Y, Zhao J, Sun Y, Bi X, Wang X, Feng J (2014) Nitrated polycyclic aromatic hydrocarbon pollution during the Shanghai World Expo 2010. Atmos Environ 89:242–248.  https://doi.org/10.1016/j.atmosenv.2014.02.031 CrossRefGoogle Scholar
  264. Wang X, Thai P, Li Y, Li Q, Wainwright D, Hawker D, Mueller J (2016) Changes in atmospheric concentrations of polycyclic aromatic hydrocarbons and polychlorinated biphenyls between the 1990s and 2010s in an Australian city and the role of bushfires as a source. Environ Pollut 213:223–231.  https://doi.org/10.1016/j.envpol.2016.02.020 CrossRefGoogle Scholar
  265. Wang C, Yang J, Zhu L, Yan L, Lu D, Zhang Q, Zhao M, Li Z (2017a) Never deem lightly the “less harmful” low-molecular-weight PAH, NPAH, and OPAH d Disturbance of the immune response at real environmental levels. Chemosphere 168:568–577.  https://doi.org/10.1016/j.chemosphere.2016.11.024 CrossRefGoogle Scholar
  266. Wang J, Xu H, Guinot B, Li L, Ho SHS, Li X, Cao J (2017b) Concentrations, sources and health effects of parent, oxygenated- and nitrated-polycyclic aromatic hydrocarbons (PAHs) in middle-school air in Xi’an, China. Atmos Res 192:1–10.  https://doi.org/10.1016/j.atmosres.2017.03.006 CrossRefGoogle Scholar
  267. Watt D, Utzat C, Hilario P, Basu A (2007) Mutagenicity of the 1-nitropyrene- DNA adduct N-(deoxyguanosin-8-yl)-1-aminopyrene in mammalian cells. Chem Res Toxicol 20:1658–1664.  https://doi.org/10.1021/tx700131e CrossRefGoogle Scholar
  268. Wei W, Zhang C, Liu A, Xie S, Chen X, Lu W (2009) PCB126 enhanced the genotoxicity of B[a]P in HepG2 cells by modulating metabolic enzyme and DNA repair activities. Toxicol Lett 189:91–95.  https://doi.org/10.1016/j.toxlet.2009.03.009 CrossRefGoogle Scholar
  269. Wei S, Huang B, Liu M, Bi X, Ren Z, Sheng G, Fu J (2012) Characterization of PM2.5-bound nitrated and oxygenated PAHs in two industrial sites of South China. Atmos Res 109–110:76–83.  https://doi.org/10.1016/j.atmosres.2012.01.009 CrossRefGoogle Scholar
  270. Wei C, Bandowe BM, Han Y, Cao J, Zhan C, Wilcke W (2015) Polycyclic aromatic hydrocarbons (PAHs) and their derivatives (alkyl-PAHs, oxygenated-PAHs, nitrated-PAHs and azaarenes) in urban road dusts from Xi’an, Central China. Chemosphere 134:512–520.  https://doi.org/10.1016/j.chemosphere.2014.11.052 CrossRefGoogle Scholar
  271. Wells P, McCallum G, Lam K, Henderson J, Ondovcik S (2010) Oxidative DNA damage and repair in teratogenesis and neurodevelopmental deficits. Birth Defects Res C Embryo Today 90(2):103–109.  https://doi.org/10.1002/bdrc.20177 CrossRefGoogle Scholar
  272. West RW, Rowland KL (1994) In-vitro transformation potential of N-polycyclic aromatic hydrocarbons in rat tracheal epithelial cells. Toxic. in Vitro 8(2):301–307.  https://doi.org/10.1016/0887-2333(94)90197-X CrossRefGoogle Scholar
  273. Wilson NK, McCurd TR, Chuang JC (1995) Concentrations and phase distributions of nitrated and oxygenated polycyclic aromatic hydrocarbons in ambient air. Atmos Environ 29(19):2575–2584.  https://doi.org/10.1016/1352-2310(95)00189-6 CrossRefGoogle Scholar
  274. Wislocki PG, Bagan E, Lu YH, Dooley KL, Fu PP, Han-Hsu H, Beland FA, Kadlubar FF (1986) Tumorigenicity of nitrated derivatives of pyrene, benz[a]anthracene, chrysene and benzo[a] pyrene in the newborn mouse assay. Carcinogenesis 7:1317–1322.  https://doi.org/10.1093/carcin/7.8.1317 CrossRefGoogle Scholar
  275. Yin S, Tang M, Chen F, Li T, Liu W (2017) Environmental exposure to polycyclic aromatic hydrocarbons (PAHs): the correlation with and impact on reproductive hormones in umbilical cord serum. Environ Pollut 220:1429–1437.  https://doi.org/10.1016/j.envpol.2016.10.090 CrossRefGoogle Scholar
  276. Yu H (2002) Environmental carcinogenic polycyclic aromatic hydrocarbons: photochemistry and phototoxicity. J Environ Sci Health Part C Environ Carcinog Ecotoxicol Rev 20:149–183.  https://doi.org/10.1081/GNC-120016203 CrossRefGoogle Scholar
  277. Yuan Y, Jin L, Wan L, Li Z, Zhang L, Zhu H, Finnell RH, Zhou G, Ren A (2013) Levels of PAH-DNA adducts in placental tissue and the risk of fetal neural tube defects in a Chinese population. Reprod Toxicol 37:70–75.  https://doi.org/10.1016/j.reprotox.2013.01.008 CrossRefGoogle Scholar
  278. Yunker M, Macdonal R, Vingarzan R, Mitchell R, Goyette D, Sylvestre S (2002) PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Org Geochem 33:489–515.  https://doi.org/10.1016/S0146-6380(02)00002-5 CrossRefGoogle Scholar
  279. Zaciera M, Kurek J, Dzwonek L, Feist B, Jedrzejczak A (2012) Seasonal variability of PAHs and nitro-PAHs concentrations in total suspended particulate matter in ambient air of cities in Silesian Voivodeship. Environ Prot Eng 38:45–50Google Scholar
  280. Zajda K, Ptak A, Rak A, Fiedor E, Grochowalski A, Milewicz T, Gregoraszczuk EL (2017) Effects of human blood levels of two PAH mixtures on the AHR signalling activation pathway and CYP1A1 and COMT target genes in granulosa non- tumor and granulosa tumor cell lines. Toxicology 389:1–12.  https://doi.org/10.1016/j.tox.2017.07.003 CrossRefGoogle Scholar
  281. Zhang Y, Tao S (2009) Global atmospheric emission inventory of polycyclic aromatic hydrocarbons (PAHs) for 2004. Atmos Environ 43:812–819.  https://doi.org/10.1016/j.atmosenv.2008.10.050 CrossRefGoogle Scholar
  282. Zhang Z, Xu SC, Wang Y (2005) The concentration and distribution of some organic matter in the aerosol of Qingdao coast. Period Ocean Univ China 35:661–664Google Scholar
  283. Zhang J, Yang L, Mellouki A, Chen J, Chen X, Gao Y, Jiang P, Li Y, Yu H, Wang W (2018) Atmospheric PAHs, NPAHs, and OPAHs at an urban, mountainous, and marine sites in Northern China: Molecular composition, sources, and ageing. Atmos Environ 173:256–264.  https://doi.org/10.1016/j.atmosenv.2017.11.002 CrossRefGoogle Scholar
  284. Zhou C, Zhu X, Wang Z, Ma X, Chen J, Ni Y, Wang W, Mu J, Li X (2013) Gas–particle partitioning of PAHs in the urban air of Dalian, China: measurements and assessments. Polycycl Aromat Compd 33(11):31–51.  https://doi.org/10.1080/10406638.2012.683467 CrossRefGoogle Scholar
  285. Zhu L, Lu H, Chen S, Amagai T (2009) Pollution level, phase distribution and source analysis of polycyclic aromatic hydrocarbons in residential air in Hangzhou, China. J Hazard Mater 162(2–3):1165–1170.  https://doi.org/10.1016/j.jhazmat.2008.05.150 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Lebanese Atomic Energy Commission – NCSRBeirutLebanon
  2. 2.Unité de Chimie Environnementale et Interactions sur le Vivant, EA4492-UCEIVUniv. Littoral Côte d’OpaleDunkirkFrance
  3. 3.CHU Lille, Institut Pasteur de Lille, EA4483-IMPacts de l’Environnement Chimique sur la Santé Humaine (IMPECS)Univ. LilleLilleFrance

Personalised recommendations