Skip to main content

Neurohumoral and Autonomic Regulation of Blood Pressure

Pediatric Hypertension
  • 207 Accesses

Abstract

Interacting neural, hormonal, and metabolic mechanisms act locally and systemically to regulate cardiovascular function. This chapter discusses the basic physiological mechanisms of the neurohumoral and autonomic contributions to blood pressure regulation. Much that we will present about these mechanisms stems from studies in experimental animal models. Differential rates of maturation of these systems affect their ability to maintain blood pressure and delivery of oxygen and nutrients at specific times of life. This chapter outlines autonomic control of the fetal and postnatal cardiovascular system, particularly highlighting developmental changes in arterial baroreflex, cardiopulmonary reflex, and chemoreflex function. Additionally, humoral factors that act within the central and peripheral nervous system to influence sympathovagal balance will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abboud F, Thames M (1983) Interaction of cardiovascular reflexes in circulatory control. In: Shepherd JT, Abboud FM (eds) Handbook of physiology. Section 2, Vol III, Part 2. American Physiological Society, Bethesda, pp 675–753

    Google Scholar 

  • Alkon A, Boyce WT, Davis NV, Eskenazi B (2011) Developmental changes in autonomic nervous system resting and reactivity measures in Latino children from 6 to 60 months of age. J Dev Behav Pediatr 32(9):668–677. doi:10.1097/DBP.0b013e3182331fa6

    Article  PubMed  Google Scholar 

  • Alper RH, Jacob JH, Brody MJ (1987) Regulation of arterial pressure lability in rats with chronic sinoaortic deafferentation. Am J Phys 253:H466–H474

    CAS  Google Scholar 

  • Andresen MC (1984) Short and long-term determinants of baroreceptor function in aged normotensive and spontaneously hypertensive rats. Circ Res 54:750–759

    Article  CAS  PubMed  Google Scholar 

  • Andriessen P, Oetomo SB, Peters C, Vermeulen B, Wijn PF, Blanco CE (2005) Baroreceptor reflex sensitivity in human neonates: the effect of postmenstrual age. J Physiol 568(Pt 1):333–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anwar MA, Schwab M, Poston L, Nathanielsz PW (1999) Betamethasone-mediated vascular dysfunction and changes in hematological profile in the ovine fetus. Am J Phys 276:H1137–H1143

    CAS  Google Scholar 

  • Assali NS, Brinkman CR, Wood R Jr, Danavino A, Nuwayhid B (1978) Ontogenesis of the autonomic control of cardiovascular function in the sheep. In: Longo LD, Reneau DD (eds) Fetal and newborn cardiovascular physiology. Garland STPM Press, New York, pp 47–91

    Google Scholar 

  • Baker DG, Coleridge HM, Coleridge JCG (1979) Vagal afferent C fibers from the ventricle. In: Hainsworth R, Kidd C, Linden RJ (eds) Cardiac receptors. Cambridge University Press, Cambridge, p 117

    Google Scholar 

  • Barres C, Lewis SJ, Jacob HJ, Brody MJ (1992) Arterial pressure lability and renal sympathetic nerve activity are disassociated in SAD rats. Am J Phys 263:R639–R646

    CAS  Google Scholar 

  • Bauer DJ (1939) Vagal reflexes appearing in the rabbit at different ages. J Physiol 95:187–202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bennet L, Rossenrode S, Gunning MI, Gluckman PD, Gunn AJ (1999) The cardiovascular and cerebrovascular responses of the immature fetal sheep to acute umbilical cord occlusion. J Physiol 517(Pt 1):247–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berecek KH, Swords BH (1990) Central role for vasopressin in cardiovascular regulation and the pathogenesis of hypertension. Hypertension 16:213–224

    Article  CAS  PubMed  Google Scholar 

  • Biscoe TJ, Purves MJ, Sampson SR (1969) Types of nervous activity which may be recorded from the carotid sinus nerve in the sheep foetus. J Physiol 202:1–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bishop VS, Haywood JR (1991) Hormonal control of cardiovascular reflexes. In: Zucker IH, Gilmore JP (eds) Reflex control of the circulation. CRC Press, Boca Raton, pp 253–271

    Google Scholar 

  • Bishop VS, Hasser EM, Nair UC (1987) Baroreflex control of renal nerve activity in conscious animals. Circ Res 61:I76–I81

    CAS  PubMed  Google Scholar 

  • Blanco CE, Dawes GS, Hanson MA, McCooke HB (1984) The response to hypoxia of arterial chemoreceptors in fetal sheep and newborn lambs. J Physiol 351:25–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blanco CE, Dawes GS, Hanson MA, McCooke HB (1988a) Carotid baroreceptors in fetal and newborn sheep. Pediatr Res 24:342–346

    Article  CAS  PubMed  Google Scholar 

  • Blanco CE, Hanson MA, McCooke HB (1988b) Effects on carotid chemoreceptor resetting of pulmonary ventilation in the fetal lamb in utero. J Dev Physiol 10(2):167–174

    CAS  PubMed  Google Scholar 

  • Booth LC, Malpas SC, Barrett CJ, Guild SJ, Gunn AJ, Bennet L (2009) Is baroreflex control of sympathetic activity and heart rate active in the preterm fetal sheep? Am J Physiol Regul Integr Comp Physiol 296(3):R603–R609

    Article  CAS  PubMed  Google Scholar 

  • Booth LC, Bennet L, Guild SJ, Barrett CJ, May CN, Gunn AJ, Malpas SC (2011a) Maturation-related changes in the pattern of renal sympathetic nerve activity from fetal life to adulthood. Exp Physiol 96(2):85–93. doi:10.1113/expphysiol.2010.055236

    Article  PubMed  Google Scholar 

  • Booth LC, Gunn AJ, Malpas SC, Barrett CJ, Davidson JO, Guild SJ, Bennet L (2011b) Baroreflex control of renal sympathetic nerve activity and heart rate in near-term fetal sheep. Exp Physiol 96(8):736–744. doi:10.1113/expphysiol.2011.058354

    Article  PubMed  Google Scholar 

  • Braga VA, Medeiros IA, Ribeiro TP, Franca-Silva MS, Botelho-Ono MS, Guimaraes DD (2011) Angiotensin-II-induced reactive oxygen species along the SFO-PVN-RVLM pathway: implications in neurogenic hypertension. Braz J Med Biol Res = Revista brasileira de pesquisas medicas e biologicas / Sociedade Brasileira de Biofisica [et al] 44(9):871–876

    CAS  Google Scholar 

  • Brinkman CRI, Ladner C, Weston P, Assali NS (1969) Baroreceptor functions in the fetal lamb. Am J Phys 217:1346–1351

    Google Scholar 

  • Buckley NM, Gootman PM, Gootman GD, Reddy LC, Weaver LC, Crane LA (1976) Age-dependent cardiovascular effects of afferent stimulation in neonatal pigs. Biol Neonate 30:268–279

    Article  Google Scholar 

  • Bunnemann B, Fuxe K, Ganten D (1993) The renin-angiotensin system in the brain: an update 1993. Reg Peptides 46:487–509

    Article  CAS  Google Scholar 

  • Carroll JL, Kim I (2005) Postnatal development of carotid body glomus cell O2 sensitivity. Respir Physiol Neurobiol 149(1–3):201–215

    Article  PubMed  Google Scholar 

  • Chapleau MW, Hajduczok G, Abboud FM (1988) Mechanisms of resetting of arterial baroreceptors: an overview. Am J Med Sci 295:327–334

    Article  CAS  PubMed  Google Scholar 

  • Chapleau MW, Hajduczok G, Abboud FM (1991) Resetting of the arterial baroreflex: peripheral and central mechanisms. In: Zucker IH, Gilmore JP (eds) Reflex control of the circulation. CRC Press, Boca Raton, pp 165–194

    Google Scholar 

  • Charkoudian N, Rabbitts JA (2009) Sympathetic neural mechanisms in human cardiovascular health and disease. Mayo Clin Proc 84(9):822–830. doi:10.1016/S0025-6196(11)60492-8

    Article  PubMed  PubMed Central  Google Scholar 

  • Charkoudian N, Joyner MJ, Johnson CP, Eisenach JH, Dietz NM, Wallin BG (2005) Balance between cardiac output and sympathetic nerve activity in resting humans: role in arterial pressure regulation. J Physiol 568(Pt 1):315–321. doi:10.1113/jphysiol.2005.090076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Charkoudian N, Joyner MJ, Sokolnicki LA, Johnson CP, Eisenach JH, Dietz NM, Curry TB, Wallin BG (2006) Vascular adrenergic responsiveness is inversely related to tonic activity of sympathetic vasoconstrictor nerves in humans. J Physiol 572(Pt 3):821–827. doi:10.1113/jphysiol.2005.104075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chatow U, Davidson S, Reichman BL, Akselrod S (1995) Development and maturation of the autonomic nervous system in premature and full-term infants using spectral analysis of heart rate fluctuations. Pediatr Res 37:294–302

    Article  CAS  PubMed  Google Scholar 

  • Chen H-G, Wood CE, Bell ME (1992) Reflex control of fetal arterial pressure and hormonal responses to slow hemorrhage. Am J Phys 262:H225–H233

    CAS  Google Scholar 

  • Chirico D, Liu J, Klentrou P, Shoemaker JK, O’Leary DD (2015) The effects of sex and pubertal maturation on cardiovagal baroreflex sensitivity. J Pediatr 167(5):1067–1073. doi:10.1016/j.jpeds.2015.07.054

    Article  PubMed  Google Scholar 

  • Chlorakos A, Langille BL, Adamson SL (1998) Cardiovascular responses attenuate with repeated NO synthesis inhibition in conscious fetal sheep. Am J Phys 274:H1472–H1480

    CAS  Google Scholar 

  • Clairambault J, Curzi-Dascalova L, Kauffmann F, Médigue C, Leffler C (1992) Heart rate variability in normal sleeping full-term and preterm neonates. Early Hum Dev 28:169–183

    Article  CAS  PubMed  Google Scholar 

  • Clapp JF, Szeto HH, Abrams R, Mann LI (1980) Physiologic variability and fetal electrocortical activity. Am J Obstet Gynecol 136:1045–1050

    Article  PubMed  Google Scholar 

  • Cohn HE, Sacks EJ, Heymann MA, Rudolph AM (1974) Cardiovascular responses to hypoxemia and acidemia in fetal lambs. Am J Obstet Gynecol 120(6):817–824

    Article  CAS  PubMed  Google Scholar 

  • Cornish KG, Barazanji MW, Yong T, Gilmore JP (1989) Volume expansion attenuates baroreflex sensitivity in the conscious nonhuman primate. Am J Phys 257:R595–R598

    CAS  Google Scholar 

  • Cozzolino D, Grandone A, Cittadini A, Palmiero G, Esposito G, De Bellis A, Furlan R, Perrotta S, Perrone L, Torella D, Miraglia Del Giudice E (2015) Subclinical myocardial dysfunction and cardiac autonomic dysregulation are closely associated in obese children and adolescents: the potential role of insulin resistance. PLoS One 10(4):e0123916. doi:10.1371/journal.pone.0123916

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dampney RA (2016) Central neural control of the cardiovascular system: current perspectives. Adv Physiol Educ 40(3):283–296. doi:10.1152/advan.00027.2016

    Article  PubMed  Google Scholar 

  • Dampney RA, Coleman MJ, Fontes MA, Hirooka Y, Horiuchi J, Li YW, Polson JW, Potts PD, Tagawa T (2002) Central mechanisms underlying short- and long-term regulation of the cardiovascular system. Clin Exp Pharmacol Physiol 29(4):261–268

    Article  CAS  PubMed  Google Scholar 

  • David M, Hirsch M, Karin J, Toledo E, Akselrod S (2007) An estimate of fetal autonomic state by time-frequency analysis of fetal heart rate variability. J Appl Physiol 102(3):1057–1064

    Article  PubMed  Google Scholar 

  • Dawes GS (1961) Changes in the circulation at birth. Br Med Bull 17:148–153

    Article  CAS  PubMed  Google Scholar 

  • Dawes GS, Johnston BM, Walker DW (1980) Relationship of arterial pressure and heart rate in fetal, new-born and adult sheep. J Physiol 309:405–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Derks JB, Giussani DA, Jenkins SL, Wentworth RA, Visser GHA, Padbury JF, Nathanielsz PW (1997) A comparative study of cardiovascular, endocrine and behavioural effects of betamethasone and dexamethasone administration to fetal sheep. J Physiol 499:217–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Docherty CC, Kalmar-Nagy J (2001) Development of fetal vascular responses to endothelin-1 and acetylcholine in the sheep. Am J Phys 280:R554–R562

    CAS  Google Scholar 

  • Docherty CC, Kalmar-Nagy J, Engelen M, Koenen SV, Nijland M, Kuc RE, Davenport AP, Nathanelsz PW (2001) Effect of in vivo fetal infusion of dexamethasone at 0.75 GA on fetal ovine resistance artery responses to ET-1. Am J Phys 281:R261–R268

    CAS  Google Scholar 

  • Dodt C, Keyser B, Molle M, Fehm HL, Elam M (2000) Acute suppression of muscle sympathetic nerve activity by hydrocortisone in humans. Hypertension 35:758–763

    Article  CAS  PubMed  Google Scholar 

  • Downing SE (1960) Baroreceptor reflexes in new-born rabbits. J Physiol 150:201–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ellsbury DL, Smith OJ, Segar JL (2000) Ablation of the paraventricular nucleus attenuates sympathoexcitation at birth. Pediatr Res 39:244A

    Google Scholar 

  • Ervin MG, Ross MG, Leake RD, Fisher DA (1992) V1 and V2-receptor contributions to ovine fetal renal and cardiovascular responses to vasopressin. Am J Phys 262:R636–R643

    CAS  Google Scholar 

  • Ervin MG, Padbury JF, Polk DH, Ikegami M, Berry LM, Jobe AH (2000) Antenatal glucocorticoids alter premature newborn lamb neuroendocrine and endocrine responses to hypoxia. Am J Phys 279:R830–R838

    CAS  Google Scholar 

  • Eyre EL, Duncan MJ, Birch SL, Fisher JP (2014) The influence of age and weight status on cardiac autonomic control in healthy children: a review. Auton Neurosci 186:8–21. doi:10.1016/j.autneu.2014.09.019

    Article  CAS  PubMed  Google Scholar 

  • Fifer WP, Greene M, Hurtado A, Myers MM (1999) Cardiorespiratory responses to bidirectional tilts in infants. Early Hum Dev 55(3):265–279

    Article  CAS  PubMed  Google Scholar 

  • Fitzgibbon LK, Coverdale NS, Phillips AA, Shoemaker JK, Klentrou P, Wade TJ, Cairney J, O’Leary DD (2012) The association between baroreflex sensitivity and blood pressure in children. Appl Physiol Nutr Metab 37(2):301–307. doi:10.1139/h11-163

    Article  PubMed  Google Scholar 

  • Fletcher AJW, McGarrigle HHG, Edwards CMB, Fowden AL (2002) Effects of low dose dexamethasone treatment on basal cardiovascular and endocrine function in fetal sheep during late gestation. J Physiol 545:649–660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fletcher AJ, Gardner DS, Edwards CM, Fowden AL, Giussani DA (2003) Cardiovascular and endocrine responses to acute hypoxaemia during and following dexamethasone infusion in the ovine fetus. J Physiol 549(Pt 1):271–287. doi:10.1113/jphysiol.2002.036418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fletcher AJ, Gardner DS, Edwards CM, Fowden AL, Giussani DA (2006) Development of the ovine fetal cardiovascular defense to hypoxemia towards full term. Am J Physiol Heart Circ Physiol 291(6):H3023–H3034

    Article  CAS  PubMed  Google Scholar 

  • Gai WP, Messenger JP, Yu YH, Gieroba ZJ, Blessing WW (1995) Nitric oxide-synthesising neurons in the central subnucleus of the nucleus tractus solitarius provide a major innervation of the rostral nucleus ambiguus in the rabbit. J Comp Neurol 357(3):348–361. doi:10.1002/cne.903570303

    Article  CAS  PubMed  Google Scholar 

  • Gardner DS, Fletcher JW, Bloomfield MR, Fowden AL, Giussani DA (2002) Effects of prevailing hypoxaemia, acidaemia or hypoglycaemia upon the cardiovascular, endocrine and metabolic responses to acute hypoxaemia in the ovine fetus. J Physiol 540:351–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gebber GL (1990) Central determinants of sympathetic nerve discharge. In: Loewy AD, Spyer KM (eds) Central regulation of autonomic function. Oxford University Press, New York, pp 126–144

    Google Scholar 

  • Genovesi S, Pieruzzi F, Giussani M, Tono V, Stella A, Porta A, Pagani M, Lucini D (2008) Analysis of heart period and arterial pressure variability in childhood hypertension: key role of baroreflex impairment. Hypertension 51(5):1289–1294. doi:10.1161/HYPERTENSIONAHA.107.109389

    Article  CAS  PubMed  Google Scholar 

  • Giussani DA, Spencer JAD, Moore PJ, Bennet L, Hanson MA (1993) Afferent and efferent components of the cardiovascular reflex responses to acute hypoxia in term fetal sheep. J Physiol 461:431–449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giussani DA, McGarrigle HH, Moore PJ, Bennet L, Spencer JA, Hanson MA (1994a) Carotid sinus nerve section and the increase in plasma cortisol during acute hypoxia in fetal sheep. J Physiol 477(Pt 1):75–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giussani DA, McGarrigle HHG, Spencer JAD, Moore PJ, Bennet L, Hanson MA (1994b) Effect of carotid denervation on plasma vasopressin levels during acute hypoxia in the late-gestation sheep fetus. J Physiol 477:81–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goetz KL, Madwed JB, Leadley RJJ (1991) Atrial receptors: reflex effects in quadrupeds. In: Reflex control of the circulation. CRC Press, Boca Raton, p 291

    Google Scholar 

  • Gomez RA, Meernik JG, Kuehl WD, Robillard JE (1984) Developmental aspects of the renal response to hemorrhage during fetal life. Pediatr Res 18:40–46

    CAS  PubMed  Google Scholar 

  • Gootman PM (1991) Developmental aspects of reflex control of the circulation. In: Zucker IH, Gilmore JP (eds) Reflex control of the circulation. CRC Press, Boca Raton, pp 965–1027

    Google Scholar 

  • Gootman PM, Buckley BJ, DiRusso SM, Gootman N, Yao AC, Pierce PE, Griswold PG, Epstein MD, Cohen HL, Nudel DB (1986) Age-related responses to stimulation of cardiopulmonary receptors in swine. Am J Phys 251:H748–H755

    CAS  Google Scholar 

  • Gournay V, Drouin E, Roze JC (2002) Development of baroreflex control of heart rate in preterm and full term infants. Arch Dis Child Fetal Neonatal Ed 86(3):F151–F154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grünfeld JP, Eloy L (1987) Glucocorticoids modulate vascular reactivity in the rat. Hypertension 10:608–618

    Article  PubMed  Google Scholar 

  • Grünfled JP (1990) Glucocorticoids in blood pressure regulation. Horm Res 34:111–113

    Article  Google Scholar 

  • Guillery EN, Robillard JE (1993) The renin-angiotensin system and blood pressure regulation during infancy and childhood. In: Rocchini AP (ed) The pediatric clinics of North America: childhood hypertension. W.B. Saunders Company, Philadelphia, pp 61–77

    Google Scholar 

  • Gunn TR, Johnston BM, Iwamoto HS, Fraser M, Nicholls MG, Gluckman PD (1985) Haemodynamic and catecholamine responses to hypothermia in the fetal sheep in utero. J Dev Physiol 7:241–249

    CAS  PubMed  Google Scholar 

  • Gunn TR, Ball KT, Power GG, Gluckman PD (1991) Factors influencing the initiation of nonshivering thermogenesis. Am J Obstet Gynecol 164:210–217

    Article  CAS  PubMed  Google Scholar 

  • Gupta BN, Thames MD (1983) Behavior of left ventricular mechanoreceptors with myelinated and nonmyelinated afferent vagal fibers in cats. Circ Res 52:291–301

    Article  CAS  PubMed  Google Scholar 

  • Hainsworth R (1991) Reflexes from the heart. Physiol Rev 71:617–658

    CAS  PubMed  Google Scholar 

  • Hajduczok G, Chapleau MW, Abboud FM (1991a) Increase in sympathetic activity with age: II. Role of impairment of cardiopulmonary baroreflexes. Am J Phys 260:H1121–H1127

    CAS  Google Scholar 

  • Hajduczok G, Chapleau MW, Johnson SL, Abboud FM (1991b) Increase in sympathetic activity with age. I. Role of impairment of arterial baroreflexes. Am J Phys 260:H1113–H1120

    CAS  Google Scholar 

  • Hanson MA (1997) Role of chemoreceptors in effects of chronic hypoxia. Comp Biochem Physiol 119A:695–703

    Google Scholar 

  • Hanson MA, Kumar P, Williams BA (1989) The effect of chronic hypoxia upon the development of respiratory chemoreflexes in the newborn kitten. J Physiol 411:563–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hart EC, Charkoudian N, Wallin BG, Curry TB, Eisenach JH, Joyner MJ (2009) Sex differences in sympathetic neural-hemodynamic balance: implications for human blood pressure regulation. Hypertension 53(3):571–576. doi:10.1161/HYPERTENSIONAHA.108.126391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Head GA, Mayorov DN (2001) Central angiotensin and baroreceptor control of circulation. Ann N Y Acad Sci 940:361–379

    Article  CAS  PubMed  Google Scholar 

  • Heesch CM, Abboud FM, Thames MD (1984) Acute resetting of carotid sinus baroreceptors. II. Possible involvement of electrogenic Na+ pump. Am J Phys 247:H833–H839

    CAS  Google Scholar 

  • Herrera EA, Kane AD, Hansell JA, Thakor AS, Allison BJ, Niu Y, Giussani DA (2012) A role for xanthine oxidase in the control of fetal cardiovascular function in late gestation sheep. J Physiol 590(Pt 8):1825–1837. doi:10.1113/jphysiol.2011.224576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hertzberg T, Lagercrantz H (1987) Postnatal sensitivity of the peripheral chemoreceptors in newborn infants. Arch Dis Child 62:1238–1241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hertzberg T, Hellstrom S, Holgert H, Lagercrantz H, Pequignot JM (1992) Ventilatory response to hyperoxia in newborn rats born in hypoxia – possible relationship to carotid body dopamine. J Physiol 456:645–654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hilton SM (1982) The defense-arousal system and its relevance for circulatory and respiratory control. J Exp Biol 100:159–174

    CAS  PubMed  Google Scholar 

  • Hirooka Y (2011) Oxidative stress in the cardiovascular center has a pivotal role in the sympathetic activation in hypertension. Hypertens Res 34(4):407–412. doi:10.1038/hr.2011.14

    Article  CAS  PubMed  Google Scholar 

  • Irion GL, Mack CE, Clark KE (1990) Fetal hemodynamic and fetoplacental vasopressin response to exogenous arginine vasopressin. Am J Obstet Gynecol 162:115–120

    Article  Google Scholar 

  • Ismay MJ, Lumbers ER, Stevens AD (1979) The action of angiotensin II on the baroreflex response of the conscious ewe and the conscious fetus. J Physiol 288:467–479

    CAS  PubMed  PubMed Central  Google Scholar 

  • Itskovitz J, LaGamma EF, Rudolph AM (1983) Baroreflex control of the circulation in chronically instrumented fetal lambs. Circ Res 52:589–596

    Article  CAS  PubMed  Google Scholar 

  • Iwamota HS, Rudolph AM (1979) Effects of endogenous angiotensin II on the fetal circulation. J Dev Physiol 1:283–293

    Google Scholar 

  • Iwamota HS, Rudolph AM, Mirkin BL, Keil LC (1983) Circulatory and humoral responses of sympathectomized fetal sheep to hypoxemia. Am J Phys 245:H267–H772

    Google Scholar 

  • Jensen A, Hanson MA (1995) Circulatory responses to acute asphyxia in intact and chemodenervated fetal sheep near term. Reprod Fertil Dev 7(5):1351–1359. doi:10.1071/Rd9951351

    Article  CAS  PubMed  Google Scholar 

  • Jensen A, Bamford OS, Dawes GS, Hofmeyr G, Parkes MJ (1986) Changes in organ blood flow between high and low voltage electrocortical activity in fetal sheep. J Dev Physiol 8:187–194

    CAS  PubMed  Google Scholar 

  • Jensen EC, Bennet L, Guild SJ, Booth LC, Stewart J, Gunn AJ (2009) The role of the neural sympathetic and parasympathetic systems in diurnal and sleep state-related cardiovascular rhythms in the late-gestation ovine fetus. Am J Physiol Regul Integr Comp Physiol 297(4):R998–R1008. doi:10.1152/ajpregu.90979.2008

    Article  CAS  PubMed  Google Scholar 

  • Jimbo M, Suzuki H, Ichikawa M, Kumagai K, Nishizawa M, Saruta T (1994) Role of nitric oxide in regulation of baroreceptor reflex. J Auton Nerv Syst 50:209–219

    Article  CAS  PubMed  Google Scholar 

  • Jones OW III, Cheung CY, Brace RA (1991) Dose-dependent effects of angiotensin II on the ovine fetal cardiovascular system. Am J Obstet Gynecol 165:1524–1533

    Article  CAS  PubMed  Google Scholar 

  • Jones PP, Shapiro LF, Keisling GA, Jordan J, Shannon JR, Quaife RA, Seals DR (2001) Altered autonomic support of arterial blood pressure with age in healthy men. Circulation 104(20):2424–2429

    Article  CAS  PubMed  Google Scholar 

  • Joyner MJ, Charkoudian N, Wallin BG (2010) Sympathetic nervous system and blood pressure in humans: individualized patterns of regulation and their implications. Hypertension 56(1):10–16. doi:10.1161/HYPERTENSIONAHA.109.140186

    Article  CAS  PubMed  Google Scholar 

  • Kane AD, Herrera EA, Hansell JA, Giussani DA (2012) Statin treatment depresses the fetal defence to acute hypoxia via increasing nitric oxide bioavailability. J Physiol 590(Pt 2):323–334. doi:10.1113/jphysiol.2011.217968

    Article  CAS  PubMed  Google Scholar 

  • Karin J, Hirsch M, Akselrod S (1993) An estimate of fetal autonomic state by spectral analysis of fetal heart rate fluctuations. Pediatr Res 34(2):134–138

    Article  CAS  PubMed  Google Scholar 

  • Kelly RT, Rose JC, Meis PJ, Hargrave BY, Morris M (1983) Vasopressin is important for restoring cardiovascular homeostasis in fetal lambs subjected to hemorrhage. Am J Obstet Gynecol 146:807–812

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Iwao H (2001) Molecular and cellular mechanisms of angiotensin II-mediated cardiovascular and renal diseases. Pharmacol Rev 52:11–34

    Google Scholar 

  • Koos BJ, Maeda T (2001) Adenosine A2A receptors mediate cardiovascular responses to hypoxia in fetal sheep. Am J Phys 280:H83–H89

    CAS  Google Scholar 

  • Koos BJ, Chau A, Ogunyemi D (1995) Adenosine mediates metabolic and cardiovascular responses to hypoxia in fetal sheep. J Physiol Lond 488:761–766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar P, Hanson MA (1989) Re-setting of the hypoxic sensitivity of aortic chemoreceptors in the new-born lamb. J Dev Physiol 11:199–206

    CAS  PubMed  Google Scholar 

  • Lagercrantz H, Bistoletti P (1973) Catecholamine release in the newborn at birth. Pediatr Res 11:889–893

    Article  Google Scholar 

  • Lenard Z, Studinger P, Mersich B, Kocsis L, Kollai M (2004) Maturation of cardiovagal autonomic function from childhood to young adult age. Circulation 110(16):2307–2312. doi:10.1161/01.CIR.0000145157.07881.A3

    Article  PubMed  Google Scholar 

  • Lin LH, Nitschke Dragon D, Jin J, Tian X, Chu Y, Sigmund C, Talman WT (2012) Decreased expression of neuronal nitric oxide synthase in the nucleus tractus solitarii inhibits sympathetically mediated baroreflex responses in rat. J Physiol 590(Pt 15):3545–3559. doi:10.1113/jphysiol.2012.237966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lohmeier TE, Iliescu R (2015) The baroreflex as a long-term controller of arterial pressure. Physiology (Bethesda) 30(2):148–158. doi:10.1152/physiol.00035.2014

    CAS  Google Scholar 

  • Lohmeier TE, Iliescu R, Dwyer TM, Irwin ED, Cates AW, Rossing MA (2010) Sustained suppression of sympathetic activity and arterial pressure during chronic activation of the carotid baroreflex. Am J Physiol Heart Circ Physiol 299(2):H402–H409. doi:10.1152/ajpheart.00372.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lucini D, de Giacomi G, Tosi F, Malacarne M, Respizzi S, Pagani M (2013) Altered cardiovascular autonomic regulation in overweight children engaged in regular physical activity. Heart 99(6):376–381. doi:10.1136/heartjnl-2012-302616

    Article  PubMed  Google Scholar 

  • Luk J, Ajaelo I, Wong V, Wong J, Chang D, Chou L, Reid IA (1993) Role of V1 receptors in the action of vasopressin on the baroreflex control of heart rate. Am J Phys 265:R524–R529

    CAS  Google Scholar 

  • Lumbers ER (1995) Functions of the renin-angiotensin system during development. Clin Exp Phamarcol Physiol 22:499–505

    Article  CAS  Google Scholar 

  • Ma SX, Fang Q, Morgan B, Ross MG, Chao CR (2003) Cardiovascular regulation and expressions of NO synthase-tyrosine hydroxylase in nucleus tractus solitarius of ovine fetus. Am J Physiol Heart Circ Physiol 284(4):H1057–H1063

    Article  CAS  PubMed  Google Scholar 

  • Macefield VG, Williamson PM, Wilson LR, Kelly JJ, Gandevia SC, Whitworth JA (1998) Muscle sympathetic vasoconstrictor activity in hydrocortisone-induced hypertension in humans. Blood Press 7:215–222

    Article  CAS  PubMed  Google Scholar 

  • Mann LI, Duchin S, Weiss RR (1974) Fetal EEG sleep stages and physiologic variability. Am J Obstet Gynecol 119:533–538

    Article  CAS  PubMed  Google Scholar 

  • Matsuda T, Bates JN, Lewis SJ, Abboud FM, Chapleau MW (1995) Modulation of baroreceptor activity by nitric oxide and S-nitrosocysteine. Circ Res 76(3):426–433

    Article  CAS  PubMed  Google Scholar 

  • Mazurak N, Sauer H, Weimer K, Dammann D, Zipfel S, Horing B, Muth ER, Teufel M, Enck P, Mack I (2016) Effect of a weight reduction program on baseline and stress-induced heart rate variability in children with obesity. Obesity (Silver Spring) 24(2):439–445. doi:10.1002/oby.21355

    Article  Google Scholar 

  • Mazursky JE, Segar JL, Nuyt A-M, Smith BA, Robillard JE (1996) Regulation of renal sympathetic nerve activity at birth. Am J Phys 270:R86–R93

    CAS  Google Scholar 

  • Mazursky JE, Birkett CL, Bedell KA, Ben-Haim SA, Segar JL (1998) Development of baroreflex influences on heart rate variability in preterm infants. Early Hum Dev 53:37–52

    Article  CAS  PubMed  Google Scholar 

  • McDonald TJ, Le WW, Hoffman GE (2000) Brainstem catecholaminergic neurons activated by hypoxemia express GR and are coordinately activated with fetal sheep hypothalamic paraventricular CRH neurons. Brain Res 885:70–78

    Article  CAS  PubMed  Google Scholar 

  • Merrill DC, Segar JL, McWeeny OJ, Smith BA, Robillard JE (1994) Cardiopulmonary and arterial baroreflex responses to acute volume expansion during fetal and postnatal development. Am J Phys 267:H1467–H1475

    CAS  Google Scholar 

  • Merrill DC, McWeeny OJ, Segar JL, Robillard JE (1995) Impairment of cardiopulmonary baroreflexes during the newborn period. Am J Phys 268:H134–H1351

    Google Scholar 

  • Merrill DC, Segar JL, McWeeny OJ, Robillard JE (1999) Sympathetic responses to cardiopulmonary vagal afferent stimulation during development. Am J Phys 277:H1311–H1316

    CAS  Google Scholar 

  • Mills E, Smith PG (1986) Mechanisms of adrenergic control of blood pressure in developing rats. Am J Phys 250(2 Pt 2):R188–R192

    CAS  Google Scholar 

  • Minisi AJ, Thames MD (1991) Reflexes from ventricular receptors with vagal afferents. In: Zucker IH, Gilmore JP (eds) Reflex control of the circulation. CRC Press, Boca Raton, p 359

    Google Scholar 

  • Minoura S, Gilbert RD (1986) Postnatal changes of cardiac function in lambs: effects of ganglionic block and afterload. J Dev Physiol 9:123–135

    Google Scholar 

  • Molnar J, Nijland M, Howe DC, Nathanelsz PW (2002) Evidence for microvascular dysfunction after prenatal dexamethasone at 0.7, 0.75, and 0.8 gestation in sheep. Am J Phys 283:R561–R567

    CAS  Google Scholar 

  • Myers DA, Robertshaw D, Nathanielsz PW (1990) Effect of bilateral splanchnic nerve section on adrenal function in the ovine fetus. Endocrinology 127(5):2328–2335. doi:10.1210/endo-127-5-2328

    Article  CAS  PubMed  Google Scholar 

  • Myers MM, Gomez-Gribben E, Smith KS, Tseng A, Fifer WP (2006) Developmental changes in infant heart rate responses to head-up tilting. Acta Paediatr 95(1):77–81

    Article  PubMed  Google Scholar 

  • Ng PC, Lee CH, Bnur FL, Chan IH, Lee AW, Wong E, Chan HB, Lam CW, Lee BS, Fok TF (2006) A double-blind, randomized, controlled study of a “stress dose” of hydrocortisone for rescue treatment of refractory hypotension in preterm infants. Pediatrics 117(2):367–375

    Article  PubMed  Google Scholar 

  • Nuwayhid B, Brinkman CR, Bevan JA, Assali NS (1975) Development of autonomic control of fetal circulation. Am J Phys 228:237–344

    Google Scholar 

  • Nuyt A-M, Segar JL, Holley AT, O’Mara MS, Chapleau MW, Robillard JE (1996) Arginine vasopressin modulation of arterial baroreflex responses in fetal and newborn sheep. Am J Phys 271:R1643–R1653

    CAS  Google Scholar 

  • O’Connor SJ, Ousey JC, Gardner DS, Fowden AL, Giussani DA (2006) Development of baroreflex function and hind limb vascular reactivity in the horse fetus. J Physiol 572(Pt 1):155–164

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • O’Mara MS, Merrill DC, McWeeny OJ, Robillard JE (1995) Ontogeny and regulation of arterial and cardiopulmonary baroreflex control of renal sympathetic nerve activity (RSNA) in response to hypotensive (NH) and hypotensive hemorrhage (HH) postnatally. Pediatr Res 37:31A

    Article  Google Scholar 

  • Ogundipe OA, Kullama LK, Stein H, Nijland MJ, Ervin G, Padbury J, Ross MG (1993) Fetal endocrine and renal responses to in utero ventilation and umbilical cord occlusion. Am J Obstet Gynecol 169:1479–1486

    Article  CAS  PubMed  Google Scholar 

  • Padbury JF, Martinez AM (1988) Sympathoadrenal system activity at birth: integration of postnatal adaptation. Sem Perinatal 12:163–172

    CAS  Google Scholar 

  • Padbury JF, Diakomanolis ES, Hobel CJ, Perlman A, Fisher DA (1981) Neonatal adaptation: sympatho-adrenal response to umbilical cord cutting. Pediatr Res 15:1483–1487

    Article  CAS  PubMed  Google Scholar 

  • Padbury JF, Polk DH, Ervin G, Berry LM, Ikegami M, Jobe AH (1995) Postnatal cardiovascular and metabolic responses to a single intramuscular dose of betamethasone in fetal sheep born prematurely by cesarean section. Pediatr Res 38:709–715

    Article  CAS  PubMed  Google Scholar 

  • Parer JT (1984) The effect of atropine on heart rate and oxygen consumption of the hypoxic fetus. Am J Obstet Gynecol 148(8):1118–1122

    Article  CAS  PubMed  Google Scholar 

  • Persson PB, Ehmke H, Kirchheim HR (1989) Cardiopulmonary-arterial baroreceptor interaction in control of blood pressure. NIPS 4:56–59

    Google Scholar 

  • Picton-Warlow CG, Mayer FE (1970) Cardiovascular responses to postural changes in the neonate. Arch Dis Child 45:354–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ponte J, Purves MJ (1973) Types of afferent nervous activity which may be measured in the vagus nerve of the sheep foetus. J Physiol 229:51–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prabhakar NR, Kumar GK, Peng YJ (2012) Sympatho-adrenal activation by chronic intermittent hypoxia. J Appl Physiol. doi:10.1152/japplphysiol.00444.2012

    PubMed Central  Google Scholar 

  • Provencher PH, Saltis J, Funder JW (1995) Glucocorticoids but not mineralocorticoids modulate endothelin-1 and angiotensin II binding in SHR vascular smooth muscle cells. J Steroid Biochem Mol Biol 52:219–225

    Article  CAS  PubMed  Google Scholar 

  • Raff H, Kane CW, Wood CE (1991) Arginine vasopressin responses to hypoxia and hypercapnia in late-gestation fetal sheep. Am J Phys 260:R1077–R1081

    CAS  Google Scholar 

  • Reid IA (1992) Interactions between ANG II, sympathetic nervous system and baroreceptor reflex in regulation of blood pressure. Am J Phys 262:E763–E778

    CAS  Google Scholar 

  • Reid DL, Jensen A, Phernetton TM, Rankin JHG (1990) Relationship between plasma catecholamine levels and electrocortical state in the mature fetal lamb. J Dev Physiol 13:75–79

    CAS  PubMed  Google Scholar 

  • Richardson BS, Patrick JE, Abduljabbar H (1985) Cerebral oxidative metabolism in the fetal lamb: relationship to electrocortical state. Am J Obstet Gynecol 153:426–431

    Article  CAS  PubMed  Google Scholar 

  • Riquelme RA, Llanos JA, McGarrigle HH, Sanhueza EM, Hanson MA, Giussani DA (1998) Chemoreflex contribution to adrenocortical function during acute hypoxemia in the llama fetus at 0.6 to 0.7 of gestation. Endocrinology 139(5):2564–2570. doi:10.1210/endo.139.5.6010

    Article  CAS  PubMed  Google Scholar 

  • Robillard JE, Weitzman RE, Fisher DA, Smith FG Jr (1979) The dynamics of vasopressin release and blood volume regulation during fetal hemorrhage in the lamb fetus. Pediatr Res 13:606–610

    Article  CAS  PubMed  Google Scholar 

  • Robillard JE, Gomez RA, VanOrden D, Smith FG Jr (1982) Comparison of the adrenal and renal responses to angiotensin II in fetal lambs and adult sheep. Circ Res 50:140–147

    Article  CAS  PubMed  Google Scholar 

  • Robillard JE, Weismann DN, Gomez RA, Ayres NA, Lawton WJ, VanOrden DE (1983) Renal and adrenal responses to converting-enzyme inhibition in fetal and newborn life. Am J Phys 244:R249–R256

    CAS  Google Scholar 

  • Robillard JE, Nakamura KT, DiBona GF (1986) Effects of renal denervation on renal responses to hypoxemia in fetal lambs. Am J Phys 250(2 Pt 2):F294–F301

    CAS  Google Scholar 

  • Rossi NF, Maliszewska-Scislo M, Chen H, Black SM, Sharma S, Ravikov R, Augustyniak RA (2010) Neuronal nitric oxide synthase within paraventricular nucleus: blood pressure and baroreflex in two-kidney, one-clip hypertensive rats. Exp Physiol 95(8):845–857. doi:10.1113/expphysiol.2009.051789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruijtenbeek K, LeNoble FA, Janssen GM, Kessels CG, Fazzi GE, Blanco CE, De Mey JG (2000) Chronic hypoxia stimulates periarterial sympathetic nerve development in chicken embryo. Circulation 102:2892–2897

    Article  CAS  PubMed  Google Scholar 

  • Sanhueza EM, Johansen-Bibby AA, Fletcher AJ, Riquelme RA, Daniels AJ, Seron-Ferre M, Gaete CR, Carrasco JE, Llanos AJ, Giussani DA (2003) The role of neuropeptide Y in the ovine fetal cardiovascular response to reduced oxygenation. J Physiol 546(Pt 3):891–901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanhueza EM, Riquelme RA, Herrera EA, Giussani DA, Blanco CE, Hanson MA, Llanos AJ (2005) Vasodilator tone in the llama fetus: the role of nitric oxide during normoxemia and hypoxemia. Am J Physiol Regul Integr Comp Physiol 289(3):R776–R783

    Article  CAS  PubMed  Google Scholar 

  • Sato A, Suzuki H, Iwaita Y, Nakazato Y, Kato H, Saruta T (1992) Potentiation of inositol trisphosphate production by dexamethasone. Hypertension 19:109–115

    Article  CAS  PubMed  Google Scholar 

  • Schneider U, Schleussner E, Fiedler A, Jaekel S, Liehr M, Haueisen J, Hoyer D (2009) Fetal heart rate variability reveals differential dynamics in the intrauterine development of the sympathetic and parasympathetic branches of the autonomic nervous system. Physiol Meas 30(2):215–226

    Article  CAS  PubMed  Google Scholar 

  • Scroop GC, Marker JD, Stankewytsch B, Seamark RF (1986) Angiotensin I and II in the assessment of baroreceptor function in fetal and neonatal sheep. J Dev Physiol 8:123–137

    CAS  PubMed  Google Scholar 

  • Segar JL, Hajduczok G, Smith BA, Robillard JE (1992) Ontogeny of baroreflex control of renal sympathetic nerve activity and heart rate. Am J Phys 263:H1819–H1826

    CAS  Google Scholar 

  • Segar JL, Merrill DC, Smith BA, Robillard JE (1994a) Role of endogenous angiotensin II on resetting of the arterial baroreflex during development. Am J Phys 266:H52–H59

    CAS  Google Scholar 

  • Segar JL, Mazursky JE, Robillard JE (1994b) Changes in ovine renal sympathetic nerve activity and baroreflex function at birth. Am J Phys 267:H1824–H1832

    CAS  Google Scholar 

  • Segar JL, Merrill DC, Smith BA, Robillard JE (1994c) Role of sympathetic activity in the generation of heart rate and arterial pressure variability in fetal sheep. Pediatr Res 35:250–254

    Article  CAS  PubMed  Google Scholar 

  • Segar JL, Minnick A, Nuyt A-M, Robillard JE (1995) Developmental changes in central vasopressin regulation of cardiovascular function. Pediatr Res 37:34A

    Article  Google Scholar 

  • Segar JL, Minnick A, Nuyt AM, Robillard JE (1997) Role of endogenous ANG II and AT1 receptors in regulating arterial baroreflex responses in newborn lambs. Am J Phys 272:R1862–R1873

    CAS  Google Scholar 

  • Segar JL, Lumbers ER, Nuyt AM, Smith OJ, Robillard JE (1998) Effect of antenatal glucocorticoids on sympathetic nerve activity at birth in preterm sheep. Am J Phys 274:R160–R167

    CAS  Google Scholar 

  • Segar JL, Smith OJ, Holley AT (1999) Mechano- and chemoreceptor modulation of renal sympathetic nerve activity at birth in fetal sheep. Am J Phys 276:R1295–R1301

    CAS  Google Scholar 

  • Segar JL, Bedell KA, Smith OJ (2001) Glucocorticoid modulation of cardiovascular and autonomic function in preterm lambs: role of ANG II. Am J Phys 280:R646–R654

    CAS  Google Scholar 

  • Segar JL, Van Natta T, Smith OJ (2002) Effects of fetal ovine adrenalectomy on sympathetic and baroreflex responses at birth. Am J Phys 283:R460–R467

    CAS  Google Scholar 

  • Semenza GL (2000) HIF-1: mediator of physiological and pathophysiological responses to hypoxia. J Appl Physiol 88:1474–1480

    CAS  PubMed  Google Scholar 

  • Seri I, Tan R, Evans J (2001) Cardiovascular effects of hydrocortisone in preterm infants with pressor-resistant hypotension. Pediatrics 107(5):1070–1074

    Article  CAS  PubMed  Google Scholar 

  • Shaltout HA, Rose JC, Figueroa JP, Chappell MC, Diz DI, Averill DB (2010) Acute AT(1)-receptor blockade reverses the hemodynamic and baroreflex impairment in adult sheep exposed to antenatal betamethasone. Am J Physiol Heart Circ Physiol 299(2):H541–H547. doi:10.1152/ajpheart.00100.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shaltout HA, Chappell MC, Rose JC, Diz DI (2011) Exaggerated sympathetic mediated responses to behavioral or pharmacological challenges following antenatal betamethasone exposure. Am J Phys Endocrinol Metab 300(6):E979–E985. doi:10.1152/ajpendo.00636.2010

    Article  CAS  Google Scholar 

  • Shaltout HA, Rose JC, Chappell MC, Diz DI (2012) Angiotensin-(1-7) deficiency and baroreflex impairment precede the antenatal betamethasone exposure-induced elevation in blood pressure. Hypertension 59(2):453–458. doi:10.1161/HYPERTENSIONAHA.111.185876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi L, Mao C, Thornton SN, Sun W, Wu J, Yao J, Xu Z (2005) Effects of intracerebroventricular losartan on angiotensin II-mediated pressor responses and c-fos expression in near-term ovine fetus. J Comp Neurol 493(4):571–579

    Article  CAS  PubMed  Google Scholar 

  • Shi L, Mao C, Zeng F, Hou J, Zhang H, Xu Z (2010) Central angiotensin I increases fetal AVP neuron activity and pressor responses. Am J Phys Endocrinol Metab 298(6):E1274–E1282. doi:10.1152/ajpendo.00060.2010

    Article  CAS  Google Scholar 

  • Shinebourne EA, Vapaavuori EK, Williams RL, Heymann MA, Rudolph AM (1972) Development of baroreflex activity in unanesthetized fetal and neonatal lambs. Circ Res 31:710–718

    Article  CAS  PubMed  Google Scholar 

  • Slotkin TA, Lappi SE, McCook EC, Tayyeb MI, Eylers JP, Seidler FJ (1992) Glucocorticoids and the development of neuronal function: effects of prenatal dexamethasone exposure on central noradrenergic activity. Biol Neonate 61:326–336

    Article  CAS  PubMed  Google Scholar 

  • Smith FG, Abu-Amarah I (1998) Renal denervation alters cardiovascular and endocrine responses to hemorrhage in conscious newborn lambs. Am J Phys 275:H285–H291

    CAS  Google Scholar 

  • Smith PM, Ferguson AV (2010) Circulating signals as critical regulators of autonomic state – central roles for the subfornical organ. Am J Physiol Regul Integr Comp Physiol 299(2):R405–R415. doi:10.1152/ajpregu.00103.2010

    Article  CAS  PubMed  Google Scholar 

  • Smith FG, Smith BA, Segar JL, Robillard JE (1991) Endocrine effects of ventilation, oxygenation and cord occlusion in near-term fetal sheep. J Dev Physiol 15:133–138

    CAS  PubMed  Google Scholar 

  • Smith F, Klinkefus J, Robillard J (1992) Effects on volume expansion on renal sympathetic nerve activity and cardiovascular and renal function in lambs. Am J Phys 262:R651–R658

    CAS  Google Scholar 

  • Spyer KM (1994) Central nervous mechanisms contributing to cardiovascular control. J Physiol 474:1–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stark RI, Daniel SS, Husain MK, Tropper PJ, James LS (1985) Cerebrospinal fluid and plasma vasopressin in the fetal lamb: basal concentration and the effect of hypoxia. Endocrinology 116:65–72

    Article  CAS  PubMed  Google Scholar 

  • Stark RI, Myers MM, Daniel SS, Garland M, Kim YI (1999) Gestational age related changes in cardiac dynamics of the fetal baboon. Early Hum Dev 53(3):219–237

    Article  CAS  PubMed  Google Scholar 

  • Stein HM, Oyama K, Martinez A, Chappell BA, Buhl E, Blount L, Padbury JF (1993) Effects of corticosteroids in preterm sheep on adaptation and sympathoadrenal mechanisms at birth. Am J Phys 264:E763–E769

    CAS  Google Scholar 

  • Sterni LM, Bamford OS, Tomares SM, Montrose MH, Carroll JL (1995) Developmental changes in intracellular Ca2+ response of carotid chemoreceptor cells to hypoxia. Am J Phys 268:L801–L808

    CAS  Google Scholar 

  • Szymonowicz W, Walker AM, Yu VY, Stewart ML, Cannata J, Cussen L (1990) Regional cerebral blood flow after hemorrhagic hypotension in the preterm, near-term, and newborn lamb. Pediatr Res 28(4):361–366

    Article  CAS  PubMed  Google Scholar 

  • Tabsh K, Nuwayhid B, Ushioda E, Erkkola R, Brinkman CR, Assali NS (1982) Circulatory effects of chemical sympathectomy in fetal, neonatal and adult sheep. Am J Phys 243:H113–H122

    CAS  Google Scholar 

  • Tanaka K, Chiba T (1994) Nitric oxide synthase containing neurons in the carotid body and sinus of the guinea pig. Microsc Res Tech 29(2):90–93. doi:10.1002/jemt.1070290205

    Article  CAS  PubMed  Google Scholar 

  • Tanaka H, Thulesius O, Borres M, Yamaguchi H, Mino M (1994) Blood pressure responses in Japanese and Swedish children in the supine and standing position. Eur Heart J 15(8):1011–1019

    Article  CAS  PubMed  Google Scholar 

  • Tangalakis T, Lumbers ER, Moritz KM, Towstoless MK, Wintour EM (1992) Effect of cortisol on blood pressure and vascular reactivity in the ovine fetus. Exp Physiol 77:709–717

    Article  CAS  PubMed  Google Scholar 

  • Thakor AS, Giussani DA (2009a) Effects of acute acidemia on the fetal cardiovascular defense to acute hypoxemia. Am J Physiol Regul Integr Comp Physiol 296(1):R90–R99

    Article  CAS  PubMed  Google Scholar 

  • Thakor AS, Giussani DA (2009b) Nitric oxide reduces vagal baroreflex sensitivity in the late gestation fetus. Pediatr Res 65(3):269–273. doi:10.1203/PDR.0b013e318193f134

    Article  CAS  PubMed  Google Scholar 

  • Thakor AS, Richter HG, Kane AD, Dunster C, Kelly FJ, Poston L, Giussani DA (2010) Redox modulation of the fetal cardiovascular defence to hypoxaemia. J Physiol 588(Pt 21):4235–4247. doi:10.1113/jphysiol.2010.196402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thames MD, Donald SE, Shepherd JT (1980) Stimulation of cardiac receptors with Veratrum alkaloids inhibits ADH secretion. Am J Phys 239:H784–H788

    CAS  Google Scholar 

  • Thoresen M, Cowan F, Walløe L (1991) Cardiovascular responses to tilting in healthy newborn babies. Early Hum Dev 26:213–222

    Article  CAS  PubMed  Google Scholar 

  • Togashi H, Yoshioka M, Tochihara M, Matsumoto M, Saito H (1990) Differential effects of hemorrhage on adrenal and renal nerve activity in anesthetized rats. Am J Phys 259:H1134–H1141

    CAS  Google Scholar 

  • Tomita H, Brace RA, Cheung CY, Longo LD (1985) Vasopressin dose-response effects on fetal vascular pressures, heart rate, and blood volume. Am J Phys 249:H974–H980

    CAS  Google Scholar 

  • Tomomatsu E, Nishi K (1982) Comparison of carotid sinus baroreceptor sensitivity in newborn and adult rabbits. Am J Phys 243:H546–H550

    CAS  Google Scholar 

  • Toney GM, Porter JP (1993) Effects of blockade of AT1 and AT2 receptors in brain on the central angiotensin II pressor response in conscious spontaneously hypertensive rats. Neuropharmacology 32:581–589

    Article  CAS  PubMed  Google Scholar 

  • Toubas PL, Silverman NH, Heymann MA, Rudolph AM (1981) Cardiovascular effects of acute hemorrhage in fetal lambs. Am J Phys 240:H45–H48

    CAS  Google Scholar 

  • Unger T, Rohmeiss P, Demmert G, Ganten D, Lang RE, Luft F (1987) Opposing cardiovascular effects of brain and plasma AVP: role of V1- and V2-AVP receptors. In: Buckley JP, Ferrario CM (eds) Brain peptides and catecholamines in cardiovascular regulation. Raven Press, New York, pp 393–401

    Google Scholar 

  • Unno N, Wong CH, Jenkins SL, Wentworth RA, Ding XY, Li C, Robertson SS, Smotherman WP, Nathanielsz PW (1999) Blood pressure and heart rate in the ovine fetus: ontogenic changes and effects of fetal adrenalectomy. Am J Phys 276:H248–H256

    CAS  Google Scholar 

  • Urbina EM, Bao W, Pickoff AS, Berenson GS (1998) Ethnic (black-white) contrasts in heart rate variability during cardiovascular reactivity testing in male adolescents with high and low blood pressure: the Bogalusa Heart Study. Am J Hypertens 11(2):196–202

    Article  CAS  PubMed  Google Scholar 

  • Van Bel F, Roman C, Iwamoto HS, Rudolph AM (1993) Sympathoadrenal, metabolic, and regional blood flow responses to cold in fetal sheep. Pediatr Res 34:47–50

    Article  PubMed  Google Scholar 

  • Vapaavouri EK, Shinebourne EA, Williams RL, Heymann MA, Rudolph AM (1973) Development of cardiovascular responses to autonomic blockade in intact fetal and neonatal lambs. Biol Neonate 22:177–188

    Article  CAS  PubMed  Google Scholar 

  • Vatner SF, Manders WT (1979) Depressed responsiveness of the carotid sinus reflex in conscious newborn animals. Am J Phys 237:H40–H43

    CAS  Google Scholar 

  • Victor RG, Thoren PN, Morgan DA, Mark AL (1989) Differential control of adrenal and renal sympathetic nerve activity during hemorrhagic hypertension in rats. Circ Res 64:686–694

    Article  CAS  PubMed  Google Scholar 

  • Wakatsuki A, Murata Y, Ninomoya Y, Masaoka N, Tyner JG, Kutty KK (1992) Physiologic baroreceptor activity in the fetal lamb. Am J Obstet Gynecol 167:820–827

    Article  CAS  PubMed  Google Scholar 

  • Waldman S, Krauss AN, Auld PAM (1979) Baroreceptors in preterm infants: their relationship to maturity and disease. Dev Med Child Neurol 21:714–722

    Article  CAS  PubMed  Google Scholar 

  • Walker AM, Cannata J, Dowling MH, Ritchie B, Maloney JE (1978) Sympathetic and parasympathetic control of heart rate in unanaesthetized fetal and newborn lambs. Biol Neonate 33:1350–1143

    Article  Google Scholar 

  • Wallerath T, Witte K, Schäfer SC, Schwarz PM, Prellwitz W, Wohlfart P, Kleinert H, Lehr HA, Lemmer B, Förstermann U (1999) Down-regulation of the expression of endothelial NO synthase is likely to contribute to glucocorticoid-mediated hypertension. PNAS 96:13357–13362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wallin BG, Kunimoto MM, Sellgren J (1993) Possible genetic influence on the strength of human muscle nerve sympathetic activity at rest. Hypertension 22(3):282–284

    Article  CAS  PubMed  Google Scholar 

  • Wassink G, Bennet L, Booth LC, Jensen EC, Wibbens B, Dean JM, Gunn AJ (2007) The ontogeny of hemodynamic responses to prolonged umbilical cord occlusion in fetal sheep. J Appl Physiol 103(4):1311–1317

    Article  PubMed  Google Scholar 

  • Weitzman RE, Fisher DA, Robillard J, Erenberg A, Kennedy R, Smith F (1978) Arginine vasopressin response to an osmotic stimulus in the fetal sheep. Pediatr Res 12:35–38

    Article  CAS  PubMed  Google Scholar 

  • Witcombe NB, Yiallourou SR, Sands SA, Walker AM, Horne RS (2012) Preterm birth alters the maturation of baroreflex sensitivity in sleeping infants. Pediatrics 129(1):e89–e96. doi:10.1542/peds.2011-1504

    Article  PubMed  Google Scholar 

  • Wood CE (1995) Baroreflex and chemoreflex control of fetal hormone secretion. Reprod Fertil Dev 7:479–489

    Article  CAS  PubMed  Google Scholar 

  • Wood CE, Chen HG (1989) Acidemia stimulates ACTH, vasopressin, and heart rate responses in fetal sheep. Am J Phys 257:R344–R349

    CAS  Google Scholar 

  • Wood CE, Chen H-G, Bell ME (1989) Role of vagosympathetic fibers in the control of adrenocorticotropic hormone, vasopressin, and renin responses to hemorrhage in fetal sheep. Circ Res 64:515–523

    Article  CAS  PubMed  Google Scholar 

  • Wood CE, Chen GF, Keller-Wood M (2005) Expression of nitric oxide synthase isoforms is reduced in late-gestation ovine fetal brainstem. Am J Physiol Regul Integr Comp Physiol 289(2):R613–R619. doi:10.1152/ajpregu.00722.2004

    Article  CAS  PubMed  Google Scholar 

  • Woods JR, Dandavino A, Murayama K, Brinkman CR, Assali NS (1977) Autonomic control of cardiovascular functions during neonatal development and in adult sheep. Circ Res 40:401–407

    Article  CAS  PubMed  Google Scholar 

  • Xu Z, Shi L, Hu F, White R, Stewart L, Yao J (2003) In utero development of central ANG-stimulated pressor response and hypothalamic fos expression. Brain Res Dev Brain Res 145(2):169–176

    Article  CAS  PubMed  Google Scholar 

  • Xu Z, Shi L, Yao J (2004) Central angiotensin II-induced pressor responses and neural activity in utero and hypothalamic angiotensin receptors in preterm ovine fetus. Am J Physiol Heart Circ Physiol 286(4):H1507–H1514

    Article  CAS  PubMed  Google Scholar 

  • Yamanaka Y, Honma K (2006) Cardiovascular autonomic nervous response to postural change in 610 healthy Japanese subjects in relation to age. Auton Neurosci 124(1–2):125–131. doi:10.1016/j.autneu.2005.12.008

    Article  PubMed  Google Scholar 

  • Yardly RW, Bowes G, Wilkinson M, Cannata JP, Maloney JE, Ritchie BC, Walker AM (1983) Increased arterial pressure variability after arterial baroreceptor denervation in fetal lambs. Circ Res 52:580–588

    Article  Google Scholar 

  • Yiallourou SR, Sands SA, Walker AM, Horne RS (2011) Baroreflex sensitivity during sleep in infants: impact of sleeping position and sleep state. Sleep 34(6):725–732. doi:10.5665/SLEEP.1036

    Article  PubMed  PubMed Central  Google Scholar 

  • Yiallourou SR, Sands SA, Walker AM, Horne RS (2012) Maturation of heart rate and blood pressure variability during sleep in term-born infants. Sleep 35(2):177–186. doi:10.5665/sleep.1616

    PubMed  PubMed Central  Google Scholar 

  • Yiallourou SR, Witcombe NB, Sands SA, Walker AM, Horne RS (2013) The development of autonomic cardiovascular control is altered by preterm birth. Early Hum Dev 89(3):145–152. doi:10.1016/j.earlhumdev.2012.09.009

    Article  PubMed  Google Scholar 

  • Young M (1966) Responses of the systemic circulation of the new-born infant. Br Med Bull 22:70–72

    Article  CAS  PubMed  Google Scholar 

  • Yu ZY, Lumbers ER (2000) Measurement of baroreceptor-mediated effects on heart rate variability in fetal sheep. Pediatr Res 47:233–239

    Article  CAS  PubMed  Google Scholar 

  • Yu ZY, Lumbers ER, Simonetta G (2002) The cardiovascular and renal effects of acute and chronic inhibition of nitric oxide production in fetal sheep. Exp Physiol 87:343–351

    Article  CAS  PubMed  Google Scholar 

  • Zanzinger J, Czachurski J (2000) Chronic oxidative stress in the RVLM modulates sympathetic control of circulation in pigs. Pflugers Arch 439(4):489–494. doi:10.1007/s004249900204

    Article  CAS  PubMed  Google Scholar 

  • Zavodna E, Honzikova N, Hrstkova H, Novakova Z, Moudr J, Jira M, Fiser B (2006) Can we detect the development of baroreflex sensitivity in humans between 11 and 20 years of age? Can J Physiol Pharmacol 84(12):1275–1283. doi:10.1139/y06-060

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Han Z, Zhang X, Du S, Liu AD, Holmberg L, Li X, Lin J, Xiong Z, Gai Y, Yang J, Liu P, Tang C, Du J, Jin H (2015) A cross-sectional study on upright heart rate and BP changing characteristics: basic data for establishing diagnosis of postural orthostatic tachycardia syndrome and orthostatic hypertension. BMJ Open 5(6):e007356. doi:10.1136/bmjopen-2014-007356

    Article  PubMed  PubMed Central  Google Scholar 

  • Zoccal DB, Simms AE, Bonagamba LG, Braga VA, Pickering AE, Paton JF, Machado BH (2008) Increased sympathetic outflow in juvenile rats submitted to chronic intermittent hypoxia correlates with enhanced expiratory activity. J Physiol 586(13):3253–3265. doi:10.1113/jphysiol.2008.154187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zoccal DB, Bonagamba LG, Paton JF, Machado BH (2009) Sympathetic-mediated hypertension of awake juvenile rats submitted to chronic intermittent hypoxia is not linked to baroreflex dysfunction. Exp Physiol 94(9):972–983. doi:10.1113/expphysiol.2009.048306

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey L. Segar .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Segar, J.L. (2017). Neurohumoral and Autonomic Regulation of Blood Pressure. In: Flynn, J., Ingelfinger, J., Redwine, K. (eds) Pediatric Hypertension. Springer, Cham. https://doi.org/10.1007/978-3-319-31420-4_1-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31420-4_1-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31420-4

  • Online ISBN: 978-3-319-31420-4

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Neurohumoral and Autonomic Regulation of Blood Pressure
    Published:
    03 August 2022

    DOI: https://doi.org/10.1007/978-3-319-31420-4_1-2

  2. Original

    Neurohumoral and Autonomic Regulation of Blood Pressure
    Published:
    03 March 2017

    DOI: https://doi.org/10.1007/978-3-319-31420-4_1-1