Skip to main content

Microsensors and Systems for Water Quality Determination

  • Living reference work entry
  • First Online:
Micro Electro Mechanical Systems

Part of the book series: Micro/Nano Technologies ((MNT,volume 2))

Abstract

Water pollution is serious in many countries, and eutrophication and heavy metals are the main pollutants. Cost-effective, miniaturized and highly sensitive sensors for on-site detection and online monitoring of water quality have attracted more attentions. In this chapter, several microsensors and systems are presented for highly sensitive detection of total phosphorus (TP), total nitrogen (TN), and heavy metal ions (Cu2+, Pb2+, Zn2+, Hg2+), which are main indicators for eutrophication and heavy metals pollution. As the effective ways to improve the sensitivity and the limit of detection, several sensitivity-enrichment methods such as nano-materials modification on microelectrodes, and pretreatment processes such as thermally assisted ultraviolet digestion and ionic-liquid based preconcentration are also introduced. The electrochemical microsensors were fabricated by MEMS-based bulk fabrication process, and integrated with microfluidic units to realize a continuous monitoring of trace pollution targets. A buoy-based automated analytical system was developed by integrating central controller module, sequential injection module, and electrochemical analytical module together, and it was applied to online monitoring of water quality in fresh waters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Adlnasab L, Ebrahimzadeh H (2013) A novel salt-controlled homogenous ionic liquid phase microextraction based on the salting out effect and optimization of the procedure using the experimental design methodology. Anal Methods 5:5165–5171

    Article  Google Scholar 

  • Afkhami A, Khoshsafar H, Bagheri H et al (2014) Construction of a carbon ionic liquid paste electrode based on multi-walled carbon nanotubes-synthesized Schiff base composite for trace electrochemical detection of cadmium. Mater Sci Eng C 35:8–14

    Article  Google Scholar 

  • Akyuz M, Ata S (2009) Determination of low level nitrite and nitrate in biological, food and environmental samples by gas chromatography-mass spectrometry and liquid chromatography with fluorescence detection. Talanta 79:900–904

    Article  Google Scholar 

  • Al-Saidi HM, Emara AAA (2011) The recent developments in dispersive liquid–liquid microextraction for preconcentration and determination of inorganic analytes. J Saudi Chem Soc 18(6):745–761

    Article  Google Scholar 

  • American Public Health Association (2000) Standard methods for the examination of water and wastewater. American Public Health Association, Washington, DC

    Google Scholar 

  • Amio AK, Agaosa YN (2008) 1-butyl-3-methylimidazolium hexafluorophosphate ionic liquid as a new solvent for the determination of lead ( II ) and cadmium ( II ) by anodic stripping voltammetry after extraction of the iodide complexes. Anal Sci 24(10):1363–1367

    Article  Google Scholar 

  • Andruch V, Balogh IS, Kocúrová et al (2013) Five years of dispersive liquid–liquid microextraction. Appl Spectrosc Rev 48:37–41

    Article  Google Scholar 

  • Ao XJ, Zhang XN (2009) Determining phosphate ions in precipitation with ion chromatography. J Heilongjiang Environ 33:37–39

    Google Scholar 

  • Aran HC, Salamon D, Rijnaarts T (2011) Porous photocatalytic membrane microreactor (P2M2): a new reactor concept for photochemistry. J Photochem Photobiol Chem 225(1):36–41

    Article  Google Scholar 

  • Aravamudhan S, Bhansali S (2008) Development of micro-fluidic nitrate-selective sensor based on doped-polypyrrole nanowires. Sensors Actuators B Chem 132(2):623–630

    Article  Google Scholar 

  • Attia AJ (2008) Photocatalytic iodometry over naked and sensitized zinc oxide. Natl J Chem 32:599–609

    Google Scholar 

  • Bagal-Kestwal D, Karve MS, Kakade B et al (2008) Invertase inhibition based electrochemical sensor for the detection of heavy metal ions in aqueous system: application of ultra-microelectrode to enhance sucrose biosensor’s sensitivity. Biosens Bioelectron 24(4):657–664

    Article  Google Scholar 

  • Baghdadi M, Shemirani F (2008) Cold-induced aggregation microextraction: a novel sample preparation technique based on ionic liquids. Anal Chim Acta 613:56–63

    Article  Google Scholar 

  • Baghdadi M, Shemirani F (2009) In situ solvent formation microextraction based on ionic liquids: a novel sample preparation technique for determination of inorganic species in saline solutions. Anal Chim Acta 634(2):186–191

    Article  Google Scholar 

  • Bagheri H, Afkhami A, Khoshsafar H et al (2015) Simultaneous electrochemical sensing of thallium, lead and mercury using a novel ionic liquid/graphene modified electrode. Anal Chim Acta 870:56–66

    Article  Google Scholar 

  • Bai Y, Tong J, Bian C et al (2012) Micro cobalt electrodes for detection of total phosphorus in water. Micro Nano Lett 7(12):1176–1179

    Article  Google Scholar 

  • Bai Y, Tong J, Wang J et al (2014a) Electrochemical microsensor based on gold nanoparticles modified electrode for total phosphorus determinations in water. Nanobiotechnol IET 8(1):31–36

    Article  Google Scholar 

  • Bai Y, Tong J, Bian C et al (2014b) An electrochemical microsensor based on nano modified gold electrode for total phosphorus determination in water. IET Nanobiotechnol 8(1):31–36

    Article  Google Scholar 

  • Bai Y, Tong J, Sun J et al (2014c) Microfluidic chip with interdigitated ultra-microelectrode array for total phosphorus detection. Micro Nano Lett 9(12):862–865

    Article  Google Scholar 

  • Baldrianova L, Svancara I, Economou A et al (2006) Anodic stripping voltammetry at in situ bismuth-plated carbon and gold microdisc electrodes in variable electrolyte content unstirred solutions. Anal Chim Acta 580(1):24–31

    Article  Google Scholar 

  • Berchmans S, Karthikeyan R, Gupta S et al (2011) Glassy carbon electrode modified with hybrid films containing inorganic molybdate anions trapped in organic matrices of chitosan and ionic liquid for the amperometric sensing of phosphate at neutral pH. Sensors Actuators B Chem 160(1):1224–1231

    Article  Google Scholar 

  • Berduque A, Lanyon YH, Beni V et al (2007) Voltammetric characterisation of silicon-based microelectrode arrays and their application to mercury-free stripping voltammetry of copper ions. Talanta 71(3):1022–1030

    Article  Google Scholar 

  • Bernalte E, Marίn Sánchez C, Pinilla Gil E et al (2012) Gold nanoparticles-modified screen-printed carbon electrodes for anodic stripping voltammetric determination of mercury in ambient water samples. Sensors Actuators B Chem 161(1):669–674

    Article  Google Scholar 

  • Berton P, Vera-candioti L, Wuilloud RG (2013) A microextraction procedure based on an ionic liquid as an ion-pairing agent optimized using a design of experiments for chromium species separation and determination in water samples. Anal Methods 5:5065–5073

    Article  Google Scholar 

  • Bonfil Y, Brand M (2000) Trace determination of mercury by anodic stripping voltammetry at the rotating gold electrode. Anal Chim Acta 424(1):65–76

    Article  Google Scholar 

  • Bozzi A, Guasaquillo I, Kiwi J et al (2004) Accelerated removal of cyanides from industrial effluents by supported TiO2 photo-catalysts. Appl Catal B Environ 51(3):203–211

    Article  Google Scholar 

  • Brillas E, Bastida RM, Llosa E et al (1995) Electrochemical destruction of aniline and 4-chloroaniline for wastewater treatment using a carbon-PTFEO-fed cathode. J Electrochem Soc 142(6):1733–1741

    Article  Google Scholar 

  • Bulatov AV, Tsapko AA, Moskvin LN (2009) Photometric cyclic-injection determination of phosphate and silicate ions simultaneously present in aqueous solutions. J Anal Chem 64(9):580–584

    Article  Google Scholar 

  • Carpenter NG, Hodgson AWE, Pletcher D (1997) Microelectrode procedures for the determination of silicate and phosphate in waters–fundamental studies. Electroanalysis 9(17):1311–1317

    Article  Google Scholar 

  • Chen DH, Ye X, Li K (2005) Oxidation of PCE with a UV LED photocatalytic reactor. Chem Eng Technol 28(1):95–97

    Article  Google Scholar 

  • Clescerl LS, Greenberg AE, Eaton AD (eds) (1998) Standard methods for the examination of water and wastewater. American Public Health Association, American Water Works Association, Water Environment Federation, Washington, DC

    Google Scholar 

  • Cugnet C, Zaouak O, René A et al (2009) A novel microelectrode array combining screen-printing and femtosecond laser ablation technologies: development, characterization and application to cadmium detection. Sensors Actuators B Chem 143(1):158–163

    Article  Google Scholar 

  • Czop E, Economou A, Bobrowski A (2011) A study of in situ plated tin-film electrodes for the determination of trace metals by means of square-wave anodic stripping voltammetry. Electrochim Acta 56(5):2206–2212

    Article  Google Scholar 

  • Dai X, Compton RG (2005) Gold nanoparticle modified electrodes show a reduced interference by cu(II) in the detection of as(III) using anodic stripping voltammetry. Electroanalysis 17(14):1325–1330

    Article  Google Scholar 

  • Dai X, Nekrassova O, Hyde ME et al (2004) Anodic stripping voltammetry of arsenic(III) using gold nanoparticle-modified electrodes. Anal Chem 76(19):5924–5929

    Article  Google Scholar 

  • Daneshvar N, Rabbani M, Modirshahla N et al (2005) Photooxidative degradation of acid red 27 in a tubular continuous-flow photoreactor: influence of operational parameters and mineralization products. J Hazard Mater B 118(1–3):155–160

    Article  Google Scholar 

  • Daniel D, Grutz IGR (2007) Microfluidic cell with a TiO2- modified gold electrode irradiated by an UV-LED for in situ photocatalytic decomposition of organic matter and its potentiality for voltammetric analysis of metal ions. Electrochem Commun 9(3):522–528

    Article  Google Scholar 

  • Davies TJ, Compton RG (2005) The cyclic and linear sweep voltammetry of regular and random arrays of microdisc electrodes: theory. J Electroanal Chem 585(1):63–82

    Article  Google Scholar 

  • Dima GE, Beltramo GL, Koper MTM (2005) Nitrate reduction on single-crystal platinum electrodes. Electrochim Acta 50(21):4318–4326

    Article  Google Scholar 

  • Dohyun K, Ira BG, Jack WJ (2007) Chronocoulometric determination of nitrate on silver electrode and sodium hydroxide electrolyte. Analyst 132:350–357

    Article  Google Scholar 

  • Dorjpalam E, Takahashi M, Tokuda Y et al (2005) Controlling carrier density and its effect on I–V characteristics of the anatase–TiO2 thin films prepared by a sputter deposition method. Thin Solid Films 483(1–2):147–151

    Article  Google Scholar 

  • Ebrahimpour B, Yamini Y, Esrafili A (2012) Emulsification liquid phase microextraction followed by on-line phase separation coupled to high performance liquid chromatography. Anal Chim Acta 751:79–85

    Article  Google Scholar 

  • EGA (2007) http://www.nanoscience.co.jp/surface_analysis/pdf/icp-oes-ms-detection-limit-guidance-BR023.pdf. Accessed 23 June 2017

  • Elmolla ES, Chaudhuri M (2010) Photocatalytic degradation of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution using UV/TiO2 and UV/H2O2/TiO2 photocatalysis. Desalination 252(1–3):46–52

    Article  Google Scholar 

  • Endres F, MacFarlane D, Abbott A (2008) Electrodeposition from ionic liquid. Trans Inst Met Finish 86(4):182

    Article  Google Scholar 

  • Fu B, Ure AM, West TS (1983) Column cementation on aluminium powder as a preconcentration technique for trace element determinations by spark-source mass spectrometry : part 1. Copper, lead, ruthenium and the noble metals. Anal Chim Acta 152:95–104

    Article  Google Scholar 

  • Galloway JN, Townsend AR, Erisman JW et al (2008) Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320(5878):889–892

    Article  Google Scholar 

  • Gamboa JCM, Peña RC, Paixão TRLC et al (2009) A renewable copper electrode as an amperometric flow detector for nitrate determination in mineral water and soft drink samples. Talanta 80:581–585

    Article  Google Scholar 

  • Gao S, Jin H, You J et al (2011) Ionic liquid-based homogeneous liquid–liquid microextraction for the determination of antibiotics in milk by high-performance liquid chromatography. J Chromatogr A 1218(41):7254–7263

    Article  Google Scholar 

  • Gao S, Yang X, Yu W et al (2012) Ultrasound-assisted ionic liquid/ionic liquid-dispersive liquid–liquid microextraction for the determination of sulfonamides in infant formula milk powder using high-performance liquid chromatography. Talanta 99:875–882

    Article  Google Scholar 

  • Garcia JC, Oliveira JL, Silva AEC et al (2007) Comparative study of the degradation of real textile effluents by photocatalytic reactions involving UV/TiO2/H2O2 and UV/Fe2+/H2O2 systems. J Hazard Mater 147(1–2):105–110

    Article  Google Scholar 

  • Gardner RD, Zhou A, Zufelt NA (2009) Development of a microelectrode array sensing platform for combination electrochemical and spectrochemical aqueous ion testing. Sensors Actuators B Chem 136(1):177–185

    Article  Google Scholar 

  • Gholizadeh A, Shahrokhian S, Zad AI et al (2012) Fabrication of sensitive glutamate biosensor based on vertically aligned CNT nanoelectrode array and investigating the effect of CNTs density on the electrode performance. Anal Chem 84(14):5932–5938

    Article  Google Scholar 

  • Ghosha JP, Suib R, Langfordb CH et al (2009) A comparison of several nanoscale photocatalysts in the degradation of a common pollutant using LEDs and conventional UV light. Water Res 43(18):4499–4506

    Article  Google Scholar 

  • Giacomino A, Abollino O, Malandrino M et al (2008) Parameters affecting the determination of mercury by anodic stripping voltammetry using a gold electrode. Talanta 75(1):266–273

    Google Scholar 

  • Gibbon-Walsh K, Salaün P, van den Berg CMG (2010) Arsenic speciation in natural waters by cathodic stripping voltammetry. Anal Chim Acta 662(1):1–8

    Article  Google Scholar 

  • Godino N, Borrisé X, Muñoz FX et al (2009) Mass transport to nanoelectrode arrays and limitations of the diffusion domain approach: theory and experiment. J Phys Chem C 113(25):11119–11125

    Article  Google Scholar 

  • Goldberger ML, Watson KM (2004) Collision theory. Courier Dover Publications, Mineola

    MATH  Google Scholar 

  • Guettaï N, Amar HA (2005) Photocatalytic oxidation of methyl orange in presence of titanium dioxide in aqueous suspension. Part II: kinetics study. Desalination 185(1–3):439–448

    Article  Google Scholar 

  • Haeberle S, Zengerle R (2007) Microfluidic platforms for lab-on-a-chip applications. Lab Chip 7(9):1094–1110

    Article  Google Scholar 

  • Helaleh MIH, Korenaga T (2000) Ion chromatographic method for simultaneous determination of nitrate and nitrite in human saliva. J Chromatogr B 744(2):433–437

    Article  Google Scholar 

  • Herrmann JM (2010) Photocatalysis fundamentals revisited to avoid several misconceptions. Appl Catal B Environ 99(3–4):461–468

    Article  Google Scholar 

  • Hezard T, Fajerwerg K, Evrard D et al (2012) Gold nanoparticles electrodeposited on glassy carbon using cyclic voltammetry: application to Hg(II) trace analysis. J Electroanal Chem 664:46–52

    Article  Google Scholar 

  • Hinkamp S, Schwedt G (1990) Determination of total phosphorus in waters with amperometric detection by coupling of flow-injection analysis with continuous microwave oven digestion. Anal Chim Acta 236:345–350

    Article  Google Scholar 

  • Hitchman M, Tian F (2002) Studies of TiO2 thin films prepared by chemical vapour deposition for photocatalytic and photoelectrocatalytic degradation of 4-chlorophenol. J Electroanal Chem 538–539:165–172

    Article  Google Scholar 

  • Hu R, Luo X, Zheng H (2012) Design of a novel freeform lens for LED uniform illumination and conformal phosphor coating. Opt Express 20(13):13727–13737

    Article  Google Scholar 

  • Hunt JM, Lewan MD, Hennet RJC (1991) Modeling oil generation with time-temperature index graphs based on the Arrhenius equation. Am Assoc Pet Geol 75(4):795–807

    Google Scholar 

  • Injang U, Noyrod P, Siangproh W et al (2010) Determination of trace heavy metals in herbs by sequential injection analysis-anodic stripping voltammetry using screen-printed carbon nanotubes electrodes. Anal Chim Acta 668(1):54–60

    Article  Google Scholar 

  • Isoda T, Makimoto H, Imanag H et al (2007) Development of a source-drain electrode coated with an insulation layer for detecting concentration changes in a nitrate ion solution. Sensors Actuators B Chem 123(2):805–815

    Article  Google Scholar 

  • Jakmuneea J, Junsomboon J (2008) Determination of cadmium, lead, copper and zinc in the acetic acid extract of glazed ceramic surfaces by anodic stripping voltammetric method. Talanta 77(1):172–175

    Article  Google Scholar 

  • Jena BK, Raj CR (2008) Gold nanoelectrode ensembles for the simultaneous electrochemical detection of ultratrace arsenic, mercury, and copper. Anal Chem 80(13):4836–4844

    Article  Google Scholar 

  • Jimidar M, Hartmann C, Cousement N et al (1995) Determination of nitrate and nitrite in vegetables by capillary electrophoresis with indirect detection. J Chromatogr A 706(1–2):479–492

    Article  Google Scholar 

  • Jońca J, Fernández VL, Thouron D et al (2011) Phosphate determination in seawater: toward an autonomous electrochemical method. Talanta 87:161–167

    Article  Google Scholar 

  • Jung W, Jang A, Bishop PL et al (2011) A polymer lab chip sensor with microfabricated planar silver electrode for continuous and on-site heavy metal measurement. Sensors Actuators B Chem 155(1):145–153

    Article  Google Scholar 

  • Justyna J, Violeta LF, Danièle T et al (2011) Phosphate determination in seawater: toward an autonomous electrochemical method. Talanta 87:161–167

    Article  Google Scholar 

  • Justyna J, William G, Carole B et al (2013) Reagentless and silicate interference free electrochemical phosphate determination in seawater. Electrochim Acta 88:165–169

    Article  Google Scholar 

  • Khan S, Kazi TG, Soylak M (2015) Ionic liquid-based ultrasound-assisted emulsification microextraction of cadmium in biological samples: optimization by a multivariate approach. Anal Lett 48(11):1751–1766

    Article  Google Scholar 

  • Kim K, Kim KL, Shin KS (2012) Selective detection of aqueous nitrite ions by surface-enhanced Raman scattering of 4-aminobenzenethiol on Au. Analyst 137:3836–3840

    Article  Google Scholar 

  • Kima SB, Hongb SC (2002) Kinetic study for photocatalytic degradation of volatile organic compounds in air using thin film TiO2 photocatalyst. Appl Catal B Environ 35(4):305–315

    Article  Google Scholar 

  • Kocúrová L, Balogh IS, Jana Š et al (2012) Recent advances in dispersive liquid–liquid microextraction using organic solvents lighter than water. A review. Microchem J 102:11–17

    Article  Google Scholar 

  • Kodamatani H, Yamazaki S, Saito K et al (2009) Selective determination method for measurement of nitrite and nitrate in water samples using high-performance liquid chromatography with post-column photo-chemical reaction and chemiluminescence detection. J Chromatogr A 1216(15):3163–3167

    Article  Google Scholar 

  • Kokkinos C, Economou A, Raptis I (2011) Disposable lithographically fabricated bismuth microelectrode arrays for stripping voltammetric detection of trace metals. Electrochem Commun 13(5):391–395

    Article  Google Scholar 

  • Konstantinou IK, Albanis TA (2004) TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review. Appl Catal B Environ 49(1):1–14

    Article  Google Scholar 

  • Lachheb H, Puzenat E, Houas A et al (2002) Photocatalytic degradation of various types of dyes (Alizarin S, Crocein Orange G, Methyl Red, Congo Red, Methylene Blue) in water by UV-irradiated titania. Appl Catal B Environ 39(1):75–90

    Article  Google Scholar 

  • Laidler KJ (1984) The development of the Arrhenius equation. J Chem Educ 61(6):494–498

    Article  Google Scholar 

  • Lau OW, Ho SY (1993) Simultaneous determination of traces of iron, cobalt, nickel, copper, mercury and lead in water by energy-dispersive x-ray fluorescence spectrometry after preconcentration as their piperazino-1,4-bis(dithiocarbamate) complexes. Anal Chim Acta 280(2):269–277

    Article  Google Scholar 

  • Lee JH, Lee WH, Bishop PL et al (2009) A cobalt-coated needle-type microelectrode array sensor for in situ monitoring of phosphate. J Micromech Microeng 19(2):025022

    Article  Google Scholar 

  • Lee DM, Yun HJ, Yu S et al (2012) Design of an efficient photocatalytic reactor for the decomposition of gaseous organic contaminants in air. Chem Eng J 187:203–209

    Article  Google Scholar 

  • Leopold K, Foulkes M, Worsfold PJ (2009) Preconcentration techniques for the determination of mercury species in natural waters. Trends Anal Chem 28(4):426–435

    Article  Google Scholar 

  • Li YQ, Delsing ACA, With D et al (2005) Luminescence properties of Eu2+-activated alkaline-earth silicon-oxynitride MSi2O2-δN2+ 2/3δ (M= Ca, Sr, Ba): a promising class of novel LED conversion phosphors. Chem Mater 17(12):3242–3248

    Article  Google Scholar 

  • Li Y, Sun J, Bian C et al (2011a) A microfluidic sensor chip with renewable in-situ copper modified microelectrode for continuous monitoring of nitrate. Paper presented at Transducers’11, Beijing, 5–9 June 2011

    Google Scholar 

  • Li F, Xue M, Ma X (2011b) Facile patterning of reduced Graphene oxide film into microelectrode array for highly sensitive sensing. Anal Chem 83(16):6426–6430

    Article  Google Scholar 

  • Li Z, Xia S, Bian C et al (2015) Salt-induced ionic liquid dispersive liquid–liquid microextraction and filter separation. Anal Methods 8(5):1096–1102

    Article  Google Scholar 

  • Li Z, Xia S, Wang J et al (2016) Determination of trace mercury in water based on N-octylpyridinium ionic liquids preconcentration and stripping voltammetry. J Hazard Mater 301:206–213

    Article  Google Scholar 

  • Lin M, Cho MS, Choe WS et al (2009) Electrochemical analysis of copper ion using a Gly–Gly–His tripeptide modified poly(3-thiopheneacetic acid) biosensor. Biosens Bioelectron 25(1):28–33

    Article  Google Scholar 

  • Lindstrom H, Wootton R, Iles A (2007) High surface area titania photocatalytic microfluidic reactors. AIChE J 53(3):695–702

    Article  Google Scholar 

  • Liu AC, Chen DC, Lin CC et al (1999) Application of cysteine monolayers for electrochemical determination of sub-ppb copper(II). Anal Chem 71(8):1549–1552

    Article  Google Scholar 

  • Lu PL, Huang KS, Jiang SJ (1993) Determination of traces of copper, cadmium and lead in biological and environmental samples by flow-injection isotope dilution inductively coupled plasma mass spectrometry. Anal Chim Acta 284(1):181–188

    Article  Google Scholar 

  • Lu G, Wu XG, Lan YH et al (1999) Studies on 1:12 phosphomolybdic heteropoly anion film modified carbon paste electrode. Talanta 49:511–515

    Article  Google Scholar 

  • Mace KA, Duce RA (2002) The use of UV photo-oxidation for the determination of total nitrogen in rainwater and water-extracted atmospheric aerosol. Atmos Environ 36(39–40):5937–5946

    Article  Google Scholar 

  • Maher W, Woo L (1998) Procedures for the storage and digestion of natural waters for the determination of filterable reactive phosphorus, total filterable phosphorus and total phosphorus. Anal Chim Acta 375(1–2):5–47

    Article  Google Scholar 

  • Maher W, Krikowa F, Wruck D et al (2002) Determination of total phosphorus and nitrogen in turbid waters by oxidation with alkaline potassium peroxodisulfate and low pressure microwave digestion, autoclave heating or the use of closed vessels in a hot water bath: comparison with Kjeldahl digestion. Anal Chim Acta 463(2):283–293

    Article  Google Scholar 

  • Martinis EM, Bertón P, Olsina RA et al (2009) Trace mercury determination in drinking and natural water samples by room temperature ionic liquid based-preconcentration and flow injection-cold vapor atomic absorption spectrometry. J Hazard Mater 167(1–3):475–481

    Article  Google Scholar 

  • Mavrodineanu R, Schultz JI, Menis O (1973) Accuracy in spectrophotometry and luminescence measurements: proceedings. U.S. National Bureau of Standards, Washington, DC, p P2

    Google Scholar 

  • Meruva RK, Meyerhoff ME (1996) Mixed potential response mechanism of cobalt electrodes toward inorganic phosphate. Anal Chem 68(13):2022–2026

    Article  Google Scholar 

  • Ministry of Environmental Protection of the People’s Republic of China (2002) Environmental quality standards for surface water

    Google Scholar 

  • Ministry of Environmental protection of the People’s Republic of China (2012) Environmental quality report of 2012

    Google Scholar 

  • Moiseev MA, Doskolovich LL, Kazanskiy NL (2011) Design of high-efficient freeform LED lens for illumination of elongated rectangular regions. Opt Express 19(103):A225–A233

    Article  Google Scholar 

  • Moujahid W, Eichelmann-Daly P, Strutwolf J et al (2011) Microelectrochemical systems on silicon chips for the detection of pollutants in seawater. Electroanalysis 23(1):147–155

    Article  Google Scholar 

  • Noroozifar M, Khorasani-Motlagh M, Taheri A et al (2007) Application of manganese(IV) dioxide microcolumn for determination and speciation of nitrite and nitrate using a flow injection analysis-flame atomic absorption spectrometry system. Talanta 71:359–364

    Article  Google Scholar 

  • O’Dell JW (ed) (1993) Determination of phosphorus by semi- automated colorimetry, environmental monitoring systems laboratory. Office of Research and Development, USEPA, Cincinnati

    Google Scholar 

  • Oms MT, Cerda A, Cerda V (2003) Sequential injection system for on-line analysis of total nitrogen with UV-mineralization. Talanta 59(2):319–326

    Article  Google Scholar 

  • Opallo M, Lesniewski A (2011) A review on electrodes modified with ionic liquids. J Electroanal Chem 656(1–2):2–16

    Article  Google Scholar 

  • Orozco J, Fernández-Sánchez C, Jiménez-Jorquera C (2008) Underpotential deposition−anodic stripping voltammetric detection of copper at gold nanoparticle-modified ultramicroelectrode arrays. Environ Sci Technol 42(13):4877–4882

    Article  Google Scholar 

  • Papaiconomou N, Lee J, Salminen J et al (2008) Selective extraction of copper, mercury, silver, and palladium ions from water using hydrophobic ionic liquids. Ind Eng Chem Res 47(15):5080–5086

    Article  Google Scholar 

  • Praline J, Guennoc AM, Limousin N et al (2007) ALS and mercury intoxication: a relationship? Neurol Neurosurg 109(10):880–883

    Article  Google Scholar 

  • Qin J (2013) A high efficiency microfluidic-based photocatalytic microreactor using electrospun nanofibrous TiO2 as photocatalyst. Nanoscale 5:4687–4690

    Article  Google Scholar 

  • Raimbault P, Slawyk G, Coste B et al (1990) Feasibility of using an automated colorimetric procedure for the determination of seawater nitrate in the 0 to 100 nM range: examples from field and culture. Mar Biol 104(2):347–351

    Article  Google Scholar 

  • Rodrigues JA, Rodrigues CM, Almeida PJ et al (2011) Increased sensitivity of anodic stripping voltammetry at the hanging mercury drop electrode by ultracathodic deposition. Anal Chim Acta 701(2):152–156

    Article  Google Scholar 

  • Roig B, Gonzalez C, Thomas O et al (1999) Measurement of dissolved total nitrogen in wastewater by UV photooxidation with peroxodisulphate. Anal Chim Acta 389(1–3):267–274

    Article  Google Scholar 

  • Salaüun P, van den Berg CMG (2006) Voltammetric detection of mercury and copper in seawater using a gold microwire electrode. Anal Chem 78(14):5052–5060

    Article  Google Scholar 

  • Salaüun P, Planer-Friedrich B, van den Berg CMG (2007) Inorganic arsenic speciation in water and seawater by anodic stripping voltammetry with a gold microelectrode. Anal Chim Acta 585(2):312–322

    Article  Google Scholar 

  • Sandison ME, Anicet N, Glidle A et al (2002) Optimization of the geometry and porosity of microelectrode arrays for sensor design. Anal Chem 74(22):5717–5725

    Article  Google Scholar 

  • Seebunrueng K, Santaladchaiyakit Y, Srijaranai S (2014) Vortex-assisted low density solvent based demulsified dispersive liquid–liquid microextraction and high-performance liquid chromatography for the determination of organophosphorus pesticides in water samples. Chemosphere 103:51–58

    Article  Google Scholar 

  • Sempere A, Oliver J, Ramos C (1993) Simple determination of nitrate in soils by second-derivative spectroscopy. J Soil Sci 44(4):633–639

    Article  Google Scholar 

  • Shen XZ, Liu ZC, Xie SM et al (2009) Degradation of nitrobenzene using titania photocatalyst co-doped with nitrogen and cerium under visible light illumination. J Hazard Mater 162(2–3):1193–1198

    Article  Google Scholar 

  • Shyla B, Nagendrappa G (2011) A simple spectrophotometric method for the determination of phosphate in soil, detergents, water, bone and food samples through the formation of phosphomolybdate complex followed by its reduction with thiourea. Spectrochim Acta A Mol Biomol Spectrosc 78(1):497–502

    Article  Google Scholar 

  • Siboni MS, Samadi MT, Yang JK et al (2012) Photocatalytic removal of Cr(VI) and Ni(II) by UV/TiO2: kinetic study. Desalin Water Treat 40(1–3):77–83

    Article  Google Scholar 

  • Silva SD, Shan D, Cosnier S (2004) Improvement of biosensor performances for nitrate determination using a new hydrophilic poly (pyrrole-viologen) film. Sensors Actuators B Chem 103(1–2):397–402

    Article  Google Scholar 

  • Silva I, Araujo WR, Paixão TRLC et al (2013) Direct nitrate sensing in water using an array of copper microelectrodes from flat flexible cables. Sensors Actuators B Chem 188:94–98

    Article  Google Scholar 

  • Slavec M, Hocevar SB, Baldrianova L et al (2010) Antimony film microelectrode for anodic stripping measurement of cadmium(II), lead(II) and copper(II). Electroanalysis 22(14):1617–1622

    Article  Google Scholar 

  • Song Y, Wu L, Li N et al (2015) Utilization of a novel microwave-assisted homogeneous ionic liquid microextraction method for the determination of Sudan dyes in red wines. Talanta 135:163–169

    Article  Google Scholar 

  • Stanisz E, Werner J, Zgoła-Grześkowiak A (2014a) Liquid-phase microextraction techniques based on ionic liquids for preconcentration and determination of metals. TrAC Trends Anal Chem 61:54–66

    Article  Google Scholar 

  • Stanisz E, Werner J, Matusiewicz H (2014b) Task specific ionic liquid-coated PTFE tube for solid-phase microextraction prior to chemical and photo-induced mercury cold vapour generation. Microchem J 114:229–237

    Article  Google Scholar 

  • Sten OE (1998) The phosphate sensor. Biosens Bioelectron 13:981–994

    Article  Google Scholar 

  • Stortini AM, Moretto LM, Mardeganb A et al (2015) Arrays of copper nanowire electrodes: preparation, characterization and application as nitrate sensor. Sensors Actuators B 207(A):186–192

    Article  Google Scholar 

  • Suárez R, Horstkotte B, Cerdà V (2014) In-syringe magnetic stirring-assisted dispersive liquid–liquid microextraction for automation and downscaling of methylene blue active substances assay. Talanta 130:555–560

    Article  Google Scholar 

  • Sun P, Armstrong DW et al (2010) Ionic liquids in analytical chemistry. Anal Chim Acta 661(1):1–16

    Article  Google Scholar 

  • Svobodova-Tesarova E, Baldrianova L, Stoces M et al (2011) Antimony powder-modified carbon paste electrodes for electrochemical stripping determination of trace heavy metals. Electrochim Acta 56(19):6673–6677

    Article  Google Scholar 

  • Taylor P, Clevenger WL, Smith BW et al (2006) Trace determination of mercury: a review. Crit Rev Anal Chem 27(1):1–26

    Google Scholar 

  • Tong J, Dong T, Bian C et al (2015) An integrated photocatalytic microfluidic platform enabling total phosphorus digestion. J Micromech Microeng 25(2):025006

    Article  Google Scholar 

  • Torma F, Kádár M, Tóth K et al (2008) Nafion®/2,2′-bipyridyl-modified bismuth film electrode for anodic stripping voltammetry. Anal Chim Acta 619(2):173–182

    Article  Google Scholar 

  • Tsuji E, Hirata N, Aoki Y et al (2012) Preparation of non-annealed anatase TiO2 film on ITO substrate by anodizing in hot phosphate/glycerol electrolyte for dye-sensitized solar cells. Mater Lett 91:39–41

    Article  Google Scholar 

  • Udnan Y, McKelvie ID, Grace MR et al (2005) Evaluation of on-line preconcentration and flow-injection amperometry for phosphate determination in fresh and marine waters. Talanta 66:461–466

    Article  Google Scholar 

  • Uğurlu M, Karaoğlu MH (2009) Removal of AOX, total nitrogen and chlorinated lignin from bleached Krsft mill effluents by UV oxidation in the presence of hydrogen peroxide utilizing TiO2 as photocatalyst. Environ Sci Pollut Res 16(3):265–273

    Article  Google Scholar 

  • UNEP (United Nations Environment Programme) Collaborating Centre on Energy and Environment (2006) Environmental pollution and its effects. http://www.uccee.org/environmental_Pollution.html. Accessed 23 June 2017

  • Urbanová V, Vytřas K, Kuhn A (2010) Macroporous antimony film electrodes for stripping analysis of trace heavy metals. Electrochem Commun 12(1):114–117

    Article  Google Scholar 

  • Vijan PN, Sadana RS (1980) Determination of lead in drinking waters by hydride generation and atomic-absorption spectroscopy, and three other methods. Talanta 27(4):321–326

    Article  Google Scholar 

  • Wang WY, Ku Y (2006) Photocatalytic degradation of reactive red 22 in aqueous solution by UV-LED radiation. Water Res 40(12):2249–2258

    Article  Google Scholar 

  • Wang Y, Qu JH, Liu HJ (2006a) Preparation and electrochemical properties of the Pd-modified Cu electrode for nitrate reduction in water. Chin Chem Lett 17(1):61–64

    Google Scholar 

  • Wang L, Bai J, Huang P et al (2006b) Self-assembly of gold nanoparticles for the voltammetric sensing of epinephrine. Electrochem Commun 8(6):1035–1040

    Article  Google Scholar 

  • Wang J, Bian C, Tong J et al (2012a) L-aspartic acid/L-cysteine/gold nanoparticles modified microelectrode for simultaneous detection of copper and lead. Thin Solid Films 520(21):6658–6663

    Article  Google Scholar 

  • Wang J, Bian C, Tong J et al (2012b) Simultaneous detection of copper, lead and zinc on tin film/gold nanoparticles/gold microelectrode by square wave stripping voltammetry. Electroanalysis 24(8):1783–1790

    Google Scholar 

  • Wang JF, Bian C, Tong J et al (2013) Microsensor chip integrated with gold nanoparticles-modified ultramicroelectrode array for improved electroanalytical measurement of copper ions. Electroanalysis 25(7):1713–1721

    Article  Google Scholar 

  • Wang Z, Zhang L, Li N et al (2014) Onic liquid-based matrix solid-phase dispersion coupled with homogeneous liquid–liquid microextraction of synthetic dyes in condiments. J Chromatogr A 1348:52–62

    Article  Google Scholar 

  • Ward-Jones S, Banks CE, Simm AO et al (2005) An in situ copper plated boron-doped diamond microelectrode array for the sensitive electrochemical detection of nitrate. Electroanalysis 17:1806–1815

    Article  Google Scholar 

  • Wei G, Yang Z, Chen C (2003) Room temperature ionic liquid as a novel medium for liquid/liquid extraction of metal ions. Anal Chim Acta 488(2):183–192

    Article  Google Scholar 

  • Wikipedia (2017) Transducers. https://en.wikipedia.org/wiki/Transducer. Accessed 23 June 2017

  • Wilson B, Gandhi J, Zhang CL (2011) Analysis of inorganic nitrogen and related anions in high salinity water using ion chromatography with tandem UV and conductivity detectors. J Chromatogr Sci 49(8):596–602

    Article  Google Scholar 

  • Woo L, Maher W (1995) Determination of phosphorus in turbid waters using alkaline potassium peroxodisulphate digestion. Anal Chim Acta 315(1–2):123–135

    Article  Google Scholar 

  • Wu H, Guo J, Du L et al (2013) A rapid shaking-based ionic liquid dispersive liquid phase microextraction for the simultaneous determination of six synthetic food colourants in soft drinks, sugar- and gelatin-based confectionery by high-performance liquid chromatography. Food Chem 141(1):182–186

    Article  Google Scholar 

  • Xi JT, Zhang QF, Xie SH (2011) Fabrication of TiO2 aggregates by electrospraying and their application in dye-sensitized solar cells. Nanosci Nanotechnol Lett 3(5):690–696

    Article  Google Scholar 

  • Xiao D, Yuan HY, Li J et al (1995) Surface-modified cobaltbased sensor as a phosphate-sensitive electrode. J Anal Chem 67(2):288–291

    Article  Google Scholar 

  • Xie FZ, Lin XC, Wu XP et al (2008) Solid phase extraction of lead (II), copper (II), cadmium (II) and nickel (II) using gallic acid-modified silica gel prior to determination by flame atomic absorption spectrometry. Talanta 74(4):836–843

    Article  Google Scholar 

  • Xu H, Xing S, Zeng L et al (2009) Microwave-enhanced voltammetric detection of copper(II) at gold nanoparticles-modified platinum microelectrodes. J Electroanal Chem 625(1):53–59

    Article  Google Scholar 

  • Xu X, Su R, Zhao X et al (2011) Ionic liquid-based microwave-assisted dispersive liquid–liquid microextraction and derivatization of sulfonamides in river water, honey, milk, and animal plasma. Anal Chim Acta 707(1–2):92–99

    Article  Google Scholar 

  • Yamamoto Y, Nishino Y, Ueda K (1985) Determination of trace amounts of copper, lead and zinc in cements by X-ray fluorescence spectrometry after precipitation separation with hexamethyleneammonium hexamethylenedithiocarbamate. Talanta 32(8):662–664

    Article  Google Scholar 

  • Yang J, Chen J, Zhou Y et al (2011) A nano-copper electrochemical sensor for sensitive detection of chemical oxygen demand. Sensors Actuators B 153(1):78–82

    Article  Google Scholar 

  • Yokoyama Y, Danno T, Haginoya M et al (2009) Simultaneous determination of silicate and phosphate in environmental waters using pre-column derivatization ion-pair liquid chromatography. Talanta 79(2):308–313

    Article  Google Scholar 

  • Yu LY, Zhang Q, Xu Q et al (2015) Electrochemical detection of nitrate in PM2.5 with a copper-modified carbon fiber micro-disk electrode. Talanta 143:245–253

    Article  Google Scholar 

  • Zhang XL, Tian Y (2006) Study on sensor of nitrate ions based on polypyrrole nanowires modified electrode. Chin J Sensors Actuators 19:309–312

    Google Scholar 

  • Zhang L, Jiang X, Wang E et al (2005) Attachment of gold nanoparticles to glassy carbon electrode and its application for the direct electrochemistry and electrocatalytic behavior of hemoglobin. Biosens Bioelectron 21(2):337–345

    Article  Google Scholar 

  • Zhao RS, Wang X, Zhang LL et al (2011) Ionic liquid/ionic liquid dispersive liquid–liquid microextraction, a new sample enrichment procedure for the determination of hexabromocyclododecane diastereomers in environmental water samples. Anal Methods 3:831–836

    Article  Google Scholar 

  • Zhou Q, Bai H, Xie G et al (2007) Temperature-controlled ionic liquid dispersive liquid phase micro-extraction. J Chromatogr A 1177(1):43–49

    Article  Google Scholar 

  • Zou ZW, Han J, Jang A et al (2007) A disposable on-chip phosphate sensor with planar cobalt microelectrodes on polymer substrate. J Biosens Bioelectron 22:1902–1907

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Basic Research Program of China (973 Program, Grant No. 2015CB352100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shanhong Xia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this entry

Cite this entry

Xia, S., Tong, J., Bian, C., Sun, J., Li, Y. (2017). Microsensors and Systems for Water Quality Determination. In: Huang, QA. (eds) Micro Electro Mechanical Systems. Micro/Nano Technologies, vol 2. Springer, Singapore. https://doi.org/10.1007/978-981-10-2798-7_13-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2798-7_13-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2798-7

  • Online ISBN: 978-981-10-2798-7

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics