Skip to main content

Micromachined Gas Inertial Sensors

  • Living reference work entry
  • First Online:
Micro Electro Mechanical Systems

Part of the book series: Micro/Nano Technologies ((MNT,volume 2))

  • 229 Accesses

Abstract

Development of micromachined inertial sensors has been widely addressed for many years. Most micromachined inertial sensors generally use a mechanical structure including a solid proof mass suspended on springs, which raises the complexity of structure and fabrication and particularly restricts the high shock resistance of the sensor. In this chapter, we introduce a kind of micromachined thermal gas inertial sensor by using thermally driven gaseous flow instead of solid proof mass. The sensor generally consists of one or several heaters and multiple thermistors, which detects the deflections of temperature profile induced by inertial quantities. The thermal inertial sensors, including thermal convective accelerometer and thermal gas gyroscope, have exhibited unique advantages of simple structure, low cost, and high shock resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aggarwal P, Syed Z, Niu X, El-Sheimy N (2008) A standard testing and calibration procedure for low cost MEMS inertial sensors and units. J Navig 61(02):323–336

    Article  Google Scholar 

  • Ayazi F, Najafi K (2001) A HARPSS polysilicon vibrating ring gyroscope. J Microelectromech Syst 10(2):169–179

    Article  Google Scholar 

  • Barbour N, Schmidt G (2001) Inertial sensor technology trends. IEEE Sensors J 1(4):332–339

    Article  Google Scholar 

  • Bernstein J, Cho S, King A, Kourepenis A, Maciel P, Weinberg MA (1993) Micromachined comb-drive tuning fork rate gyroscope. In: Proceedings of the IEEE micro electro mechanical systems (MEMS). IEEE, pp 143–148

    Google Scholar 

  • Brown A, Lu Y (2004) Performance test results of an integrated GPS/MEMS inertial navigation package. In: Proceedings of ION GNSS, S 825–832

    Google Scholar 

  • Cai SL, Zhu R, Ding HG, Yang YJ, Su Y (2013) A Micromachined integrated gyroscope and accelerometer based on gas thermal expansion. In: 2013 Transducers & eurosensors XXVII: the 17th international conference on solid-state sensors, actuators and microsystems (TRANSDUCERS & EUROSENSORS XXVII). IEEE, pp 50–53

    Google Scholar 

  • Chatfield AB (1997) Fundamentals of high accuracy inertial navigation, Bd 174. American Institute of Aeronautics and Astronautics, Reston

    Book  Google Scholar 

  • El-Sheimy N (2006) Inertial techniques and INS/DGPS integration. In: Engo 623-Course Notes, Department of Geomatics Engineering, University of Calgary, Calgary

    Google Scholar 

  • Hanse JG (2004) Honeywell MEMS inertial technology & product status. In: Position location and navigation symposium, PLANS 2004. IEEE, pp 43–48

    Google Scholar 

  • Höflinger F, Müller J, Zhang R, Reindl LM, Burgard W (2013) A wireless micro inertial measurement unit (IMU). IEEE Trans Instrum Meas 62(9):2583–2595

    Article  Google Scholar 

  • Jafari M, Najafabadi TA, Moshiri B, Tabatabaei SS, Sahebjameyan M (2014) PEM stochastic modeling for MEMS inertial sensors in conventional and redundant IMUs. IEEE Sensors J 14(6):2019–2027

    Article  Google Scholar 

  • Lau C (1991) Neural networks: theoretical foundations and analysis. IEEE Press, New York

    Google Scholar 

  • Leung AM, Jones J, Czyzewska E, Chen J, Pascal M (1997 Micromachined accelerometer with no proof mass. In: International electron devices meeting, IEDM’97. Technical Digest. IEEE, pp 899–902

    Google Scholar 

  • Leung A, Jones J, Czyzewska E, Chen J, Woods B (1998) Micromachined accelerometer based on convection heat transfer. In: Proceedings of the IEEE micro electro mechanical systems (MEMS), pp 627–630

    Google Scholar 

  • Lienhard JH (1987) A heat transfer textbook, 3rd edn. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Lienhard JH, JH IV, L V (2012) A heat transfer textbook. Phlogiston Press, Cambridge, MA

    Google Scholar 

  • Liu SQ, Zhu R (2016) System error compensation methodology based on a neural network for a micromachined inertial measurement unit. Sensors 16(2):175

    Article  Google Scholar 

  • Ma L, Chen W, Li B, You Z, Chen Z (2014) Fast field calibration of MIMU based on the Powell algorithm. Sensors 14(9):16062–16081

    Article  Google Scholar 

  • Maenaka K, Shiozawa T (1994) A study of silicon angular rate sensors using anisotropic etching technology. Sensors Actuators A Phys 43(1–3):72–77

    Article  Google Scholar 

  • Naseri H, Homaeinezhad M (2014) Improving measurement quality of a MEMS-based gyro-free inertial navigation system. Sensors Actuators A Phys 207:10–19

    Article  Google Scholar 

  • Nieminen T, Kangas J, Suuriniemi S, Kettunen L (2010) An enhanced multi-position calibration method for consumer-grade inertial measurement units applied and tested. Meas Sci Technol 21(10):105204

    Article  Google Scholar 

  • Shiozawa T, Dau V, Dao DV, Kumagai H, Sugiyama S 2004 A Dual axis thermal convective silicon gyroscope. In: Proceedings of the 2004 international symposium on micro-nanomechatronics and human science. IEEE, pp 277–282

    Google Scholar 

  • Takemura K, Yokota S, Suzuki M, Edamura K, Kumagai H, Imamura T (2009) A liquid rate gyroscope using electro-conjugate fluid. Sensors Actuators A Phys 149(2):173–179

    Article  Google Scholar 

  • Tannehill J, Anderson D, Pletcher R (1997) Computational fluid mechanics and heat transfer, 2nd edn. Washington, DC, Taylor & Francis Ltd, pp 15–22

    Google Scholar 

  • Tipler PA, Mosca GP (2008) Physics for scientists and engineers, vol 1, 6th edn. Worth Publishers, New York

    Google Scholar 

  • Yazdi N, Ayazi F, Najafi K (1998) Micromachined inertial sensors. In: Proceedings of the IEEE. vol 8, pp 1640–1659

    Google Scholar 

  • Zhang H, Wu Y, Wu W, Wu M, Hu X (2009) Improved multi-position calibration for inertial measurement units. Meas Sci Technol 21(1):015107

    Article  Google Scholar 

  • Zhu R, Zhou Z (2006) Calibration of three-dimensional integrated sensors for improved system accuracy. Sensors Actuators A Phys 127(2):340–344

    Article  Google Scholar 

  • Zhu R, Su Y, Ding H (2005) A MEMS hybrid inertial sensor based on convection heat transfer. In: The 13th international conference on solid-state sensors, actuators and microsystems. Digest of technical papers. TRANSDUCERS’05. IEEE, pp 113–116

    Google Scholar 

  • Zhu R, Ding H, Su Y, Zhou Z (2006) Micromachined gas inertial sensor based on convection heat transfer. Sensors Actuators A Phys 130:68–74

    Article  Google Scholar 

  • Zhu R, Ding H, Yang Y, Su Y (2009) Sensor fusion methodology to overcome cross-axis problem for micromachined thermal gas inertial sensor. IEEE Sensors J 9(6):707–712

    Article  Google Scholar 

  • Zhu R, Ding H, Su Y, Yang Y (2010) Modeling and experimental study on characterization of micromachined thermal gas inertial sensors. Sensors 10(9):8304–8315

    Article  Google Scholar 

  • Zhu R, Cai S, Ding H, Yang YJ, Su Y (2014) A micromachined gas inertial sensor based on thermal expansion. Sensors Actuators A Phys 212:173–180

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this entry

Cite this entry

Zhu, R. (2017). Micromachined Gas Inertial Sensors. In: Huang, QA. (eds) Micro Electro Mechanical Systems. Micro/Nano Technologies, vol 2. Springer, Singapore. https://doi.org/10.1007/978-981-10-2798-7_11-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2798-7_11-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2798-7

  • Online ISBN: 978-981-10-2798-7

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics