Skip to main content
Log in

The multiplier problem of the calculus of variations for scalar ordinary differential equations

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

In the long-standing inverse problem of the calculus of variations one is asked to find a Lagrangian and a multiplier so that a given differential equation, after being multiplied with the multiplier, becomes the Euler–Lagrange equation for the Lagrangian. An answer to this problem for the case of a scalar ordinary differential equation of order \(2n, n\ge 2,\) is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, I., Duchamp, T.E.: On the existence of global variational principles. Am. J. Math. 102, 781–868 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  2. Anderson, I., Duchamp, T.E.: Variational principles for second-order quasi-linear scalar equations. J. Differ. Equ. 51, 1–47 (1984)

    Article  MATH  Google Scholar 

  3. Anderson, I., Thompson, G.: The inverse problem of the calculus of variations for ordinary differential equations. Mem. Am. Math. Soc. 98, 1–110 (1992)

    MathSciNet  MATH  Google Scholar 

  4. Chan, H.-T. H.: Convergence of bounded solutions for nonlinear parabolic equations. M.Phil. Thesis, Chinese University of Hong Kong (2012)

  5. Darboux, G.: Leçon sur la théorie générale des surfaces III, p. 535. Gauthier-Villars, Paris (1894)

    Google Scholar 

  6. Doubrov, B., Zelenko, I.: Equivalence of variational problems of higher order. Differ. Geom. Appl. 29, 255–270 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fels, M.E.: The inverse problem of the calculus of variations for scalar fourth-order ordinary differential equations. Trans. Am. Math. Soc. 348, 5007–5029 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  8. Juráš, M.: The inverse problem of the calculus fo variations for sixth- and eighth-order scalar ordinary differential equations. Acta Appl. Math. 66, 25–39 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Juráš, M.: Towards a solution of the inverse problem of the calculus of variations for scalar ordinary differential equations. Differ. Geom. Appl. (Opava, 2001) 3, 425–434 (2001)

    MathSciNet  MATH  Google Scholar 

  10. Lovász, L.: Combinatorial Problems and Exercises, p. 635. North-Holland Publishing Co., Amsterdam (1993)

    MATH  Google Scholar 

  11. Nucci, M.C., Arthurs, A.M.: On the inverse problem of calculus of variations for fourth-order equations. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 466, 2309–2323 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Olver, P.J.: Applications of Lie Groups to Differential Equations, p. 500. Springer, New York (1993)

    Book  Google Scholar 

  13. Saunders, D.J.: Thirty years of the inverse problem in the calculus of variations. Rep. Math. Phys. 66, 43–53 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Zelenyak, T.I.: Stabilization of solutions of boundary value problems for a second-order parabolic equation with one space variable. Differ. Equ. 4, 17–22 (1968)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author is deeply indebted to his M.Phil. advisor Prof. Kai-Seng Chou for suggesting this problem, as well as carefully reviewing the first draft of this article and giving numerous valuable suggestions. The author also thanks Prof. Kai-Seng Chou for his continuous support, while and after pursuing his master degree at The Chinese University of Hong Kong. The author also thanks the anonymous referee for the very useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hardy Chan.

Additional information

Communicated by L. Ambrosio.

Proofs of some elementary results

Proofs of some elementary results

1.1 Proof of Lemma 2.3

Proof

Let \(m, n, m\ge n,\) be fixed. Note that this lemma is trivial for \(k=0\). If it holds for some \(k<n\), then

$$\begin{aligned} \partial _n D_m^{k+1} =\,&\sum _{j=0}^k \left( {\begin{array}{c}k\\ j\end{array}}\right) D_m^{k-j} \partial _{n-j} D_m \\ =\,&\sum _{j=0}^k \left( {\begin{array}{c}k\\ j\end{array}}\right) D_m^{k-j} (D_m \partial _{n-j} + \partial _{n-j-1}) \\ =\,&\sum _{j=0}^k \left( {\begin{array}{c}k\\ j\end{array}}\right) D_m^{k+1-j} \partial _{n-j} + \sum _{j=1}^{k+1} \left( {\begin{array}{c}k\\ j-1\end{array}}\right) D_m^{k+1-j} \partial _{n-j} \\ =\,&D^{k+1}_m \partial _n + \sum ^k_{j=1} \left[ \left( {\begin{array}{c}k\\ j\end{array}}\right) + \left( {\begin{array}{c}k\\ j-1\end{array}}\right) \right] D_m^{k+1-j} \partial _{n-j} + \partial _{n-k-1} \\ =\,&\sum ^{k+1}_{j=0} \left( {\begin{array}{c}k+1\\ j\end{array}}\right) D_m^{k+1-j} \partial _{n-j}\ . \end{aligned}$$

Hence the formula holds for all \(k=0,1,\ldots ,n\). On the other hand, if it is true for some \(k\ge n\), we have

$$\begin{aligned} \partial _n D_m^{k+1} =\,&\sum _{j=0}^n \left( {\begin{array}{c}k\\ j\end{array}}\right) D_m^{k-j} \partial _{n-j} D_m \\ =\,&\sum _{j=0}^{n-1} \left( {\begin{array}{c}k\\ j\end{array}}\right) D_m^{k-j} (D_m \partial _{n-j} + \partial _{n-j-1}) + \left( {\begin{array}{c}k\\ n\end{array}}\right) D^{k-n}_m \partial _0 D_m \\ =\,&\sum _{j=0}^{n-1} \left( {\begin{array}{c}k\\ j\end{array}}\right) D_m^{k+1-j} \partial _{n-j} + \sum _{j=0}^{n-1} \left( {\begin{array}{c}k\\ j\end{array}}\right) D_m^{k-j} \partial _{n-j-1} + \left( {\begin{array}{c}k\\ n\end{array}}\right) D^{k+1-n}_m \partial _0 \\ =\,&D^{k+1}_m \partial _n + \sum _{j=1}^n \left( {\begin{array}{c}k\\ j\end{array}}\right) D_m^{k+1-j} \partial _{n-j} + \sum _{j=1}^n \left( {\begin{array}{c}k\\ j-1\end{array}}\right) D_m^{k+1-j} \partial _{n-j} \\ =\,&D^{k+1}_m \partial _n + \sum _{j=1}^n \left( {\begin{array}{c}k+1\\ j\end{array}}\right) D_m^{k+1-j} \partial _{n-j} \\ =\,&\sum _{j=0}^n \left( {\begin{array}{c}k+1\\ j\end{array}}\right) D_m^{k+1-j} \partial _{n-j}, \end{aligned}$$

and the result follows. \(\square \)

1.2 Analytic Proof of Lemma 2.5

Proof

Let m be fixed and we proceed by induction on k. For \(k=1\), if

$$\begin{aligned} \left\| {I}\right\| _{} = i_{m-1} + 2i_{m-2} + \cdots + mi_0 \le 1, \end{aligned}$$

the only possible multi-indices are \(I^m = (0,0,\ldots ,0)\) and \(I^m = (1,0,\ldots ,0)\). Then the right hand side reduces to \(D_m\), agreeing with the left hand side.

Assume that the result holds for some \(1\le {k}\le {m-2}\). Then,

$$\begin{aligned} D_m^{k+1} =\,&(D_{m-1} + p_m \partial _{m-1} ) \sum _{\left\| {I}\right\| _{} \le k} a_{I}^{(k)} p^{\left| {I}\right| _{}}_m D^{k-\left\| {I}\right\| _{}}_{m-1} \partial ^{I} \\ =\,&\sum _{\left\| {I}\right\| _{} \le k} a_{I}^{(k)} p^{\left| {I}\right| _{}}_m D^{k+1-\left\| {I}\right\| _{}}_{m-1} \partial ^{I} + \sum _{\left\| {I}\right\| _{} \le k} a_{I}^{(k)} p^{\left| {I}\right| _{}+1}_m \partial _{m-1} D^{k-\left\| {I}\right\| _{}}_{m-1} \partial ^{I}. \end{aligned}$$

The idea is simple — use Lemma 2.3 to move the single derivative \(\partial _{m-1}\) in the second term to the far right and perform a shift in the “dummy” multi-index I. This is possible since the coefficient \(a_I^{(k)}\ne 0\) only when \(I\ge 0\) and \(\left( {\begin{array}{c}n\\ r\end{array}}\right) \ne 0\) only in the case \(n\ge {r}\), for integers n and r.

To carry out this argument, we observe that by Lemma 2.3,

$$\begin{aligned} \partial _{m-1}D_{m-1}^{k-\left\| {I}\right\| _{}}=\sum _{j=0}^{k-\left\| {I}\right\| _{}} \left( {\begin{array}{c}k-\left\| {I}\right\| _{}\\ j\end{array}}\right) D_{m-1}^{k-\left\| {I}\right\| _{}-j}\partial _{m-1-j} \end{aligned}$$

since \(k-\left\| {I}\right\| _{}\le k\le m-1\). However, since \(\displaystyle \left( {\begin{array}{c}k-\left\| {I}\right\| _{}\\ j\end{array}}\right) =0\) for \(j>k-\left\| {I}\right\| _{}\), we also have

$$\begin{aligned} \partial _{m-1}D_{m-1}^{k-\left\| {I}\right\| _{}} =\,&\sum _{j=0}^{m-1} \left( {\begin{array}{c}k-\left\| {I}\right\| _{}\\ j\end{array}}\right) D_{m-1}^{k-\left\| {I}\right\| _{}-j}\partial _{m-1-j} \\ =\,&\sum _{j=1}^{m} \left( {\begin{array}{c}k-\left\| {I}\right\| _{}\\ j-1\end{array}}\right) D_{m-1}^{k+1-\left\| {I}\right\| _{}-j}\partial _{m-j}. \end{aligned}$$

It follows that

$$\begin{aligned} D_m^{k+1} =\,&\sum _{\left\| {I}\right\| _{}\le k} a_{I}^{(k)}p^{\left| {I}\right| _{}}_m D^{k+1-\left\| {I}\right\| _{}}_{m-1} \partial ^{I} + \sum _{j=1}^m\sum _{\left\| {I}\right\| _{}\le k} \left( {\begin{array}{c}k-\left\| {I}\right\| _{}\\ j-1\end{array}}\right) a_{I}^{(k)} p_m^{\left| {I}\right| _{}+1}D_{m-1}^{k+1-\left\| {I}\right\| _{}-j}\partial _{m-j}\partial ^{I}. \\ \end{aligned}$$

By writing \(\partial _{m-j}=\partial ^{e_j}\) where \(e_j=(0,\ldots ,1,\ldots ,0)\), with its “1” appears in the j-th slot from the left, we have

$$\begin{aligned} D_{m}^{k+1}=\,&\sum _{\left\| {I}\right\| _{}\le k} a_{I}^{(k)}p^{\left| {I}\right| _{}}_m D^{k+1-\left\| {I}\right\| _{}}_{m-1} \partial ^{I} \\&+ \sum _{j=1}^m\sum _{\left\| {I+e_{j}}\right\| _{}\le k+j} \left( {\begin{array}{c}k+j-\left\| {I+e_{j}}\right\| _{}\\ j-1\end{array}}\right) a^{(k)}_{(I+e_{j})-e_{j}} \cdot p_m^{\left| {I+e_{j}}\right| _{}}D_{m-1}^{k+1-\left\| {I+e_{j}}\right\| _{}}\partial ^{I+e_{j}}. \\ \end{aligned}$$

Since we have set \(a_{I}^{(k)}=0\) whenever \(i_{m-j}<0\) for some j with \(1\le {j}\le {m}\), we may implicitly assume that \(I-e_j\ge 0\) in the summands. Hence,

$$\begin{aligned} D_m^{k+1} =\,&\sum _{\left\| {I}\right\| _{}\le k} a_{I}^{(k)} p_m^{\left| {I}\right| _{}}D_{m-1}^{k+1-\left\| {I}\right\| _{}}\partial ^{I} + \sum _{j=1}^{m} \sum _{\left\| {I}\right\| _{}\le k+j} \left( {\begin{array}{c}k+j-\left\| {I}\right\| _{}\\ j-1\end{array}}\right) a_{I-e_{j}}^{(k)}p_m^{\left| {I}\right| _{}}D_{m-1}^{k+1-\left\| {I}\right\| _{}}\partial ^{I}. \end{aligned}$$

Using the fact that \(\displaystyle \left( {\begin{array}{c}k+j-\left\| {I}\right\| _{}\\ j-1\end{array}}\right) =0\) for \(\left\| {I}\right\| _{}>k+1\), we have

$$\begin{aligned} D_m^{k+1} =\,&\sum _{\left\| {I}\right\| _{}\le k} a_{I}^{(k)} p_m^{\left| {I}\right| _{}}D_{m-1}^{k+1-\left\| {I}\right\| _{}}\partial ^{I} + \sum _{j=1}^{m} \sum _{\left\| {I}\right\| _{}\le k+1} \left( {\begin{array}{c}k+j-\left\| {I}\right\| _{}\\ j-1\end{array}}\right) a_{I-e_{j}}^{(k)}p_m^{\left| {I}\right| _{}}D_{m-1}^{k+1-\left\| {I}\right\| _{}}\partial ^{I} \\ =\,&\sum _{\left\| {I}\right\| _{}\le k} \left[ a_{I}^{(k)}+\sum _{j=1}^{m}\left( {\begin{array}{c}k+j-\left\| {I}\right\| _{}\\ j-1\end{array}}\right) a^{(k)}_{I-e_{j}}\right] p_m^{\left| {I}\right| _{}}D_{m-1}^{k+1-\left\| {I}\right\| _{}}\partial ^{I}. \end{aligned}$$

Finally, we compute

$$\begin{aligned}&a_{I}^{(k)}+\sum _{j=1}^{m} \left( {\begin{array}{c}k+j-\left\| {I}\right\| _{}\\ j-1\end{array}}\right) a_{I-e_{j}}^{(k)} \\&\quad = \dfrac{k!}{\left\| {I}\right\| _{}^*I!(k-\left\| {I}\right\| _{})!} +\sum _{j=1}^{m} \dfrac{(k+j-\left\| {I}\right\| _{})!}{(j-1)!(k+1-\left\| {I}\right\| _{})!}\cdot \dfrac{k!}{\frac{\left\| {I}\right\| _{}^*}{j!}\cdot \frac{I!}{i_{m-j}}\cdot (k+j-\left\| {I}\right\| _{})!} \\&\quad = \dfrac{k!}{\left\| {I}\right\| _{}^*I!(k-\left\| {I}\right\| _{})!} + \sum _{j=1}^{m} \dfrac{ji_{m-j}k!}{\left\| {I}\right\| _{}^*I^m!(k+1-\left\| {I}\right\| _{})!} \\&\quad = \dfrac{k!}{\left\| {I}\right\| _{}^*I!(k+1-\left\| {I}\right\| _{})!} \left( k+1-\left\| {I}\right\| _{}+\sum _{j=1}^{m} ji_{m-j} \right) \\&\quad = \dfrac{(k+1)!}{\left\| {I}\right\| _{}^*I!(k+1-\left\| {I}\right\| _{})!} \\&\quad = a^{(k+1)}_{I}. \end{aligned}$$

Since the result is also true for \(k+1\), it holds for all \(k=1,\ldots ,m-1\). \(\square \)

1.3 Combinatorial Proof of Lemma 2.5

Proof

By Lemma 2.2(a), \(D_m^k\) can be expanded as a binomial

$$\begin{aligned}\begin{aligned} D_m^k&=(D_{m-1}+p_m\partial _{m-1})^k\\ \end{aligned}\end{aligned}$$

which is equal to the sum of all possible strings of length k formed by the alphabet \(\{D_{m-1},p_m\partial _{m-1}\}\). Each \(\partial _{m-1}\) followed by \(D_{m-1}\) gives rise to more terms by Lemma 2.2(b). In what follows, in the commutation of \(p_m\partial _{m-1}D_{m-1}\), we call \(p_mD_{m-1}\partial _{m-1}\) the higher order term and \(p_m\partial _{m-2}\) the lower order one. Hence,

$$\begin{aligned} p_m\partial _{m-1}D_{m-1}^{j-1}=p_m\partial _{m-j}+\text {higher order terms}. \end{aligned}$$

Suppose a term has partial derivatives \(\partial ^I=\partial _{m-j}^{i_{m-j}}\cdots \partial _0^{i_0}\). Two observations are in order:

  • Each \(\partial _{m-j}\) is associated to one and only one \(p_m\). Hence \(\partial ^I\) is multiplied by \(p_m^{\left| {I}\right| _{}}\).

  • Each \(\partial _{m-j}\) is obtained as the lowest order term of \(\partial _{m-1}D_{m-1}^{j-1}\). The resulting number of \(D_{m-1}\) plus \(\left\| {I}\right\| _{}\) is then the constant k.

It suffices to count the number of times \(p_m^{\left| {I}\right| _{}}D_{m-1}^{k-\left\| {I}\right\| _{}}\partial ^I\) appears.

We observe that the coefficient

$$\begin{aligned} \dfrac{k!}{\left\| {I}\right\| _{}^*I!}=a_I^{(k)}(k-\left\| {I}\right\| _{})! \end{aligned}$$

counts the number of ways partitioning a k-element set into sub-classes whose numbers of elements are given by I, see, for example, 12(a) in Chapter 1 of Lovász [10]. By dividing it by \((k-\left\| {I}\right\| _{})!\), the number that \(D_{m-1}\) appears, we do not distinguish between the \(D_{m-1}\)’s. Therefore, \(a_I^{(k)}\) is the number of ways forming permutations of \(i_{m-1}\) many \((p_m\partial _{m-1})\)’s, \(i_{m-2}\) many \((p_m\partial _{m-1}D_{m-1})\)’s, \(i_{m-3}\) many \((p_m\partial _{m-1}D_{m-1}^2)\)’s, etc., as well as \((k-i_{m-1}-2i_{m-2}-\cdots -mi_0)\) many \(D_{m-1}\)’s.

In this setting, \(I=(i_{m-1},\ldots ,i_{0})\) where \(i_{m-j}\) is the number of \(p_{m}\partial _{m-1}\)’s to be commuted with its (immediately) following \((j-1)\) \(D_{m-1}\)’s. To fix the idea, let us look at an example. Suppose \(k=10\) and \(I=(i_{m-1},i_{m-2},i_{m-3})=(3,1,1)\), i.e. consider

$$\begin{aligned} p_m^5D_{m-1}^2\partial _{m-1}^3\partial _{m-2}\partial _{m-3}. \end{aligned}$$
(29)

This could be a result of re-ordering (always taking the highest order terms), say,

$$\begin{aligned} D_{m-1}(p_m\partial _{m-2})D_{m-1}(p_m\partial _{m-1})^3(p_m\partial _{m-3}). \end{aligned}$$
(30)

In order that it comes into place, the lower order \(\partial _{m-2}\) and \(\partial _{m-3}\) must be originally \(\partial _{m-1}D_{m-1}\) and \(\partial _{m-1}D_{m-1}^2\). Thus the corresponding binomial expansion is

$$\begin{aligned} D_{m-1}(p_m\partial _{m-1}D_{m-1})D_{m-1}(p_m\partial _{m-1})^3(p_m\partial _{m-1}D_{m-1}^2), \end{aligned}$$
(31)

or

$$\begin{aligned} D_{m-1}(p_{m}\partial _{m-1})D_{m-1}^2(p_{m}\partial _{m-1})^4D_{m-1}^2, \end{aligned}$$

one of the many terms in \((D_{m-1}+p_m\partial _{m-1})^{10}\).

Since (30) has a one-to-one correspondence to (31) when I is fixed, the total number of terms of the form (29) is given by \(a_I^{(k)}\), as desired. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chan, H. The multiplier problem of the calculus of variations for scalar ordinary differential equations. Calc. Var. 57, 40 (2018). https://doi.org/10.1007/s00526-018-1302-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-018-1302-5

Mathematics Subject Classification

Navigation