Skip to main content

Role of Clostridium perfringens Alpha, Beta, Epsilon, and Iota Toxins in Enterotoxemia of Monogastrics and Ruminants

  • Reference work entry
  • First Online:
Microbial Toxins

Part of the book series: Toxinology ((TOXI))

  • 1275 Accesses

Abstract

Clostridium perfringens produce several virulence factors to increase colonization and improve nutrient availability. Enterotoxins are among these virulence factors, and while some only have local effects, others can act at a distance from the bacterial colonization site. Enterotoxemias are defined as diseases caused by toxins generated in the intestine and absorbed into systemic circulation with systemic consequences. The term enterotoxemia is generally used indistinctly to name enteric and/or systemic diseases, but under the definition of enterotoxemia, several aspects of intestinal bacterial diseases include pathogenesis and toxin modes of action. The present aim is to describe some enterotoxemia-associated toxins, focusing on those which clearly produce systemic and enteric effects, as well as those commonly thought to produce enterotoxemia but remain questionable upon further consideration of the existing evidence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Adamson RH, Ly JC, Fernandez-Miyakawa ME, Ochi S, Sakurai J, Uzal F, Curry FE. Clostridium perfringens epsilon-toxin increases permeability of single perfused microvessels of rat mesentery. Infect Immun. 2005;73(8):4879–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Awad MM, Bryant AE, Stevens DL, Rood JI. Virulence studies on chromosomal alpha-toxin and theta-toxin mutants constructed by allelic exchange provide genetic evidence for the essential role of alpha-toxin in Clostridium perfringens mediated gas gangrene. Mol Microbiol. 1995;15(2):191–202.

    Article  CAS  PubMed  Google Scholar 

  • Baskerville M, Wood M, Seamer J. Clostridium perfringens type E enterotoxaemia in rabbits. Vet Rec. 1980;107(1):18–9.

    Article  CAS  PubMed  Google Scholar 

  • Bunting M, Lorant DE, Bryant AE, Zimmerman GA, McIntyre TM, Stevens DL, Prescott SM. Alpha toxin from Clostridium perfringens induces proinflammatory changes in endothelial cells. J Clin Invest. 1997;100(3):565–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buxton D, Morgan KT. Studies of lesions produced in the brains of colostrum deprived lambs by Clostridium welchii (C. perfringens) type D toxin. J Comp Pathol. 1976;86(3):435–47.

    Article  CAS  PubMed  Google Scholar 

  • Dorca-Arévalo J, Soler-Jover A, Gibert M, Popoff MR, Martín-Satué M, Blasi J. Binding of ε-toxin from Clostridium perfringens in the nervous system. Vet Microbiol. 2008;131(1–2):14–25.

    Article  PubMed  Google Scholar 

  • Fernandez-Miyakawa ME, Uzal FA. The early effects of Clostridium perfringens type D epsilon toxin in ligated intestinal loops of goats and sheep. Vet Res Commun. 2003;27(3):231–41.

    Google Scholar 

  • Fernandez-Miyakawa ME, Uzal FA. Morphologic and physiologic changes induced by Clostridium perfringens type A alpha toxin in the intestine of sheep. Am J Vet Res. 2005;66(2):251–5.

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Miyakawa ME, Sayeed S, Fisher DJ, Poon R, Adams V, Rood JI, McClane BA, Saputo J, Uzal FA. Development and application of an oral challenge mouse model for studying Clostridium perfringens type D infection. Infect Immun. 2007;75(9):4282–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finnie JW. Pathogenesis of brain damage produced in sheep by Clostridium perfringens type D epsilon toxin: a review. Aust Vet J. 2003;81(4):219–21.

    Article  CAS  PubMed  Google Scholar 

  • Fisher DJ, Fernandez-Miyakawa ME, Sayeed S, Poon R, Adams V, Rood JI, Uzal FA, McClane BA. Dissecting the contributions of Clostridium perfringens type C toxins to lethality in the mouse intravenous injection model. Infect Immun. 2006;74(9):5200–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flores-Díaz M, Alape-Girón A. Role of Clostridium perfringens phospholipase C in the pathogenesis of gas gangrene. Toxicon. 2003;42(8):979–86.

    Article  PubMed  Google Scholar 

  • Freedman JC, Li J, Uzal FA, McClane BA. Proteolytic processing and activation of Clostridium perfringens epsilon toxin by caprine small intestinal contents. mBio. 2014;5(5):e01994–14. doi:10.1128/mBio.01994-14.

    Article  PubMed  PubMed Central  Google Scholar 

  • Garcia JP, Adams V, Beingesser J, Hughes ML, Poon R, Lyras D, Hill A, McClane BA, Rood JI, Uzal FA. Epsilon toxin is essential for the virulence of Clostridium perfringens type D infection in sheep, goats, and mice. Infect Immun. 2013;81(7):2405–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geric B, Carman RJ, Rupnik M, Genheimer CW, Sambol SP, Lyerly DM, Gerding DN, Johnson S. Binary toxin-producing, large clostridial toxin-negative Clostridium difficile strains are enterotoxic but do not cause disease in hamsters. J Infect Dis. 2006;193(8):1143–50.

    Article  CAS  PubMed  Google Scholar 

  • Goldstein J, Morris WE, Loidl CF, Tironi-Farinati C, McClane BA, Uzal FA, Fernandez-Miyakawa ME. Clostridium perfringens epsilon toxin increases the small intestinal permeability in mice and rats. PLoS One. 2009;4(9):e7065.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hilger H, Pust S, von Figura G, Kaiser E, Stiles BG, Popoff MR, Barth H. The long-lived nature of Clostridium perfringens iota toxin in mammalian cells induces delayed apoptosis. Infect Immun. 2009;77(12):5593–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keyburn AL, Boyce JD, Vaz P, Bannam TL, Ford ME, Parker D, DiRubbo A, Rood JI, Moore RJ. NetB, a new toxin that is associated with avian necrotic enteritis caused by Clostridium perfringens. PLoS Pathog. 2008;4(2):e26.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lebrun M, Mainil JG, Linden A. Cattle enterotoxaemia and Clostridium perfringens: description, diagnosis and prophylaxis. Vet Rec. 2010;167(1):13–22.

    Article  CAS  PubMed  Google Scholar 

  • Linden JR, Ma Y, Zhao B, Harris JM, Rumah KR, Schaeren-Wiemers N, Vartanian T. Clostridium perfringens epsilon toxin causes selective death of mature oligodendrocytes and central nervous system demyelination. mBio. 2015;6(3):e02513–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Losada-Eaton DM, Fernandez-Miyakawa ME. Clostridium perfringens epsilon toxin inhibits the gastrointestinal transit in mice. Res Vet Sci. 2010;89(3):404–8.

    Article  CAS  PubMed  Google Scholar 

  • Losada-Eaton DM, Uzal FA, Fernandez-Miyakawa ME. Clostridium perfringens epsilon toxin is absorbed from different intestinal segments of mice. Toxicon. 2008;51(7):1207–13.

    Article  CAS  PubMed  Google Scholar 

  • Manni MM, Sot J, Goñi FM. Interaction of Clostridium perfringens epsilon-toxin with biological and model membranes: a putative protein receptor in cells. Biochim Biophys Acta Biomembr. 2015;1848(3):797–804.

    Article  CAS  Google Scholar 

  • Matsuda T, Okada Y, Inagi E, Tanabe Y, Shimizu Y, Nagashima K, Sakurai J, Nagahama M, Tanaka S. Enteritis necroticans “pigbel” in a Japanese diabetic adult. Pathol Int. 2007;57(9):622–6.

    Article  PubMed  Google Scholar 

  • McClane BA, Uzal FA, Fernandez-Miyakawa ME, Lyerly DM, Wilkins TD. The enterotoxic clostridia. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E, editors. In the prokaryotes. New York: Springer US; 2006.

    Google Scholar 

  • Minami J, Katayama S, Matsushita O, Matsushita C, Okabe A. Lambda-toxin of Clostridium perfringens activates the precursor of epsilon-toxin by releasing Its N- and C-terminal peptides. Microbiol Immunol J. 1997;41(7):527–35.

    Article  CAS  Google Scholar 

  • Miyamoto O, Sumitani K, Nakamura T, Yamagami S, Miyata S, Itano T, Negi T, Okabe A. Clostridium perfringens epsilon toxin causes excessive release of glutamate in the mouse hippocampus. FEMS Microbiol Lett. 2000;189(1):109–13.

    Article  CAS  PubMed  Google Scholar 

  • Miyamoto K, Yumine N, Mimura K, Nagahama M, Li J, McClane BA, Akimoto S. Identification of novel Clostridium perfringens type E strains that carry an iota toxin plasmid with a functional enterotoxin gene. PLoS One. 2011;6(5):e20376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morris WE, Dunleavy MV, Diodati J, Berra G, Fernandez-Miyakawa ME. Effects of Clostridium perfringens alpha and epsilon toxins in the bovine gut. Anaerobe. 2012;18(1):143–7.

    Article  CAS  PubMed  Google Scholar 

  • Morgan KT, Kelly BG, Buxton D. Vascular leakage produced in the brains of mice by Clostridium welchii type D toxin. J Comp Pathol. (1975);85, 461–466.

    Google Scholar 

  • Nagahama M, Yamaguchi A. Binding and internalization of Clostridium perfringens iota-toxin in lipid rafts. Infect Immun. 2004;72(6):3267–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagahama M, Hayashi S, Morimitsu S, Sakurai J. Biological activities and pore formation of Clostridium perfringens beta toxin in HL 60 cells. J Biol Chem. 2003a;278(38):36934–41.

    Article  CAS  PubMed  Google Scholar 

  • Nagahama M, Morimitsu S, Kihara A, Akita M, Setsu K, Sakurai J. Involvement of tachykinin receptors in Clostridium perfringens beta-toxin-induced plasma extravasation. Br J Pharmacol. 2003b;138(1):23–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagahama M, Kihara A, Kintoh H, Oda M, Sakurai J. Involvement of tumour necrosis factor-alpha in Clostridium perfringens beta-toxin-induced plasma extravasation in mice. Br J Pharmacol. 2008;153(6):1296–302. doi:10.1038/bjp.2008.9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohishi I, Iwasaki M, Sakaguchi G. Purification and characterization of two components of botulinum C2 toxin. Infect Immun. 1980;30(3):668–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Papatheodorou P, Carette JE, Bell GW, Schwan C, Guttenberg G, Brummelkamp TR, Aktories K. Lipolysis-stimulated lipoprotein receptor (LSR) is the host receptor for the binary toxin Clostridium difficile transferase (CDT). Proc Natl Acad Sci. 2011;108(39):16422–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Popescu F, Wyder M, Gurtner C, Frey J, Cooke RA, Greenhill AR, Posthaus H. Susceptibility of primary human endothelial cells to C. perfringens beta-toxin suggesting similar pathogenesis in human and porcine necrotizing enteritis. Vet Microbiol. 2011;153(1–2):173–7.

    Article  CAS  PubMed  Google Scholar 

  • Popoff MR. Epsilon toxin: a fascinating pore-forming toxin. FEBS J. 2011;278(23):4602–15.

    Article  CAS  PubMed  Google Scholar 

  • Prescott JF, Parreira VR, Mehdizadeh Gohari I, Lepp D, Gong J. The pathogenesis of necrotic enteritis in chickens: what we know and what we need to know. Rev Avian Pathol. 2016;9457:1–21.

    Google Scholar 

  • Redondo LM, Farber M, Venzano A, Jost BH, Parma YR, Fernandez-Miyakawa ME. Sudden death syndrome in adult cows associated with Clostridium perfringens type E. Anaerobe. 2013;20:1–4.

    Article  CAS  PubMed  Google Scholar 

  • Redondo LM, Diaz Carrasco JM, Redondo Ea, Delgado F, Fernandez Miyakawa ME. Clostridium perfringens Type E Virulence Traits Involved in Gut Colonization. Plos One. 2015;10(3), e0121305.

    Google Scholar 

  • Rehman H, Awad WA, Lindner I, Hess M, Zentek J. Clostridium perfringens alpha toxin affects electrophysiological properties of isolated jejunal mucosa of laying hens. Poult Sci. 2006;85(7):1298–302.

    Article  CAS  PubMed  Google Scholar 

  • Richard JF, Mainguy G, Gibert M, Marvaud JC, Stiles BG, Popoff MR. Transcytosis of iota-toxin across polarized CaCo-2 cells. Mol Microbiol. 2002;43(4):907–17.

    Article  CAS  PubMed  Google Scholar 

  • Sakurai J, Duncan CL. Some properties of beta-toxin produced by Clostridium perfringens type C. Infect Immun. 1978;21(2):678–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sakurai J, Fujii Y. Purification and characterization of Clostridium perfringens beta toxin. Toxicon. 1987;25(12):1301–10.

    Article  CAS  PubMed  Google Scholar 

  • Sakurai J, Kobayashi K. Lethal and dermonecrotic activities of Clostridium perfringens lota toxin: biological activities induced by cooperation of two nonlinked components. Microbiol Immunol. 1995;39(4):249–53.

    Article  CAS  PubMed  Google Scholar 

  • Sakurai J, Nagahama M, Oda M. Clostridium perfringens alpha-toxin: characterization and Mode of Action. J Biochem. 2004;136:569–74.

    Article  CAS  PubMed  Google Scholar 

  • Sakurai J, Nagahama M, Oda M, Tsuge H, Kobayashi K. Clostridium perfringens iota-toxin: structure and function. Toxins. 2009;1(2):208–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sayeed S, Uzal FA, Fisher DJ, Saputo J, Vidal JE, Chen Y, Gupta P, Rood JI, McClane BA. Beta toxin is essential for the intestinal virulence of Clostridium perfringens type C disease isolate CN3685 in a rabbit ileal loop model. Mol Microbiol. 2008;67(1):15–30.

    Article  CAS  PubMed  Google Scholar 

  • Schumacher VL, Martel A, Pasmans F, Van Immerseel F, Posthaus H. Endothelial binding of beta toxin to small intestinal mucosal endothelial cells in early stages of experimentally induced Clostridium Perfringens type C enteritis in pigs. Vet Pathol. 2013;50(4):626–9.

    Article  CAS  PubMed  Google Scholar 

  • Schwan C, Stecher B, Tzivelekidis T, van Ham M, Rohde M, Hardt WD, Wehland J, Aktories K. Clostridium difficile toxin CDT induces formation of microtubule-based protrusions and increases adherence of bacteria. PLoS Pathog. 2009;5(10):e1000626.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shatursky O, Bayles R, Rogers M, Jost BH, Songer JG, Tweten RK. Clostridium perfringens beta-toxin forms potential-dependent, cation-selective channels in lipid bilayers. Infect Immun. 2000;68(10):5546–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soler-Jover A. Effect of epsilon toxin-GFP on MDCK cells and renal tubules in vivo. J Histochem Cytochem. 2004;52(7):931–42.

    Article  CAS  PubMed  Google Scholar 

  • Soler-Jover A, Dorca J, Popoff MR, Gibert M, Saura J, Tusell JM, Serratosa J, Blasi J, Martín-Satué M. Distribution of Clostridium perfringens epsilon toxin in the brains of acutely intoxicated mice and its effect upon glial cells. Toxicon. 2007;50(4):530–40.

    Article  CAS  PubMed  Google Scholar 

  • Songer JG. Clostridial enteric diseases of domestic animals. Clin Microbiol Rev. 1996;9(2):216–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Songer JG. Clostridial diseases of small ruminants. Vet Res. 1998;29(3–4):219–32.

    CAS  PubMed  Google Scholar 

  • Songer JG, Miskimmins DW. Clostridium perfringens type E enteritis in calves: two cases and a brief review of the literature. Anaerobe. 2004;10(4):239–42.

    Article  PubMed  Google Scholar 

  • Songer JG, Uzal FA. Clostridial enteric infections in pigs. J Vet Diagn Invest. 2005;17(6):528–36.

    Article  PubMed  Google Scholar 

  • Steinthorsdottir V, Fridriksdottir V, Gunnarsson E, Andresson OS. Site-directed mutagenesis of Clostridium perfringens beta-toxin: expression of wild-type and mutant toxins in Bacillus subtilis. FEMS Microbiol Lett. 1998;158(1):17–23.

    Article  CAS  PubMed  Google Scholar 

  • Stiles BG, Wilkins TD. Clostridium perfringens iota toxin: synergism between two proteins. Toxicon. 1986;24(8):767–73.

    Article  CAS  PubMed  Google Scholar 

  • Stiles BG, Hale ML, Marvaud JC, Popoff MR. Clostridium perfringens iota toxin: binding studies and characterization of cell surface receptor by fluorescence-activated cytometry. Infect Immun. 2000;68(6):3475–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stiles BG, Pradhan K, Fleming J, Samy R, Barth H, Popoff MR. Clostridium and Bacillus binary enterotoxins: bad for the bowels, and eukaryotic being. Toxins. 2014;6(9):2626–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamai E, Ishida T, Miyata S, Matsushita O, Suda H, Kobayashi S, Sonobe H, Okabe A. Accumulation of Clostridium perfringens epsilon-toxin in the mouse kidney and its possible biological significance. Infect Immun. 2003;71(9):5371–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Titball RW, Leslie DL, Harvey S, Kelly D. Hemolytic and sphingomyelinase activities of Clostridium perfringens alpha-toxin are dependent on a domain homologous to that of an enzyme from the human arachidonic acid pathway. Infect Immun. 1991;59(5):1872–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Titball RW, Naylor CE, Basak AK. The α-toxin. Anaerobe. 1999;5(2):51–64.

    Article  CAS  PubMed  Google Scholar 

  • Uzal FA. Diagnosis of Clostridium perfringens intestinal infections in sheep and goats. Anaerobe. 2004;10(2):135–43.

    Article  CAS  PubMed  Google Scholar 

  • Uzal FA, Glastonbury JR, Kelly WR, Thomas R. Caprine enterotoxaemia associated with cerebral microangiopathy. Vet Rec. 1997;141(9):224–6.

    Article  CAS  PubMed  Google Scholar 

  • Uzal FA, Rolfe BE, Smith NJ, Thomas AC, Kelly WR. Resistance of ovine, caprine and bovine endothelial cells to Clostridium perfringens type D epsilon toxin in vitro. Vet Res Commun. 1999;23(5):275–84.

    Article  CAS  PubMed  Google Scholar 

  • Uzal FA, Saputo J, Sayeed S, Vidal JE, Fisher DJ, Poon R, Adams V, Fernandez-Miyakawa ME, Rood JI, McClane BA. Development and application of new mouse models to study the pathogenesis of Clostridium perfringens type C Enterotoxemias. Infect Immun. 2009;77(12):5291–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uzal FA, Freedman JC, Shrestha A, Theoret JR, Garcia J, Awad MM, Adams V, Moore RJ, Rood JI, McClane BA. Towards an understanding of the role of Clostridium perfringens toxins in human and animal disease. Future Microbiol. 2014;9(3):361–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valgaeren B, Pardon B, Goossens E, Verherstraeten S, Schauvliege S, Timbermont L, Ducatelle R, Deprez P, Van Immerseel F. Lesion development in a new intestinal loop model indicates the involvement of a shared Clostridium perfringens virulence factor in haemorrhagic enteritis in calves. J Comp Pathol. 2013;149(1):103–12.

    Article  CAS  PubMed  Google Scholar 

  • Van Immerseel F, De Buck J, Pasmans F, Huyghebaert G, Haesebrouck F, Ducatelle R. Clostridium perfringens in poultry: an emerging threat for animal and public health. Avian Pathol. 2004;33(6):537–49.

    Article  PubMed  Google Scholar 

  • Vidal JE, McClane BA, Saputo J, Parker J, Uzal FA. Effects of Clostridium perfringens beta-toxin on the rabbit small intestine and colon. Infect Immun. 2008;76(10):4396–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wioland L, Dupont JL, Doussau F, Gaillard S, Heid F, Isope P, Pauillac S, Popoff MR, Bossu JL, Poulain B. Epsilon toxin from Clostridium perfringens acts on oligodendrocytes without forming pores, and causes demyelination. Cell Microbiol. 2015;17(3):369–88.

    Article  CAS  PubMed  Google Scholar 

  • Yonogi S, Matsuda S, Kawai T, Yoda T, Harada T, Kumeda Y, Gotoh K, Hiyoshi H, Nakamura S, Kodama T, Iida T. BEC, a novel enterotoxin of Clostridium perfringens found in human clinical isolates from acute gastroenteritis outbreaks. Infect Immun. 2014;82(6):2390–9.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mariano E. Fernandez-Miyakawa or Leandro M. Redondo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media B.V.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Fernandez-Miyakawa, M.E., Redondo, L.M. (2018). Role of Clostridium perfringens Alpha, Beta, Epsilon, and Iota Toxins in Enterotoxemia of Monogastrics and Ruminants. In: Stiles, B., Alape-Girón, A., Dubreuil, J., Mandal, M. (eds) Microbial Toxins. Toxinology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6449-1_16

Download citation

Publish with us

Policies and ethics