Skip to main content

Neurohumoral and Autonomic Regulation of Blood Pressure

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Pediatric Hypertension
  • 51 Accesses

Abstract

Maintenance of BP requires the coordinated regulation of many components that interact in an interdependent network that ultimately controls the main determinants of BP, cardiac output, peripheral resistance, and blood volume. Neurohumoral and autonomic mechanisms are key components of a complex network. The central nervous system, organized into multiple levels of integrative centers, regulates sympathetic activity and vasopressin release in response to nervous and humoral input. The autonomic system, by means of the efferent sympathetic and parasympathetic pathways, regulates heart rate, vasoconstriction, and activation of the renin-angiotensin-aldosterone system. Humoral components, angiotensin II, aldosterone, and atrial natriuretic peptides regulate vasoconstriction and sodium excretion. Short-term regulation of cardiac output and peripheral resistance is interconnected by autonomic nervous system reflexes with the intervention of baroreceptors. Mid-term control is achieved by the interplay between sympathetic nervous traffic, humoral systems, and the kidney, controlling vascular peripheral resistance and blood volume. The kidney, through both pressure-natriuresis and arteriolar mechanisms, as well as by flow-mediated vasodilatation and myogenic reactivity, participates broadly in the process. Finally, a circadian rhythm of BP levels is regulated by a clock mechanism driven by the suprachiasmatic nucleus, which is stimulated directly by light. Advances in molecular biology techniques and genetic experimental models continue to provide more precise information about these complex networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

ACE1:

Angiotensin-converting enzyme 1

ACE2:

Angiotensin-converting enzyme 2

ACh:

Acetylcholine

ADMA:

Asymmetric dimethylarginine

ALD:

Aldosterone

Ang I:

Angiotensin I

Ang I–7:

Angiotensin 1–7

Ang II:

Angiotensin II

Ang III:

Angiotensin III

Ang IV:

Angiotensin IV

AngIVr:

Angiotensin IV receptor

ANGN:

Angiotensinogen

ANP:

Atrial natriuretic peptide

ANS:

Autonomic nervous system

Apr:

Apelin receptor

AS:

Apelinergic system

AT1r:

AT1-receptor

AT2r:

AT2-receptor

BNP:

Brain natriuretic peptide

BP:

Blood pressure

CNP:

C-type natriuretic peptide

CNS:

Central nervous system

CV:

Circadian variability

CVLM:

Caudal ventrolateral medulla

DMV:

Dorsal motor nucleus of the vagus

eNOS:

Nitric oxide synthase

EP:

Epinephrine

ErB:

Endothelin receptor B

GABA:

Gamma-aminobutyric acid

ILM:

Intermediate lateral medulla

MCA4R:

Melanocortin

MR:

Mineralocorticoid receptor

NA:

Nucleus ambiguus

NEP:

Norepinephrine

NO :

Nitric oxide

NOX:

NADPH oxidase

NPRA :

Natriuretic peptide receptor A

NPRB:

Natriuretic peptide receptor B

NTS:

Nucleus of tractus solitarius

OVLT:

Organum vasculosum of the lamina terminalis

PRR:

Prorenin receptor

PSN:

Parasympathetic nucleus

PVN:

Paraventricular nucleus

RAAS:

Renin-angiotensin-aldosterone system

RGS:

Regulator of G protein signaling

RVLM:

Rostral ventrolateral medulla

SNA:

Sympathetic nervous activity

References

  • Allada R, Bass J (2021) Circadian mechanisms in medicine. N Engl J Med 384:550–561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amaya R, Pierides A, Tarbell JM (2015) The interaction between fluid wall shear stress and solid circumferential strain affects endothelial gene expression. PLoS One 10:e0129952. https://doi.org/10.1371/journal.pone.0129952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ames MK, Atkins CE, Pitt B (2019) The renin-angiotensin-aldosterone system and its suppression. J Vet Intern Med 33:363–382

    Article  PubMed  PubMed Central  Google Scholar 

  • Ana Lusch A, Leary R, Heidari E, Liss MA, Okhunov Z, Perez-Lanzac De Lorca A, Huang J, Wikenheiser J, Landman J (2014) Intrarenal and extrarenal autonomic nervous system redefined. J Urol 191:1060–1065

    Article  Google Scholar 

  • Azizi M, Sanghvi K, Saxena M, Gosse P, Reilly JP, Levy T, Rump LC, Persu A, Basile J, Bloch MJ, Daemen J, Lobo MD, Mahfoud F, Schmieder RE, Sharp ASP, Weber MA, Sapoval M, Fong P, Pathak A, Lantelme P, Hsi D, Bangalore S, Witkowski A, Weil J, Kably B, Barman NC, Reeve-Stoffer H, Coleman L, McClure CK, Kirtane AJ, RADIANCE-HTN Investigators (2021) Ultrasound renal denervation for hypertension resistant to a triple medication pill (RADIANCE-HTN TRIO): a randomised, multicentre, single-blind, sham-controlled trial. Lancet 397:2476–2486

    Article  CAS  PubMed  Google Scholar 

  • Bass J, Lazar MA (2016) Circadian time signatures of fitness and disease. Science 354:994–999

    Article  CAS  PubMed  Google Scholar 

  • Benarroch EE (2020) Physiology and pathophysiology of the autonomic nervous system. Continuum 26:12–24

    PubMed  Google Scholar 

  • Bie P, Evans RG (2017) Normotension, hypertension and body fluid regulation: brain and kidney. Acta Physiol 219:288–304

    Article  CAS  Google Scholar 

  • Bollag WB (2014) Regulation of aldosterone synthesis and secretion. Compr Physiol 4:1017–1055

    Article  PubMed  Google Scholar 

  • Briant LJ, Charkoudian N, Hart EC (2016) Sympathetic regulation of blood pressure in normotension and hypertension: when sex matters. Exp Physiol 101:219–229

    Article  CAS  PubMed  Google Scholar 

  • Brown CH, Ludwig M, Tasker JG, Stern JE (2020) Somato-dendritic vasopressin and oxytocin secretion in endocrine and autonomic regulation. J Neuroendocrinol 32(6):e12856. https://doi.org/10.1111/jne.12856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carey RM (2013) Newly discovered components and actions of the renin–angiotensin system. Hypertension 62:818–822

    Article  CAS  PubMed  Google Scholar 

  • Carmichael CY, Wainford RD (2015) Hypothalamic signaling mechanisms in hypertension. Curr Hypertens Rep 17:39–48

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Carnagarin R, Matthews V, Zaldivia MTK, Peter K, Schlaich MP (2019) The bidirectional interaction between the sympathetic nervous system and immune mechanisms in the pathogenesis of hypertension. Br J Pharmacol 176:1839–1852

    Article  CAS  PubMed  Google Scholar 

  • Chachaj A, Szuba A (2020) Skin lymphatic system in the pathogenesis of arterial hypertension – review and critique. Lymphology 53:99–108

    CAS  PubMed  Google Scholar 

  • Chapman FA, Nyimanu D, Maguire JJ, Davenport AP, Newby DE, Dhaun N (2021) The therapeutic potential of apelin in kidney disease. Nat Rev Nephrol 13:1–14. https://doi.org/10.1038/s41581-021-00461-z

    Article  CAS  Google Scholar 

  • Coote JH, Spyer KM (2018) Central control of autonomic function. Brain Neurosci Adv 13:2398212818812012. https://doi.org/10.1177/2398212818812012

    Article  Google Scholar 

  • Cosarderelioglu C, Nidadavolu LS, George CJ, Oh ES, Bennett DA, Walston JD, Abadir PM (2020) Brain renin-angiotensin system at the intersect of physical and cognitive frailty. Front Neurosci 14:586314. https://doi.org/10.3389/fnins.2020.586314

    Article  PubMed  PubMed Central  Google Scholar 

  • Costello HM, Gumz ML (2021) Circadian rhythm, clock genes, and hypertension: recent advances in hypertension. Hypertension 78:1185–1196

    Article  CAS  PubMed  Google Scholar 

  • Cutsforth-Gregory JK, Benarroch EE (2017) Nucleus of the solitary tract, medullary reflexes, and clinical implications. Neurology 88:1187–1196

    Article  PubMed  Google Scholar 

  • da Silva AA, do Carmo JM, Wang Z, Hall JE (2019) Melanocortin-4 receptors and sympathetic nervous system activation in hypertension. Curr Hypertens Rep 21:46–53

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dampney RA (2016) Central neural control of the cardiovascular system: current perspectives. Adv Physiol Educ 40:283–296

    Article  PubMed  Google Scholar 

  • Dibner C, Schibler U, Albrecht U (2010) The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu Rev Physiol 72:517–549

    Article  CAS  PubMed  Google Scholar 

  • Diz DI, Arnold AC, Nautiyal M, Isa K, Shaltout HA, Tallant EA (2011) Angiotensin peptides and central autonomic regulation. Curr Opin Pharmacol 11:131–137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • do Carmo JM, da Silva AA, Wang Z, Fang T, Aberdein N, Perez de Lara CE, Hall JE (2017) Role of the brain melanocortins in blood pressure regulation. Biochim Biophys Acta Mol Basis Dis 1863(10 Pt A):2508–2514

    Article  PubMed  CAS  Google Scholar 

  • dos Santos Moreira MC, Naves LM, Marques SM, Silva EF, Rebelo AC, Colombari E, Pedrino GR (2017) Neuronal circuits involved in osmotic challenges. Physiol Res 66:411–423

    Article  PubMed  Google Scholar 

  • Farzam K, Kidron A, Lakhkar AD (2021) Adrenergic drugs. In: StatPearls [Internet]. StatPearls Publishing, Treasure Island

    Google Scholar 

  • Franco V, Oparil S (2006) Salt sensitivity, a determinant of blood pressure, cardiovascular disease and survival. J Am Coll Nutr 25(3 Suppl):247S–255S

    Article  CAS  PubMed  Google Scholar 

  • Fry WM, Ferguson AV (2021) The subfornical organ and organum vasculosum of the lamina terminalis: critical roles in cardiovascular regulation and the control of fluid balance. Handb Clin Neurol 180:203–215

    Article  PubMed  Google Scholar 

  • Garamendi-Ruiz I, Gómez-Esteban JC (2019) Cardiovascular autonomic effects of vagus nerve stimulation. Clin Auton Res 29:183–194

    Article  PubMed  Google Scholar 

  • Gard PR (2008) Cognitive-enhancing effects of angiotensin IV. BMC Neurosci 9(Suppl 2):S15–S21

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ghali MGZ (2017a) The brainstem network controlling blood pressure: an important role for pressor sites in the caudal medulla and cervical spinal cord. J Hypertens 35:1938–1947

    Article  CAS  PubMed  Google Scholar 

  • Ghali MGZ (2017b) Role of the medullary lateral tegmental field in sympathetic control. J Integr Neurosci 16:189–208

    Article  PubMed  Google Scholar 

  • Goetze JP, Bruneau BG, Ramos HR, Ogawa T, de Bold MK, de Bold AJ (2020) Cardiac natriuretic peptides. Nat Rev Cardiol 17:698–717

    Article  CAS  PubMed  Google Scholar 

  • Guimond MO, Gallo-Payet N (2012) The angiotensin II type 2 receptor in brain functions: an update. Int J Hypertens 2012:351758. https://doi.org/10.1155/2012/351758

    Article  PubMed  PubMed Central  Google Scholar 

  • Gupta MD, Girish MP, Shah D, Rain M, Mehta V, Tyagi S, Trehan V, Pasha Q (2016) Biochemical and genetic role of apelin in essential hypertension and acute coronary syndrome. Int J Cardiol 15(223):374–378

    Article  Google Scholar 

  • Guyenet PG, Stornetta RL, Bayliss DA (2010) Central respiratory chemoreception. J Comp Neurol 518:3883–3906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guyton AC (1990) Long-term arterial pressure control: an analysis from animal experiments and computer and graphic models. Am J Physiol Regul Integr Comp Physiol 28:R865–R877

    Article  Google Scholar 

  • Guyton AC, Coleman TG, Granger HJ (1972) Circulation: overall regulation. Annu Rev Physiol 34:13–46

    Article  CAS  PubMed  Google Scholar 

  • Harrison DG, Coffman TM, Wilcox CS (2021) Pathophysiology of hypertension: the mosaic theory and beyond. Circ Res 128:847–863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hodes A, Lichtstein D (2014) Natriuretic hormones in brain function. Front Endocrinol 5:201. https://doi.org/10.3389/fendo.2014.00201

    Article  Google Scholar 

  • Hu Y, Chen M, Wang M, Li X (2021) Flow-mediated vasodilation through mechanosensitive G protein-coupled receptors in endothelial cells. Trends Cardiovasc Med S1050-1738(21):1–3. https://doi.org/10.1016/j.tcm.2020.12.010

    Article  CAS  Google Scholar 

  • Huber G, Schuster F, Raasch W (2017) Brain renin-angiotensin system in the pathophysiology of cardiovascular diseases. Pharmacol Res 125(Pt A):72–90

    Article  CAS  PubMed  Google Scholar 

  • Hussain M, Awan FR (2018) Hypertension regulating angiotensin peptides in the pathobiology of cardiovascular disease. Clin Exp Hypertens 40:344–352

    Article  CAS  PubMed  Google Scholar 

  • Iturriaga R, Alcayaga J, Chapleau MW, Somers VK (2021) Carotid body chemoreceptors: physiology, pathology, and implications for health and disease. Physiol Rev 101:1177–1235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson WF (2017) Potassium channels in regulation of vascular smooth muscle contraction and growth. Adv Pharmacol 78:89–144

    Article  CAS  PubMed  Google Scholar 

  • Jankovic A, Korac A, Buzadzic B, Stancic A, Otasevic V, Ferdinandy P et al (2017) Targeting the NO/superoxide ratio in adipose tissue: relevance to obesity and diabetes management. Br J Pharmacol 174:1570–1590

    Article  CAS  PubMed  Google Scholar 

  • Janssens P, Decuypere JP, Bammens B, Llorens-Cortes C, Vennekens R, Mekahli D (2021) The emerging role of the apelinergic system in kidney physiology and disease. Nephrol Dial Transplant 2021:gfab070. https://doi.org/10.1093/ndt/gfab070

    Article  Google Scholar 

  • Johnson AK, Zhang Z, Clayton SC, Beltz TG, Hurley SW, Thunhorst RL, Xue BL (2015) The roles of sensitization and neuroplasticity in the long-term regulation of blood pressure and hypertension. Am J Physiol Regul Integr Comp Physiol 309:R1309–R1325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karnik SS, Unal H, Kemp JR, Tirupula KC, Eguchi S, Vanderheyden PM, Thomas WG (2015) International Union of Basic and Clinical Pharmacology. XCIX. Angiotensin receptors: interpreters of pathophysiological angiotensinergic stimuli [corrected]. Pharmacol Rev 67:754–819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim K, Hong KS (2021) Transient receptor potential channel-dependent myogenic responsiveness in small-sized resistance arteries. J Exerc Rehabil 17:4–10

    Article  PubMed  PubMed Central  Google Scholar 

  • Koba S, Hanai E, Kumada N, Kataoka N, Nakamura K, Watanabe T (2018) Sympathoexcitation by hypothalamic paraventricular nucleus neurons projecting to the rostral ventrolateral medulla. J Physiol 596:4581–4595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kostov K (2021) The causal relationship between endothelin-1 and hypertension: focusing on endothelial dysfunction, arterial stiffness, vascular remodeling, and blood pressure regulation. Life 11:986–932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lauder L, Azizi M, Kirtane AJ, Böhm M, Mahfoud F (2020) Device-based therapies for arterial hypertension. Nat Rev Cardiol 17:614–628

    Article  PubMed  Google Scholar 

  • Lecarpentier Y, Schussler O, Hébert JL, Vallée A (2020) Molecular mechanisms underlying the circadian rhythm of blood pressure in normotensive subjects. Curr Hypertens Rep 22:50–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leenen FH (2014) Actions of circulating angiotensin II and aldosterone in the brain contributing to hypertension. Am J Hypertens 27:1024–1032

    Article  PubMed  Google Scholar 

  • Leenen FHH, Blaustein MP, Hamlyn JM (2017) Update on angiotensin II: new endocrine connections between the brain, adrenal glands and the cardiovascular system. Endocr Connect 6:R131–R145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lemmey HAL, Garland CJ, Dora KA (2020) Intrinsic regulation of microvascular tone by myoendothelial feedback circuits. Curr Top Membr 85:327–355

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Guo M, Lv X, Wang Z, Yang J, Li Y, Yu F, Wen X, Feng L, Zhou T (2021) Role of transient receptor potential vanilloid 4 in vascular function. Front Mol Biosci 8:677661. https://doi.org/10.3389/fmolb.2021.677661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Madhur MS, Elijovich F, Alexander MR, Pitzer A, Ishimwe J, Van Beusecum JP, Patrick DM, Smart CD, Kleyman TR, Kingery J, Peck RN, Laffer CL, Kirabo A (2021) Hypertension: do inflammation and immunity hold the key to solving this epidemic? Circ Res 128:908–933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahfoud F, Bloch MJ, Azizi M, Wang Y, Schmieder RE, Lobo MD, Sharp ASP, Daemen J, Basile J, Weber MA, Scicli AP, McClure CK, Kirtane AJ (2021) Changes in blood pressure after crossover to ultrasound renal denervation in patients initially treated with sham in the RADIANCE-HTN SOLO trial. EuroIntervention. https://doi.org/10.4244/EIJ-D-21-00295

  • Martinez D, Kline DD (2021) The role of astrocytes in the nucleus tractus solitarii in maintaining central control of autonomic function. Am J Physiol Regul Integr Comp Physiol 320:R418–R424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martínez AC, Pagán RM, Prieto D, Recio P, García-Sacristán A, Hernández M, Benedito S (2009) Modulation of noradrenergic neurotransmission in isolated rat radial artery. J Pharmacol Sci 111:299–311

    Article  PubMed  CAS  Google Scholar 

  • McDonough AA (2010) Mechanisms of proximal tubule sodium transport regulation that link extracellular fluid volume and blood pressure. Am J Physiol Regul Integr Comp Physiol 298:R851–R861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakagaki T, Hirooka Y, Matsukawa R, Nishihara M, Nakano M, Ito K, Hoka S, Sunagawa K (2012) Activation of mineralocorticoid receptors in the rostral ventrolateral medulla is involved in hypertensive mechanisms in stroke-prone spontaneously hypertensive rats. Hypertens Res 35:470–476

    Article  CAS  PubMed  Google Scholar 

  • O’Connor PM, Cowley AW Jr (2010) Modulation of pressure-natriuresis by renal medullary reactive oxygen species and nitric oxide. Curr Hypertens Rep 12:86–92

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Page IH (1949) Pathogenesis of arterial hypertension. J Am Med Assoc 140:451–458

    Article  CAS  PubMed  Google Scholar 

  • Page IH (1974) Arterial hypertension in retrospect. Circ Res 34:133–142

    Article  CAS  PubMed  Google Scholar 

  • Päivä H, Laakso J, Kähönen M, Turjanmaa V, Kööbi T, Majahalme S, Lehtimäki T, Ruokonen I, Laaksonen R (2006) Asymmetric dimethylarginine and hemodynamic regulation in middle-aged men. Metabolism 55:771–777

    Article  PubMed  CAS  Google Scholar 

  • Palmer LG, Schnermann J (2015) Integrated control of Na transport along the nephron. Clin J Am Soc Nephrol 10:e676–e687

    Article  CAS  Google Scholar 

  • Patke A, Young MW, Axelrod S (2020) Molecular mechanisms and physiological importance of circadian rhythms. Nat Rev Mol Cell Biol 21:67–84

    Article  CAS  PubMed  Google Scholar 

  • Pautz A, Li H, Kleinert H (2021) Regulation of NOS expression in vascular diseases. Front Biosci 26:85–101

    Article  CAS  Google Scholar 

  • Pittman QJ (2021) Vasopressin and central control of the cardiovascular system: a 40-year retrospective. J Neuroendocrinol 33:e13011. https://doi.org/10.1111/jne.13011

    Article  CAS  PubMed  Google Scholar 

  • Pluznick JL (2017) Microbial short-chain fatty acids and blood pressure regulation. Curr Hypertens Rep 19:25–30

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Poeggeler B, Robenek H, Pappolla MA (2021) Editorial. Pharmacology of L-arginine and L-arginine-rich food. Front Pharmacol 12:743788. https://doi.org/10.3389/fphar.2021.743788

    Article  PubMed  PubMed Central  Google Scholar 

  • Raizada MK, Joe B, Bryan NS, Chang EB, Dewhirst FE, Borisy GG, Galis ZS, Henderson W, Jose PA, Ketchum CJ, Lampe JW, Pepine CJ, Pluznick JL, Raj D, Seals DR, Gioscia-Ryan RA, Tang WHW, Oh YS (2017) Report of the National Heart, Lung, and Blood Institute Working Group on the role of microbiota in blood pressure regulation: current status and future directions. Hypertension 2017(70):479–485

    Article  CAS  Google Scholar 

  • Redon J, Lurbe E (2008) Nocturnal blood pressure versus nondipping pattern: what do they mean? Hypertension 51:41–42

    Article  CAS  PubMed  Google Scholar 

  • Roks AJ, Rodgers K, Walther T (2011) Effects of the renin angiotensin system on vasculogenesis-related progenitor cells. Curr Opin Pharmacol 11:162–174

    Article  CAS  PubMed  Google Scholar 

  • Sadowski J, Bądzyńska B (2020) Altered renal medullary blood flow: a key factor or a parallel event in control of sodium excretion and blood pressure? Clin Exp Pharmacol Physiol 47:1323–1332

    Article  CAS  PubMed  Google Scholar 

  • Shu Z, Wan J, Read RJ, Carrell RW, Zhou A (2021) Angiotensinogen and the modulation of blood pressure. Front Cardiovasc Med 8:645123. https://doi.org/10.3389/fcvm.2021.645123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shvetsova AA, Gaynullina DK, Tarasova OS, Schubert R (2021) Remodeling of arterial tone regulation in postnatal development: focus on smooth muscle cell potassium channels. Int J Mol Sci 22:5413–5425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Standish A, Enquist LW, Schwaber JS (1994) Innervation of the heart and its central medullary origin defined by viral tracing. Science 263:232–234

    Article  CAS  PubMed  Google Scholar 

  • Sumners C, Alleyne A, Rodriguez V, Pioquinto DJ, Ludin JA, Kar S, Winder Z, Ortiz Y, Liu M, Krause EG, Kloet AD (2020) Brain angiotensin type-1 and type-2 receptors: cellular locations under normal and hypertensive conditions. Hypertens Res 43:281–295

    Article  CAS  PubMed  Google Scholar 

  • Sztechman D, Czarzasta K, Cudnoch-Jedrzejewska A, Szczepanska-Sadowska E, Zera T (2018) Aldosterone and mineralocorticoid receptors in regulation of the cardiovascular system and pathological remodelling of the heart and arteries. J Physiol Pharmacol 69(6). https://doi.org/10.26402/jpp.2018.6.01

  • Tomiyama H, Saisu T, Yamashina A (2017) Measurement of flow-mediated vasodilatation. Int Heart J 58:158–162

    Article  PubMed  Google Scholar 

  • Tsikas D (2020) Urinary dimethylamine (DMA) and its precursor asymmetric dimethylarginine (ADMA) in clinical medicine, in the context of nitric oxide (NO) and beyond. J Clin Med 9:1843–1863

    Article  CAS  PubMed Central  Google Scholar 

  • Wiig H, Schröder A, Neuhofer W, Jantsch J, Kopp C, Karlsen TV, Boschmann M, Goss J, Bry M, Rakova N, Dahlmann A, Brenner S, Tenstad O, Nurmi H, Mervaala E, Wagner H, Beck FX, Müller DN, Kerjaschki D, Luft FC, Harrison DG, Alitalo K, Titze J (2013) Immune cells control skin lymphatic electrolyte homeostasis and blood pressure. J Clin Invest 123:2803–2815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang F, Chen H, Gao Y, An N, Li X, Pan X, Yang X, Tian L, Sun J, Xiong X, Xing Y (2020) Gut microbiota-derived short-chain fatty acids and hypertension: mechanism and treatment. Biomed Pharmacother 130:110503–110518

    Article  CAS  PubMed  Google Scholar 

  • Zanutto BS, Valentinuzzi ME, Segura ET (2010) Neural set point for the control of arterial pressure: role of the nucleus tractus solitarius. Biomed Eng Online 9:4–17

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Sun R, Jiang T, Yang G, Chen L (2021) Circadian blood pressure rhythm in cardiovascular and renal health and disease. Biomolecules 11:868–882

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Empar Lurbe .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Lurbe, E., Redon, J. (2022). Neurohumoral and Autonomic Regulation of Blood Pressure. In: Flynn, J.T., Ingelfinger, J.R., Brady, T. (eds) Pediatric Hypertension. Springer, Cham. https://doi.org/10.1007/978-3-319-31420-4_1-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31420-4_1-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31420-4

  • Online ISBN: 978-3-319-31420-4

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Neurohumoral and Autonomic Regulation of Blood Pressure
    Published:
    03 August 2022

    DOI: https://doi.org/10.1007/978-3-319-31420-4_1-2

  2. Original

    Neurohumoral and Autonomic Regulation of Blood Pressure
    Published:
    03 March 2017

    DOI: https://doi.org/10.1007/978-3-319-31420-4_1-1