Skip to main content

Optical Fiber Microfluidic Sensors Based on Opto-physical Effects

Handbook of Optical Fibers
  • 461 Accesses

Abstract

Microfluidics has been extensively investigated for biological and chemical applications such as biomolecule detection, drug screening, chemical synthesis, and analysis. The fusion of microfluidics and photonics has given birth to an exciting new area, optofluidics. Optofluidics could further broaden the application and extend the functionality of microfluidics. When a laser irradiates into a microfluid, opto-physical effects may happen due to the strong interaction between light and liquid. Such opto-physical effects have great potential for optofluidic applications. In this chapter, the optical fiber optofluidic (OF 2) sensors based on the opto-physical effects, including laser-induced force (optical force), and photothermal effects are introduced. One unique advantage of these sensors is the fabrication process that is very simple and cost-effective. Based on the opto-physical effects, a cleaved optical fiber is good enough to perform high-performance sensing, which is much simpler than microstructured optical fibers or micro-fabricated structures. The optical forces and photothermal effects in microfluidics are not only crucial for sensing applications but also promising for sorting cells or particles and for developing optofluidic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • A. Ashkin, Acceleration and trapping of particles by radiation pressure. Phys. Rev. Lett. 24, 156 (1970)

    Article  Google Scholar 

  • A. Ashkin, Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime. Biophys. J. 61, 569–582 (1992)

    Article  Google Scholar 

  • A. Ashkin, J.M. Dziedzic, J. Bjorkholm, S. Chu, Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 11, 288–290 (1986)

    Article  Google Scholar 

  • A. Bertucci, A. Manicardi, A. Candiani, S. Giannetti, A. Cucinotta, G. Spoto, M. Konstantaki, S. Pissadakis, S. Selleri, R. Corradini, Detection of unamplified genomic DNA by a PNA-based microstructured optical fiber (MOF) Bragg-grating optofluidic system. Biosens. Bioelectron. 63, 248–254 (2015)

    Article  Google Scholar 

  • D.S. Bykov, O.A. Schmidt, T.G. Euser, P.S.J. Russell, Flying particle sensors in hollow-core photonic crystal fibre. Nat. Photonics 9, 461 (2015)

    Google Scholar 

  • Y.-H. Chuang, K.-G. Sun, C.-J. Wang, J. Huang, C.-L. Pan, A simple chemical etching technique for reproducible fabrication of robust scanning near-field fiber probes. Rev. Sci. Instrum. 69, 437–439 (1998)

    Article  Google Scholar 

  • A.M. Cubillas, S. Unterkofler, T.G. Euser, B.J. Etzold, A.C. Jones, P.J. Sadler, P. Wasserscheid, P.S.J. Russell, Photonic crystal fibres for chemical sensing and photochemistry. Chem. Soc. Rev. 42, 8629–8648 (2013)

    Article  Google Scholar 

  • S. Dochow, C. Krafft, U. Neugebauer, T. Bocklitz, T. Henkel, G. Mayer, J. Albert, J. Popp, Tumour cell identification by means of Raman spectroscopy in combination with optical traps and microfluidic environments. Lab Chip 11, 1484 (2011)

    Article  Google Scholar 

  • P. Domachuk, B. Eggleton, Fiber-based optofluidics. Proc. SPIE 6588, 65880C (2007)

    Article  Google Scholar 

  • X. Fan, I.M. White, Optofluidic microsystems for chemical and biological analysis. Nat. Photonics 5, 591–597 (2011)

    Article  Google Scholar 

  • Y. Gong, A.-Y. Ye, Y. Wu, Y.-J. Rao, Y. Yao, S. Xiao, Graded-index fiber tip optical tweezers: numerical simulation and trapping experiment. Opt. Express 21, 16181–16190 (2013)

    Article  Google Scholar 

  • Y. Gong, W. Huang, Q.-F. Liu, Y. Wu, Y. Rao, G.-D. Peng, J. Lang, K. Zhang, Graded-index optical fiber tweezers with long manipulation length. Opt. Express 22, 25267–25276 (2014)

    Article  Google Scholar 

  • Y. Gong, C. Zhang, Q.-F. Liu, Y. Wu, H. Wu, Y. Rao, G.-D. Peng, Optofluidic tunable manipulation of microparticles by integrating graded-index fiber taper with a microcavity. Opt. Express 23, 3762–3769 (2015a)

    Article  Google Scholar 

  • Y. Gong, Q.-F. Liu, C.-L. Zhang, Y. Wu, Y.-J. Rao, G.-D. Peng, Microfluidic flow rate detection with a large dynamic range by optical manipulation. IEEE Photon. Technol. Lett. 27, 2508–2511 (2015b)

    Article  Google Scholar 

  • Y. Gong, L. Qiu, C. Zhang, Y. Wu, Y.-J. Rao, G.-D. Peng, Dual-mode fiber optofluidic flowmeter with a large dynamic range. J. Lightwave Technol. 35, 2156–2160 (2017)

    Article  Google Scholar 

  • J. Guck, R. Ananthakrishnan, T. Moon, C. Cunningham, J. Käs, Optical deformability of soft biological dielectrics. Phys. Rev. Lett. 84, 5451 (2000)

    Article  Google Scholar 

  • J. Guck, R. Ananthakrishnan, H. Mahmood, T.J. Moon, C.C. Cunningham, J. Käs, The optical stretcher: a novel laser tool to micromanipulate cells. Biophys. J. 81, 767–784 (2001)

    Article  Google Scholar 

  • Y. Harada, T. Asakura, Radiation forces on a dielectric sphere in the Rayleigh scattering regime. Opt. Commun. 124, 529–541 (1996)

    Article  Google Scholar 

  • Z. He, F. Tian, Y. Zhu, N. Lavlinskaia, H. Du, Long-period gratings in photonic crystal fiber as an optofluidic label-free biosensor. Biosens. Bioelectron. 26, 4774–4778 (2011)

    Article  Google Scholar 

  • S. Hepplestone, A. Ciavarella, C. Janke, G. Srivastava, Size and temperature dependence of the specific heat capacity of carbon nanotubes. Surf. Sci. 600, 3633–3636 (2006)

    Article  Google Scholar 

  • P. Jess, V. Garcés-Chávez, D. Smith, M. Mazilu, L. Paterson, A. Riches, C. Herrington, W. Sibbett, K. Dholakia, Dual beam fibre trap for Raman microspectroscopy of single cells. Opt. Express 14, 5779–5791 (2006)

    Article  Google Scholar 

  • G. Kostovski, P.R. Stoddart, A. Mitchell, The optical fiber tip: an inherently light-coupled microscopic platform for micro-and nanotechnologies. Adv. Mater. 26, 3798–3820 (2014)

    Article  Google Scholar 

  • C. Liberale, P. Minzioni, F. Bragheri, F. De Angelis, E. Di Fabrizio, I. Cristiani, Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation. Nat. Photonics 1, 723–727 (2007)

    Article  Google Scholar 

  • Y. Liu, M. Yu, Investigation of inclined dual-fiber optical tweezers for 3D manipulation and force sensing. Opt. Express 17, 13624–13638 (2009)

    Article  Google Scholar 

  • Z. Liu, C. Guo, J. Yang, L. Yuan, Tapered fiber optical tweezers for microscopic particle trapping: fabrication and application. Opt. Express 14, 12510–12516 (2006)

    Article  Google Scholar 

  • X. Liu, T. Gong, Y. Liu, Z. Wang, A novel refractometric sensor based on optofluidic integration of composite core photonic crystal fibers. J. Opt. 19, 015301 (2016)

    Article  Google Scholar 

  • S.K. Mohanty, K.S. Mohanty, M.W. Berns, Manipulation of mammalian cells using a single-fiber optical microbeam. J. Biomed. Opt. 13, 054049 (2008)

    Article  Google Scholar 

  • D. Psaltis, S.R. Quake, C. Yang, Developing optofluidic technology through the fusion of microfluidics and optics. Nature 442, 381 (2006)

    Article  Google Scholar 

  • K. Taguchi, K. Atsuta, T. Nakata, R. Ikeda, Levitation of a microscopic object using plural optical fibers. Opt. Commun. 176, 43–47 (2000)

    Article  Google Scholar 

  • A. Tam, C. Patel, Optical absorptions of light and heavy water by laser optoacoustic spectroscopy. Appl. Opt. 18, 3348–3358 (1979)

    Article  Google Scholar 

  • M. Terazima, N. Hirota, S.E. Braslavsky, A. Mandelis, S.E. Bialkowski, G.J. Diebold, R. Miller, D. Fournier, R.A. Palmer, A. Tam, Quantities, terminology, and symbols in photothermal and related spectroscopies (IUPAC recommendations 2004). Pure Appl. Chem. 76, 1083–1118 (2004)

    Article  Google Scholar 

  • J. Tian, Y. Lu, Q. Zhang, M. Han, Microfluidic refractive index sensor based on an all-silica in-line Fabry–Perot interferometer fabricated with microstructured fibers. Opt. Express 21, 6633–6639 (2013)

    Article  Google Scholar 

  • J. Tian, Z. Lu, M. Quan, Y. Jiao, Y. Yao, Fast response Fabry–Perot interferometer microfluidic refractive index fiber sensor based on concave-core photonic crystal fiber. Opt. Express 24, 20132–20142 (2016)

    Article  Google Scholar 

  • S. Unterkofler, M.K. Garbos, T.G. Euser, P.S.J. Russell, Long-distance laser propulsion and deformation-monitoring of cells in optofluidic photonic crystal fiber. J. Biophotonics 6, 743–752 (2013)

    Article  Google Scholar 

  • D.K. Wu, B.T. Kuhlmey, B.J. Eggleton, Ultrasensitive photonic crystal fiber refractive index sensor. Opt. Lett. 34, 322–324 (2009)

    Article  Google Scholar 

  • K. Zhang, A. Jian, X. Zhang, Y. Wang, Z. Li, H.-Y. Tam, Laser-induced thermal bubbles for microfluidic applications. Lab Chip 11, 1389–1395 (2011)

    Article  Google Scholar 

  • Y. Zhang, P. Liang, Z. Liu, J. Lei, J. Yang, L. Yuan, A novel temperature sensor based on optical trapping technology. J. Lightwave Technol. 32, 1394–1398 (2014)

    Article  Google Scholar 

  • C.-L. Zhang, Y. Gong, Q.-F. Liu, Y. Wu, Y.-J. Rao, G.-D. Peng, Graded-index fiber enabled strain-controllable optofluidic manipulation. IEEE Photon. Technol. Lett. 28, 256–259 (2016)

    Article  Google Scholar 

  • C.-L. Zhang, Y. Gong, W.-L. Zou, Y. Wu, Y.-J. Rao, G.-D. Peng, X. Fan, Microbubble-based fiber optofluidic interferometer for sensing. J. Lightwave Technol. 35, 2514–2519 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Zhang, CL., Gong, CY., Gong, Y., Rao, YJ., Peng, GD. (2018). Optical Fiber Microfluidic Sensors Based on Opto-physical Effects. In: Peng, GD. (eds) Handbook of Optical Fibers. Springer, Singapore. https://doi.org/10.1007/978-981-10-1477-2_64-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-1477-2_64-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-1477-2

  • Online ISBN: 978-981-10-1477-2

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Optical Fiber Microfluidic Sensors Based on Opto-physical Effects
    Published:
    28 February 2019

    DOI: https://doi.org/10.1007/978-981-10-1477-2_64-2

  2. Original

    Optical Fiber Microfluidic Sensors Based on Opto-physical Effects
    Published:
    11 December 2017

    DOI: https://doi.org/10.1007/978-981-10-1477-2_64-1