Skip to main content

Lipid Composition of Arabidopsis thaliana Pollen

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Encyclopedia of Lipidomics
  • 149 Accesses

Synonyms

Lipid bodies; Lipid droplets; Oil bodies

Definition

Pollen grains:

the desiccated transportable form of the male gametophyte of higher land plants.

Pollen coat:

a lipid rich layer surrounding the pollen grain.

Pollen lipids – an Overview

Pollen grains are the desiccated transportable form of the male gametophyte of higher land plants. During the fertilization process, the vegetative cell of the pollen tube transforms itself into a pollen tube that grows through the female floral tissue to deliver the two sperm cells to the ovule.

Pollen grains mature in the pollen sac of the anther nourished by the tapetum cells (Berger and Twell 2011). These cells are important for the formation of the pollen cell wall (Quilichini et al. 2014) which contains mainly sporopollenin. This biopolymer consists of phenolics and lipids including fatty acids and carotenoids. Later in pollen development, the tapetum cells rupture (Heslop-Harrison 1968), setting free lipids that overlay the cell wall...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Bashir MEH, Lui JH, Palnivelu R, Naclerio RM, Preuss D. Pollen lipidomics: lipid profiling exposes a notable diversity in 22 allergenic pollen and potential biomarkers of the allergic immune response. Plos One. 2013;8(2):1–23.

    Article  Google Scholar 

  • Berger F, Twell D. Germline specification and function in plants. Annu Rev Plant Biol. 2011;62:461–84. Epub 2011/02/22.

    Article  CAS  PubMed  Google Scholar 

  • Botte CY, Deligny M, Roccia A, Bonneau AL, Saidani N, Hardre H, et al. Chemical inhibitors of monogalactosyldiacylglycerol synthases in Arabidopsis thaliana. Nat Chem Biol. 2011;7(11):834–42. Epub 2011/09/29.

    Article  CAS  PubMed  Google Scholar 

  • Carland F, Fujioka S, Nelson T. The sterol methyltransferases SMT1, SMT2, and SMT3 influence Arabidopsis development through nonbrassinosteroid products. Plant Physiol. 2010;153(4):1940–1.

    Article  CAS  Google Scholar 

  • Dietrich CR, Han G, Chen M, Berg RH, Dunn TM, Cahoon EB. Loss-of-function mutations and inducible RNAi suppression of Arabidopsis LCB2 genes reveal the critical role of sphingolipids in gametophytic and sporophytic cell viability. Plant J. 2008;54(2):284–98. Epub 2008/01/23.

    Article  CAS  PubMed  Google Scholar 

  • Evans DE, Sang JP, Cominos X, Rothnie NE, Knox RB. A study of phospholipids and galactolipids in pollen of two lines of Brassica napus L. (Rapeseed) with different ratios of linoleic to linolenic acid. Plant Physiol. 1990;93(2):418–24. Epub 1990/06/01.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heilmann I, Ischebeck T. Male functions and malfunctions: the impact of phosphoinositides on pollen development and pollen tube growth. Plant Reprod. 2016;1:3–20.

    Google Scholar 

  • Heslop-Harrison J. Tapetal origin Of pollen-coat substances in Lilium. New Phytol. 1968;67(4):779–86.

    Article  CAS  Google Scholar 

  • Honys D, Twell D. Transcriptome analysis of haploid male gametophyte development in Arabidopsis. Genome Biol. 2004;5(11):R85. Epub 2004/11/13.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ischebeck T. Lipids in pollen – they are different. Biochim Biophys Acta. 2016;1861(9, Part B):1315–28.

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi K, Awai K, Takamiya K, Ohta H. Arabidopsis type B monogalactosyldiacylglycerol synthase genes are expressed during pollen tube growth and induced by phosphate starvation. Plant Physiol. 2004;134(2):640–8. Epub 2004/01/20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luttgeharm KD, Kimberlin AN, Cahoon RE, Cerny RL, Napier JA, Markham JE, et al. Sphingolipid metabolism is strikingly different between pollen and leaf in Arabidopsis as revealed by compositional and gene expression profiling. Phytochemistry. 2015;115:121–9. Epub 2015/03/22.

    Article  CAS  PubMed  Google Scholar 

  • McDowell SC, Lopez-Marques RL, Poulsen LR, Palmgren MG, Harper JF. Loss of the Arabidopsis thaliana P(4)-ATPase ALA3 reduces adaptability to temperature stresses and impairs vegetative, pollen, and ovule development. Plos One. 2013;8(5):e62577. Epub 2013/05/15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McDowell SC, Lopez-Marques RL, Cohen T, Brown E, Rosenberg A, Palmgren MG, et al. Loss of the Arabidopsis thaliana P4-ATPases ALA6 and ALA7 impairs pollen fitness and alters the pollen tube plasma membrane. Front Plant Sci. 2015;6:197. Epub 2015/05/09.

    Article  PubMed  PubMed Central  Google Scholar 

  • Msanne J, Chen M, Luttgeharm KD, Bradley AM, Mays ES, Paper JM, et al. Glucosylceramides are critical for cell-type differentiation and organogenesis, but not for cell viability in Arabidopsis. Plant J. 2015;84(1):188–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamura Y, Kobayashi K, Ohta H. Activation of galactolipid biosynthesis in development of pistils and pollen tubes. Plant Physiol Biochem. 2009;47(6):535–9. Epub 2009/02/03.

    Article  CAS  PubMed  Google Scholar 

  • Piffanelli P, Ross JH, Murphy DJ. Intra- and extracellular lipid composition and associated gene expression patterns during pollen development in Brassica napus. Plant J. 1997;11(3):549–62. Epub 1997/03/01.

    Article  CAS  PubMed  Google Scholar 

  • Piffanelli P, Ross JHE, Murphy DJ. Biogenesis and function of the lipidic structures of pollen grains. Sex Plant Reprod. 1998;11(2):65–80.

    Article  CAS  Google Scholar 

  • Quilichini TD, Douglas CJ, Samuels AL. New views of tapetum ultrastructure and pollen exine development in Arabidopsis thaliana. Ann Bot. 2014;114(6):1189–201. Epub 2014/04/12.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rennie EA, Ebert B, Miles GP, Cahoon RE, Christiansen KM, Stonebloom S, et al. Identification of a sphingolipid alpha-glucuronosyltransferase that is essential for pollen function in Arabidopsis. Plant Cell. 2014;26(8):3314–25. Epub 2014/08/15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez-Rosales MP, Donaire JP. Germination-induced changes in acyl lipids and free sterols of olive pollen. New Phytol. 1988;108(4):509–14.

    Article  CAS  Google Scholar 

  • Teng C, Dong H, Shi L, Deng Y, Mu J, Zhang J, et al. Serine palmitoyltransferase, a key enzyme for de novo synthesis of sphingolipids, is essential for male gametophyte development in Arabidopsis. Plant Physiol. 2008;146(3):1322–32. Epub 2008/01/26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Villette C, Berna A, Compagnon V, Schaller H. Plant sterol diversity in pollen from angiosperms. Lipids. 2015;50(8):749–60. Epub 2015/03/31.

    Article  CAS  PubMed  Google Scholar 

  • Wewer V, Dombrink I, vom Dorp K, Dormann P. Quantification of sterol lipids in plants by quadrupole time-of-flight mass spectrometry. J Lipid Res. 2011;52(5):1039–54. Epub 2011/03/09.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang M, Fan J, Taylor DC, Ohlrogge JB. DGAT1 and PDAT1 acyltransferases have overlapping functions in Arabidopsis triacylglycerol biosynthesis and are essential for normal pollen and seed development. Plant Cell. 2009;21(12):3885–901. Epub 2009/12/31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng Z, Xia Q, Dauk M, Shen W, Selvaraj G, Zou J. Arabidopsis AtGPAT1, a member of the membrane-bound glycerol-3-phosphate acyltransferase gene family, is essential for tapetum differentiation and male fertility. Plant Cell. 2003;15:1872–87. tpc.012427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou J, Song L, Zhang W, Wang Y, Ruan S, Wu WH. Comparative proteomic analysis of Arabidopsis mature pollen and germinated pollen. J Integr Plant Biol. 2009;51(5):438–55. Epub 2009/06/11.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Till Ischebeck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media B.V.

About this entry

Cite this entry

Ischebeck, T. (2017). Lipid Composition of Arabidopsis thaliana Pollen. In: Wenk, M. (eds) Encyclopedia of Lipidomics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7864-1_122-2

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-7864-1_122-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-7864-1

  • Online ISBN: 978-94-007-7864-1

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Pollen
    Published:
    09 February 2017

    DOI: https://doi.org/10.1007/978-94-007-7864-1_122-2

  2. Original

    Pollen
    Published:
    17 December 2016

    DOI: https://doi.org/10.1007/978-94-007-7864-1_122-1