Skip to main content

Biochemical Sensors Based on Piezoresistive Microcantilevers

  • Living reference work entry
  • First Online:
Micro Electro Mechanical Systems

Part of the book series: Micro/Nano Technologies ((MNT,volume 2))

Abstract

Microcantilevers, which are highly attractive for their small size, high sensitivity, and low cost, have been successfully used in label-free biological and chemical sensing applications during the past 20 years. In this chapter, a piezoresistive microcantilever-based biochemical sensor is introduced, in which a mechanical bending induced by a biochemical reaction or absorption on the surface of the microcantilever is changed into an electrical signal by integrated piezoresistors. Theory and design method are introduced firstly, and then fabrication technique and characteristics of the microcantilever sensors are described in details. Finally, we introduce some biochemical detection results measured with the piezoresistive microcantilever-based sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Alvarez M, Lechuga LM (2010) Microcantilever-based platforms as biosensing tools. Analyst 135:827–836

    Article  Google Scholar 

  • Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56:930

    Article  Google Scholar 

  • Butt H-J (1996) A sensitive method to measure changes in the surface stress of solids. J Colloid Interface Sci 180(1):251–260

    Article  Google Scholar 

  • Carrascosa LG, Moreno M, Álvarez M, Lechuga LM (2006) Nanomechanical biosensors: a new sensing tool. TrAC Trends Anal Chem 25:196–206

    Article  Google Scholar 

  • Chen GY, Thundat T, Wachter EA, Warmack RJ (1995) Adsorption-induced surface stress and its effects on resonance frequency of microcantilevers. J Appl Phys 77(8):3618–3622

    Article  Google Scholar 

  • Chen X, Salm C, Hooge F, Woerlee P (1999) 1/f noise in polycrystalline SiGe analyzed in terms of mobility fluctuations. Solid State Electron 43:1715–1724

    Article  Google Scholar 

  • Chen Y, Xu P, Li X (2010) Self-assembling siloxane bilayer directly on SiO2 surface of micro-cantilevers for long-term highly repeatable sensing to trace explosives. Nanotechnology 21:265501

    Article  Google Scholar 

  • Colinge J-P (2000) SOI devices and circuits. In: Microelectronics, 2000. Proceedings. 2000 22nd international conference on. IEEE, pp 407–414

    Google Scholar 

  • De Graaff H, Huybers M (1983) 1/f noise in polycrystalline silicon resistors. J Appl Phys 54:2504–2507

    Article  Google Scholar 

  • Du Y, Li B, Wang E (2012) “Fitting” makes “sensing” simple: label-free detection strategies based on nucleic acid aptamers. Acc Chem Res 46:203–213

    Article  Google Scholar 

  • Dutta P, Chapman PJ, Datskos PG, Sepaniak MJ (2005) Characterization of ligand-functionalized microcantilevers for metal ion sensing. Anal Chem 77:6601–6608

    Article  Google Scholar 

  • Fritz J (2008) Cantilever biosensors. Analyst 133:855–863

    Article  Google Scholar 

  • Fritz J, Baller M, Lang H, Rothuizen H, Vettiger P, Meyer E, Güntherodt H-J, Gerber C, Gimzewski J (2000) Translating biomolecular recognition into nanomechanics. Science 288:316–318

    Article  Google Scholar 

  • Gates RS, Reitsma MG, Kramar JA, Pratt JR (2011) Atomic force microscope cantilever flexural stiffness calibration: toward a standard traceable method. J Res Natl Inst Stand Technol 116:703

    Article  Google Scholar 

  • Hooge FN (1969) 1/ƒ noise is no surface effect. Phys Lett A 29:139–140

    Article  Google Scholar 

  • Hooge F (1994) 1/f noise sources. IEEE Trans Electron Devices 41:1926–1935

    Article  Google Scholar 

  • Hooge F, Kleinpenning T, Vandamme L (1981) Experimental studies on 1/f noise. Rep Prog Phys 44:479

    Article  Google Scholar 

  • Karnati C, Du H, Ji H-F, Xu X, Lvov Y, Mulchandani A, Mulchandani P, Chen W (2007) Organophosphorus hydrolase multilayer modified microcantilevers for organophosphorus detection. Biosens Bioelectron 22:2636–2642

    Article  Google Scholar 

  • Koev ST, Bentley WE, Ghodssi R (2010) Interferometric readout of multiple cantilever sensors in liquid samples. Sens Actuators B Chem 146:245–252

    Article  Google Scholar 

  • Kosaka PM, Pini V, Ruz J, da Silva R, González M, Ramos D, Calleja M, Tamayo J (2014) Detection of cancer biomarkers in serum using a hybrid mechanical and optoplasmonic nanosensor. Nat Nanotechnol 9:1047–1053

    Article  Google Scholar 

  • Lang HP, Ballera MK, Bergerc R, Gerberc C, Gimzewskic JK, Battistonb FM, Fornarob P, Ramseyerb JP, Meyerb E, Güntherodtb HJ (1999) An artificial nose based on a micromechanical cantilever array. Anal Chim Acta 393(1–3):59–65

    Article  Google Scholar 

  • Lavrik NV, Sepaniak MJ, Datskos PG (2004) Cantilever transducers as a platform for chemical and biological sensors. Rev Sci Instrum 75:2229–2253

    Article  Google Scholar 

  • Li Y, Vancura C, Hagleitner C, Lichtenberg J, Brand O, Baltes H (2003) Very high Q-factor in water achieved by monolithic, resonant cantilever sensor with fully integrated feedback. In: Sensors, 2003. Proceedings of IEEE. IEEE, pp 809–813

    Google Scholar 

  • McCaig HC, Myers E, Lewis NS, Roukes ML (2014) Vapor sensing characteristics of nanoelectromechanical chemical sensors functionalized using surface-initiated polymerization. Nano Lett 14:3728–3732

    Article  Google Scholar 

  • O’Shea SJ, Welland ME, Brunt TA, Ramadan AR, Rayment T (1996) Atomic force microscopy stress sensors for studies in liquids. J Vac Sci Technol B Microelectron Nanometer Struct 14(2):1383–1385

    Article  Google Scholar 

  • Pandya H, Kim HT, Roy R, Desai JP (2014) MEMS based low cost piezoresistive microcantilever force sensor and sensor module. Mater Sci Semicond Process 19:163–173

    Article  Google Scholar 

  • Pillarisetti A, Desai JP, Ladjal H, Schiffmacher A, Ferreira A, Keefer CL (2011) Mechanical phenotyping of mouse embryonic stem cells: increase in stiffness with differentiation. Cell Reprogram (Former “Cloning Stem Cells”) 13:371–380

    Google Scholar 

  • Raiteri R, Butt H-J (1995) Measuring electrochemically induced surface stress with an atomic force microscope. J Phys Chem 99(43):15728–15732

    Article  Google Scholar 

  • Song S, Wang L, Li J, Fan C, Zhao J (2008) Aptamer-based biosensors. TrAC Trends Anal Chem 27:108–117

    Article  Google Scholar 

  • Stoney GG (1909) The tension of metallic films deposited by electrolysis. Proc R Soc Lond Ser A Contain Pap Math Phys Character 82:172–175

    Article  Google Scholar 

  • Tamayo J, Kosaka PM, Ruz JJ, San Paulo Á, Calleja M (2013) Biosensors based on nanomechanical systems. Chem Soc Rev 42:1287–1311

    Article  Google Scholar 

  • Thaysen J (2001) Cantilever for bio-chemical sensing integrated in a microliquid handling system. PhD thesis, Technical University of Denmark

    Google Scholar 

  • Vandamme L (1983) Noise in physical systems and 1/f noise. In: Savelli M, Lecoy G, Nougierfeds J-P (eds) Proceedings of the 7th international conference on “noise in physical systems” and the 3rd international conference on “ 1/f noise,” Montpellier, May 17–20, 1983. Elsevier Science Publishers BV/North Holland, p 183

    Google Scholar 

  • Vandamme L, Oosterhoff S (1986) Annealing of ion-implanted resistors reduces the 1/f noise. J Appl Phys 59:3169–3174

    Article  Google Scholar 

  • Wu G, Datar RH, Hansen KM, Thundat T, Cote RJ, Majumdar A (2001) Bioassay of prostate-specific antigen (PSA) using microcantilevers. Nat Biotechnol 19:856–860

    Article  Google Scholar 

  • Xiaomei Yu (2001) Optimization of piezoresistive cantilever with respect to signal and noise. PhD thesis, Beihang University

    Google Scholar 

  • Xiaomei Yu, Yaquan Tang, Haitao Zhang (2008) Monolithic integration of micromachined sensors and CMOS circuits based on SOI technologies. J Micromech Microeng 18:037002. (7pp)

    Article  Google Scholar 

  • Yan X, Tang Y, Ji H, Lvov Y, Thundat T (2004) Detection of organophosphates using an acetyl cholinesterase (AChE) coated microcantilever. Instrum Sci Technol 32:175–183

    Article  Google Scholar 

  • Yang M, Zhang X, Vafai K, Ozkan CS (2003a) High sensitivity piezoresistive cantilever design and optimization for analyte-receptor binding. J Micromech Microeng 13:864

    Article  Google Scholar 

  • Yang Y, Ji H-F, Thundat T (2003b) Nerve agents detection using a Cu2+/L-cysteine bilayer-coated microcantilever. J Am Chem Soc 125:1124–1125

    Article  Google Scholar 

  • Yu M-F, Lourie O, Dyer MJ, Moloni K, Kelly TF, Ruoff RS (2000) Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287:637–640

    Article  Google Scholar 

  • Yu X, Jiang X, Thaysen J, Hansen O, Boisen A (2001) Noise and sensitivity in polysilicon piezoresistive cantilevers. Chin Phys 10:918

    Article  Google Scholar 

  • Yu X, Thaysen J, Hansen O, Boisen A (2002) Optimization of sensitivity and noise in piezoresistive cantilevers. J Appl Phys 92:6296–6301

    Article  Google Scholar 

  • Zhao R, Wen Y, Yang J, Zhang J, Yu X (2014) Aptasensor for Staphylococcus enterotoxin B detection using high SNR piezoresistive microcantilevers. J Microelectromech Syst 23:1054–1062

    Article  Google Scholar 

  • Zhao R, Ma W, Wen Y, Yang J, Yu X (2015) Trace level detections of abrin with high SNR piezoresistive cantilever biosensor. Sens Actuators B Chem 212:112–119

    Article  Google Scholar 

  • Zhao R, Jia D, Wen Y, Yu X (2017) Cantilever-based aptasensor for trace level detection of nerve agent simulant in aqueous matrices. Sens Actuators B Chem 238:1231–1239

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaomei Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this entry

Cite this entry

Yu, X., Zhao, R. (2018). Biochemical Sensors Based on Piezoresistive Microcantilevers. In: Huang, QA. (eds) Micro Electro Mechanical Systems. Micro/Nano Technologies, vol 2. Springer, Singapore. https://doi.org/10.1007/978-981-10-2798-7_26-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2798-7_26-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2798-7

  • Online ISBN: 978-981-10-2798-7

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics