Skip to main content

A MEMS Inertial Switch Based on Non-silicon Surface Micromachining Technology

  • Living reference work entry
  • First Online:
Micro Electro Mechanical Systems

Part of the book series: Micro/Nano Technologies ((MNT,volume 2))

Abstract

The inertial switch as a kind of passive electric device is also called shock sensor (G-sensor), acceleration switch, vibration threshold sensor, or G-switch. With the developments of semiconductor and integrated circuit technologies, especially, the MEMS-based inertial switches have been attracting much attention due to many advantages such as small size, lower costs, and large volume production. And they are widely used in many applications such as accessories, toys, the transportation of special goods, automotive electronics, remote monitoring (RMON), Internet of Things (IoT) fields, etc. In this chapter, the basic physical model and the working principle of MEMS-based inertial switch is presented firstly. Then the latest progress of the MEMS inertial switch is introduced. Subsequently, the MEMS inertial switch based on non-silicon surface micromachining technology is described in detail, including its design, simulation, fabrication, and characterization. In addition, the inertial microswitches with different sensitive directions are proposed and fabricated, including the triaxial inertial switch and omnidirectional sensitive ones. Finally, a simple application example of the fabricated MEMS inertial switch is also performed for potential vibration monitoring module and system applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Cai H, Ding G, Yang Z, Su Z, Zhou J, Wang H (2008a) Design, simulation and fabrication of a novel contact-enhanced MEMS inertial switch with a movable contact point. J Micromech Microeng 18:115033. (10pp)

    Article  Google Scholar 

  • Cai H, Yang Z, Ding G, Zhou Z (2008b) Design and simulation of a contact-enhanced MEMS inertial switch using Simulink and ANSYS. In: 1st international conference of the Chinese society of micro/nano technology, Beijing, vol 2008

    Google Scholar 

  • Cai H, Yang Z, Ding G, Wang H (2009) Development of a novel MEMS inertial switch with a compliant stationary electrode. IEEE Sensors J 9:801–808

    Article  Google Scholar 

  • Chen W, Yang Z, Wang Y, Ding G, Wang H, Zhao X (2014a) Influence of applied acceleration loads on contact time and threshold in an inertial microswitch with flexible contact-enhanced structure. Sensors Actuators A 216:7–18

    Article  Google Scholar 

  • Chen W, Wang Y, Zhang Y, Cheng P, Wang Y, Ding G, Zhao X, Yang Z (2014b) Fabrication of a novel contact-enhanced horizontal sensitive inertial micro-switch with electroplating nickel. Microelectron Eng 127:21–27

    Article  Google Scholar 

  • Chen W, Wang Y, Wang Y, Ding G, Wang H, Zhao X, Yang Z (2014c) A laterally-driven micromachined inertial switch with compliant cantilever beam as the stationary electrode for prolonging contact time. J Micromech Microeng 24:065020. (10pp)

    Article  Google Scholar 

  • Chen W, Wang Z, Wang Y, Yang Z, Ding G, Wang H, Zhao X (2014d) Tri-axial all-metal inertial microswitch with compliant stationary electrodes to prolong contact time. IET Micro Nano Lett 9:514–518

    Article  Google Scholar 

  • Chen W, Yang Z, Wang Y, Ding G, Wang H, Zhao X (2014e) Simulation, fabrication and characterization of an all-metal contact-enhanced triaxial inertial microswitch with low axial disturbance. Sensors and Actuators A 220:194–203

    Article  Google Scholar 

  • Chen W, Ding G, Wang Y, Wang H, Zhao X, Yang C, Yang Z (2014f) An all-metal passive threshold sensor for omni-directional vibration monitoring application. In: Proceedings of IEEE sensors 2014, Valencia, 2–5 Nov, vol 2014, pp 428–431

    Google Scholar 

  • Chen W, Wang Y, Wang Y, Yang Z, Ding G, Wang H, Zhao X (2015) Simulation and characterization of a laterally-driven inertial micro-switch. AIP Adv 041319:1–5

    Google Scholar 

  • Chen W, Yang Z, Wang Y, Ding G, Wang H, Zhao X (2016) Fabrication and characterization of a low-g inertial microswitch with flexible contact point and limit-block constraints. IEEE/ASME Trans Mechatron 21:963–972

    Article  Google Scholar 

  • Choi J, Lee JI, Eun Y, Kim M, Kim J (2011) Aligned carbon nanotube arrays for degradation-resistant intimate contact in micromechanical devices. Adv Mater 23:2231–2236

    Article  Google Scholar 

  • Currano LJ, Bauman S, Churaman W, Peckerar M, Wienke J, Kim S, Yu M, Balachandran B (2008) Latching ultra-low power MEMS shock sensors for acceleration monitoring. Sensors and Actuators A 147:490–497

    Article  Google Scholar 

  • Currano LJ, Yu M, Balachandran B (2010) Latching in a MEMS shock sensor: modeling and experiments. Sensors Actuators A 159:41–50

    Article  Google Scholar 

  • Currano LJ, Becker CR, Lunking D, Smith GL, Isaacson B, Thomas L (2013) Triaxial inertial switch with multiple thresholds and resistive ladder readout. Sensors and Actuators A 195:191–197

    Article  Google Scholar 

  • Delahunty A, Pike W (2014) Metal-armoring for shock protection of MEMS. Sensors Actuators A 215:36–43

    Article  Google Scholar 

  • Frobenius W, Zeitman S, White M, O'Sullivan D, Hamel RG (1972) Microminiature ganged threshold accelerometers compatible with integrated circuit technology. IEEE Trans Electron Devices 19:37–40

    Article  Google Scholar 

  • Go JS, Cho YH, Kwak BM et al (1996) Snapping microswitches with adjustable acceleration threshold. Sensors Actuators A 54:579–583

    Article  Google Scholar 

  • Jia M, Li X, Song Z, Bao M, Wang Y, Yang H (2007) Micro-cantilever shocking-acceleration switches with threshold adjusting and ‘on’-state latching functions. J Micromech Microeng 17:567–575

    Article  Google Scholar 

  • Jones EE, Begley MR, Murphy KD (2003) Adhesion of micro-cantilevers subjected to mechanical point loading: modeling and experiments. J Mech Phys Solids 51:1601–1622

    Article  MATH  Google Scholar 

  • Lee JI, Song Y, Jung H, Choi J, Eun Y, Kim J (2011) Carbon nanotubes-integrated inertial switch for reliable detection of threshold acceleration. In: Proceedings of Transduers'11, Beijing, vol 2011, pp 711–714

    Google Scholar 

  • Lee JI, Song Y, Jung H, Choi J, Eun Y, Kim J (2012) Deformable carbon nanotube-contact pads for inertial microswitch to extend contact time. IEEE Trans Ind Electron 59:4914–4920

    Article  Google Scholar 

  • Loke Y, McKinnon GH, Brett MJ (1991) Fabrication and characterization of silicon micromachined threshold accelerometers. SensorsActuators A 29:235–240

    Google Scholar 

  • Ma W, Zohar Y, Wong M (2003) Design and characterization of inertia-activated electrical micro-switches fabricated and packaged using low-temperature photoresist molded metal-electroplating technology. J Micromech Microeng 13:892–899

    Article  Google Scholar 

  • Ma W, Li G, Zohar Y, Wang M (2004) Fabrication and packaging of inertia micro-switch using low-temperature photo-resist molded metal-electroplating technology. SensorsActuators A 111:63–70

    Google Scholar 

  • Matsunaga T, Esashi M (2002) Acceleration switch with extended holding time using squeeze film effect for side airbag systems. Sensors Actuators A 100:10–17

    Article  Google Scholar 

  • Matsunaga T, Minami K, Esashi M (1999) Acceleration switch with extended holding time using squeeze film damping effect. In: Proceedings of the international conference on solid-state sensors and actuators (Transducers’99), Sendai, vol 1999, pp 1550–1553

    Google Scholar 

  • Michaelis S, Timme HJ, Wycisk M et al. (1999) MEMS acceleration threshold switches fabricated with a low-cost, post-CMOS additive electroplating process. In: Proceedings of electrochemical society spring meeting’99, Seattle, vol 1999, p 1138

    Google Scholar 

  • Michaelis S, Timme HJ, Wycisk M (2000) Additive electroplating technology as a post-CMOS process for the production of MEMS acceleration-threshold switches for transportation applications. J Micromech Microeng 10:120–123

    Article  Google Scholar 

  • Minami K, Matsunaga T, Esashi M (1999) Simple modeling and simulation of the squeeze film effect and transient response of the MEMS device. In: Proceedings of IEEE MEMS’99, Orland, vol 1999, pp 338–343

    Google Scholar 

  • Ongkodjojo A, Tay F (2006) Optimized design of a micromachined G-switch based on contactless configuration for health care applications. J Phys Conf Ser 34:1044–1052

    Article  Google Scholar 

  • Park U, Yoo K, Kim J (2010) Development of a MEMS digital accelerometer (MDA) using a microscale liquid metal droplet in a microstructured photosensitive glass channel. Sensors Actuators A 159:51–57

    Article  Google Scholar 

  • Petersen K, Shartel A, Raley N (1982) Micromechanical accelerometer integrated with MOS detection circuitry. IEEE Trans Electron Devices 29:23–27

    Article  Google Scholar 

  • Rogers JW, Phinney LM (2001) Process yield for laser repair of aged, stiction-failed, MEMS devices. J Microelectromech Syst 2:280–285

    Article  Google Scholar 

  • Selvakumar A, Yazdi N, Najafi K (1996) Low power, wide range threshold acceleration sensing system. In: IEEE proceedings of the 9th annual international workshop on micro electro mechanical systems: an investigation of micro structures, sensors, actuators, machines, and systems, pp 186–191

    Google Scholar 

  • Selvakumar A, Yazdi N, Najafi K (2001) A wide-range micromachined threshold accelerometer array and interface circuit. J Micromech Microeng 11:118–125

    Article  Google Scholar 

  • Stauffer J (2006) Current capabilities of MEMS capacitive accelerometers in a harsh environment. IEEE Aerosp Electron Syst Mag 21:29–32

    Article  Google Scholar 

  • Sun XQ, Zhou S, Carr WN (1997) A surface micromachined latching accelerometer. In: Proceedings of international solid state sensors and actuators conference (Transducers'97), vol 2, pp 1189–1192

    Google Scholar 

  • Tao Y, Liu Y, Dong J (2014) Flexible stop and double-cascaded stop to improve shock reliability of MEMS accelerometer. Microelectron Reliab 54:1328–1337

    Article  Google Scholar 

  • Tas N, Sonnenberg T, Jansen H, Legtenberg R, Elwenspoek M (1996) Stiction in surface micromachining. J Micromech Microeng 6:385–397

    Article  Google Scholar 

  • Tønnesen T, Ludtke O, Noetzel J et al (1997) Simulation, design and fabrication of electroplated acceleration switches. J Micromech Microeng 7:237–239

    Article  Google Scholar 

  • Wang Y, Feng Q, Wang Y, Chen W, Wang Z, Ding G, Zhao X (2013a) The design, simulation and fabrication of a novel horizontal sensitive inertial micro-switch with low g value based on MEMS micromachining technology. J Micromech Microeng 23:105013

    Article  Google Scholar 

  • Wang Y, Chen W, Yang Z, Ding G, Wang H, Zhao X (2013b) An inertial micro-switch with compliant cantilever fixed electrode for prolonging contact time. In: Proceedings of IEEE MEMS 2013, Taipei, 20–24 Jan, vol 2013, pp 600–603

    Google Scholar 

  • Wang Y, Yang Z, Xu Q, Chen W, Ding G, Zhao X (2015a) Design, simulation and characterization of a MEMS inertia switch with flexible CNTs/cu composite array layer between electrodes for prolonging contact time. J Micromech Microeng 25:085012. (11pp)

    Article  Google Scholar 

  • Wang Y, Yang Z, Chen W, Ding G, Wang Y, Zhang C, Zhao X (2015b) MEMS inertia switch with flexible CNTs/Cu composite array layer between electrodes for prolonging contact time. In: 18th international conference on solid-state sensors, actuators and microsystems (Transducers 2015), Anchorage, vol 2015, pp 1101–1104

    Google Scholar 

  • Whitley MR, Kranz M, Kesmodel R, Burgett S (2005) Latching shock sensors for health monitoring and quality control. In: Progress in biomedical optics and imaging – proceedings of SPIE, vol 5717, pp 185–194

    Google Scholar 

  • Whitley MR, Kranz M, Kesmodel R et al (2012) Latching shock sensors for health monitoring and quality control. In: MEMS/MOEMS components and their applications II, vol 2012

    Google Scholar 

  • Wittwer JW, Baker MS, Epp DS, Mitchell JA (2008) MEMS passive latching mechanical shock sensor. In: Proceedings of the ASME, international design engineering technical conference & computers and information in engineering conference, Brooklyn, 3–6 Aug, vol 4, pp 581–587

    Google Scholar 

  • Wycisk M, Toennesen T, Binder J et al (1999) New sensor on-chip technology for micromechanical acceleration threshold switches. In: Microelectronics and micro-electro-mechanical systems, Queensland, vol 1999, pp 112–120

    Google Scholar 

  • Wycisk M, Tønnesen T, Binder J, Michaelis S, Timme HJ (2000) Low-cost post-CMOS integration of electroplated microstructures for inertial sensing. Sensors Actuators A 83:93–100

    Article  Google Scholar 

  • Xu Q, Yang Z, Fu B, Li J, Wu H, Zhang Q, Sun Y, Ding G, Zhao X (2016) A surface-micromachining-based inertial micro-switch with compliant cantilever beam as movable electrode for enduring high shock and prolonging contact time. Appl Surf Sci 387:569–580

    Article  Google Scholar 

  • Yang Z, Ding G, Chen W, Fu S, Sun X, Zhao X (2007) Design, simulation and characterization of an inertia micro-switch fabricated by non-silicon surface micromachining. J Micromech Microeng 17:1598–1604

    Article  Google Scholar 

  • Yang Z, Ding G, Cai H, Zhao X (2008a) A MEMS inertia switch with bridge-type elastic fixed electrode for long duration contact. IEEE Trans Electron 55:2492–2497

    Article  Google Scholar 

  • Yang Z, Ding G, Cai H, Liu R, Zhao X (2008b) Design and contact dynamics simulation of an inertia micro-switch based on non-silicon substrate. In: Proceedings of the 3rd IEEE international conference on nano/micro engineered and molecular systems, vol 2008, pp 19–22

    Google Scholar 

  • Yang Z, Ding G, Cai H, Xu X, Wang H, Zhao X (2009) Analysis and elimination of the ‘skip contact’ phenomenon in an inertial micro-switch for prolonging its contact time. J Micromech Microeng 19:045017. (10pp)

    Article  Google Scholar 

  • Yang Z, Ding G, Zhou Z, Cai H, Zhao X (2010a) Analytical model of squeeze film damping for microelectro-mechanical systems structures with anti-stiction raised strips. IET Micro Nano Lett 5:258–261

    Article  Google Scholar 

  • Yang Z, Ding G, Shen H, Wang H, Zhao X (2010b) Modeling and characterization of a MEMS G-sensor with anti-stiction raised strips for vibration monitoring systems. In: proceedings of IEEE sensors 2010, Kona, 1–4 Nov, pp 164–167

    Google Scholar 

  • Yang Z, Ding G, Wang H, Cai H, Zhao X (2011a) Modeling, simulation and characterization of a micromachined acceleration switch with anti-stiction raised strips on the substrate. IEEE Trans Compon Packag Manuf Technol 1:1198–1204

    Google Scholar 

  • Yang Z, Cai H, Ding G, Wang H, Zhao X (2011b) Dynamic simulation of a contact-enhanced MEMS inertial switch in simulink®. Microsyst Technol 17:1329–1342

    Article  Google Scholar 

  • Yang Z, Zhu B, Chen W, Ding G, Wang H, Zhao X (2012a) Fabrication and characterization of a multidirectional-sensitive contact-enhanced inertial microswitch with a electrophoretic flexible composite fixed electrode. J Micromech Microeng 22:045006. (10pp)

    Article  Google Scholar 

  • Yang Z, Zhu B, Ding G, Wang H, Wang Y, Zhao X (2012b) A multidirectional-sensitive inertial microswitch with electrophoretic polymer-metal composite fixed electrode for flexible contact. In: Proceedings of IEEE MEMS 2012, Paris, 29 Jan–2 Feb, vol 2012, pp 504–507

    Google Scholar 

  • Yoo K, Kim J (2009) A novel configurable MEMS inertial switch using microscale liquid-metal droplet. In: IEEE international conference MEMS’09, vol 2009, pp 793–796

    Google Scholar 

  • Yoo K, Park U, Kim J (2011) Development and characterization of a novel configurable MEMS inertial switch using a microscale liquid-metal droplet in a microstructured channel. Sensors Actuators A 166:234–240

    Article  Google Scholar 

  • Younis MI, Alsaleem FM, Miles R, Su Q (2007a) Characterization of the performance of capacitive switches activated by mechanical shock. J Micromech Microeng 17:1360–1370

    Article  Google Scholar 

  • Younis MI, Alsaleem FM, Jordy D (2007b) The response of clamped-clamped microbeams under mechanical shock. Int J Non Linear Mech 42:643–657

    Article  Google Scholar 

  • Zhang Q, Yang Z, Ding G (2016a) Dynamic simulation analysis of off-axis sensitivity in a laterally-driven MEMS inertia switch. AER-Adv Eng Res 69:91–94

    Google Scholar 

  • Zhang Q, Yang Z, Xu Q, Wang Y, Ding G, Zhao X (2016b) Design and fabrication of a laterally-driven inertial micro-switch with multi-directional constraint structures for lowering off-axis sensitivity. J Micromech Microeng 26:055008. (15pp)

    Article  Google Scholar 

  • Zhao J, Jia J, Chen G (2006) A novel MEMS parallel-beam acceleration switch. In:Proceedings of 2nd IEEE/ASME international conference mechatron embedded syst, vol 2006, pp 1–5

    Google Scholar 

  • Zhao J, Jia J, Wang H, Li W (2007) A novel threshold accelerometer with post buckling structures for airbag restraint systems. J IEEE Sensors 8:1102–1109

    Article  Google Scholar 

  • Zhao J, Yang Y, Fan K, Hu P, Wang H (2010) A bistable threshold accelerometer with fully compliant clamped–clamped mechanism. J IEEE Sensors 10:1019–1024

    Article  Google Scholar 

  • Zhu B, Yang Z, Chen W, Liu Q, Ding G, Zhao X (2012) Design and characterization of an inertial microswitch with electrophoretic polymer-metal composite fixed electrode for extending contact time. IET Micro Nano Lett 7:501–504

    Article  Google Scholar 

  • Zimmermann L, Ebersohl J-P, Hung FL, Berry JP, Baillieu F, Rey P, Diem B, Renard S, Caillat P (1995) Airbag application: a microsystem including a silicon capacitive accelerometer, CMOS switched capacitor electronic and true self-test capability. Sensors Actuators A 46:190–195

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the supports from the Hi-Tech Research and Development Program of China (2015AA042701), National Natural Science Foundation of China (No. 51205254, No. 61571287), Advanced Research Ministry of Education Joint Foundation (6141A02033403), SJTU SMC Young Scholar Program (16X100080044), and the National Key Laboratory of Micro/Nano Fabrication Technology Foundation (9140C790403150C79332). The authors would also like to thank Prof. H. Wang, Dr. H. Cai, Dr. W. Chen, Dr. Q. Xu, Mr. Q. Zhang, Mr. B. Zhu, Ms. H. Shen, and Ms. Y. Wang for their important works about the improvements of the device prototypes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhuoqing Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this entry

Cite this entry

Yang, Z., Ding, G., Wang, Y., Zhao, X. (2017). A MEMS Inertial Switch Based on Non-silicon Surface Micromachining Technology. In: Huang, QA. (eds) Micro Electro Mechanical Systems. Micro/Nano Technologies, vol 2. Springer, Singapore. https://doi.org/10.1007/978-981-10-2798-7_31-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2798-7_31-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2798-7

  • Online ISBN: 978-981-10-2798-7

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics