Skip to main content

Venoms of Colubrids

  • Reference work entry
  • First Online:
Venom Genomics and Proteomics

Part of the book series: Toxinology ((TOXI))

Abstract

Advancements in high-throughput technologies in the field of venomics, coupled with the increasing emphasis on a combination of proteomic, transcriptomic, and genomic approaches, have resulted in the ability to generate comprehensive venom profiles for many species of snakes. Rear-fanged snake venom research has slowly progressed due to the difficulties obtaining crude venom and a lack of interest in snakes that only rarely are responsible for human morbidity and mortality. However, current research into rear-fanged snake venoms has demonstrated the existence of novel venom proteins and has provided insight into the evolution and origin of snake venom toxins within advanced snakes. These venoms still remain largely unexplored, and there exists within these venoms the potential to discover proteins of therapeutic significance or with unique characteristics. The majority of research conducted on these venoms has focused on protein chemistry and proteomic techniques (electrophoresis, enzymatic assays, liquid chromatography, and mass spectrometry), with fewer explorations of venom gland transcriptomes from expressed sequence tags (ESTs). Published research on rear-fanged snake genomes is not yet available, but such studies will provide insights into the evolutionary history of snake venom proteins and the regulation of toxin expression. Venom is a trophic adaptation, and as such, the evolution and abundance of venom proteins relates directly to prey capture success and organism natural history. Without this biologically relevant perspective, which considers the presence and evolution of rear-fanged venom proteins in terms of their biological significance to the organism, proteomic and genomic approaches could produce simply a list of proteins, peptides, transcripts, and genes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bandeira N, Clauser KR, Pevzner PA. Shotgun protein sequencing: assembly of peptide tandem mass spectra from mixtures of modified proteins. Mol Cell Proteomics. 2007;6:1123–34.

    Article  CAS  PubMed  Google Scholar 

  • Calvete JJ. Snake venomics: from the inventory of toxins to biology. Toxicon. 2013;75:44–62.

    Article  CAS  PubMed  Google Scholar 

  • Calvete JJ. Next-generation snake venomics: protein-locus resolution through venom proteome decomplexation. Expert Rev Proteomics. 2014;11:315–29.

    Article  CAS  PubMed  Google Scholar 

  • Calvete JJ, Sanz L, Angulo Y, Lomonte B, Gutiérrez JM. Venoms, venomics, antivenomics. FEBS Lett. 2009;583:1736–43.

    Article  CAS  PubMed  Google Scholar 

  • Calvete JJ, Juárez P, Sanz L. Snake venomics and disintegrins: portrait and evolution of a family of snake venom integrin antagonists. In: Mackessy SP, editor. Handbook of venoms and toxins of reptiles. Boca Raton: CRC Press; 2010. p. 337–57.

    Google Scholar 

  • Calvete JJ, Ghezellou P, Paiva O, Matainaho T, Ghassempour A, Goudarzi H, Kraus F, Sanz L, Williams DJ. Snake venomics of two poorly known Hydrophiinae: comparative proteomics of the venoms of terrestrial Toxicocalamus longissimus and marine Hydrophis cyanocinctus. J Proteomics. 2012;75:4091–101.

    Article  CAS  PubMed  Google Scholar 

  • Casewell NR, Huttley GA, Wüster W. Dynamic evolution of venom proteins in squamate reptiles. Nat Commun. 2012;3:1066.

    Article  PubMed  Google Scholar 

  • Casewell NR, Wuster W, Vonk FJ, Harrison RA, Fry BG. Complex cocktails: the evolutionary novelty of venoms. Trends Ecol Evol. 2013;28:219–29.

    Article  PubMed  Google Scholar 

  • Castoe TA, de Koning APJ, Hall KT, Card DC, Schield DR, Fujita MK, Ruggiero RP, Degner JF, Daza JM, Gu W, Reyes-Velasco J, Shaney KJ, Castoe JM, Fox SE, Poole AW, Polanco D, Dobry J, Vandewege MW, Li Q, Schott R, Kapusta A, Minx P, Feschotte C, Uetz P, Ray DA, Hoffman F, Bogden R, Smith EN, Chang BSW, Vonk F, Casewell NR, Henkel C, Richardson MK, Mackessy SP, Bronikowski AM, Yandell M, Warren WC, Secor SM, Pollock DD. The Burmese python genome reveals the molecular basis for extreme adaptation in snakes. Proc Natl Acad Sci U S A. 2013;110:20645–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chapeaurouge A, Reza MA, Mackessy SP, Carvalho PC, Valente RH, Teixeira-Ferreira A, Perales J, Lin Q, Kini RM. Interrogating the venom of the viperid snake Sistrurus catenatus edwardsii by a combined approach of electrospray and MALDI mass spectrometry. PLoS One. 2015;10:e0092091.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ching ATC, Rocha MMT, Paes Leme AF, Pimenta DC, de Fátima M, Furtado D, Serrano SMT, Ho PL, Junqueira-de-Azevedo ILM. Some aspects of the venom proteome of the Colubridae snake Philodryas olfersii revealed from a Duvernoy’s (venom) gland transcriptome. FEBS Lett. 2006;580:4417–22.

    Article  CAS  PubMed  Google Scholar 

  • Ching AT, Paes Leme AF, Zelanis A, Rocha MM, Furtado Mde F, Silva DA, Trugilho MR, da Rocha SL, Perales J, Ho PL, Serrano SM, Junqueira-de-Azevedo IL. Venomics profiling of Thamnodynastes strigatus unveils matrix metalloproteinases and other novel proteins recruited to the toxin arsenal of rear-fanged snakes. J Proteome Res. 2012;11:1152–62.

    Article  CAS  PubMed  Google Scholar 

  • da Silva NJ, Aird SD. Prey specificity, comparative lethality and compositional differences of coral snake venoms. Comp Biochem Physiol Part C Toxicol Pharmacol. 2001;128:425–56.

    Article  Google Scholar 

  • Doley R, Mackessy SP, Kini RM. Role of accelerated segment switch in exons to alter targeting (ASSET) in the molecular evolution of snake venom proteins. BMC Evol Biol. 2009;9:146.

    Article  PubMed  PubMed Central  Google Scholar 

  • Durban J, Juárez P, Angulo Y, Lomonte B, Flores-Diaz M, Alape-Girón A, Sasa M, Sanz L, Gutiérrez JM, Dopazo J, Conesa A, Calvete JJ. Profiling the venom gland transcriptomes of Costa Rican snakes by 454 pyrosequencing. BMC Genomics. 2011;12:259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Durban J, Pérez A, Sanz L, Gómez A, Bonilla F, Rodríguez S, Chacón D, Sasa M, Angulo Y, Gutiérrez JM, Calvete JJ. Integrated “omics” profiling indicates that miRNAs are modulators of the ontogenetic venom composition shift in the Central American rattlesnake, Crotalus simus simus. BMC Genomics. 2013;14:234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Estrella A, Sanchez EE, Galan JA, Tao WA, Guerrero B, Navarrete LF, Rodriguez-Acosta A. Characterization of toxins from the broad-banded water snake Helicops angulatus (Linnaeus, 1758): isolation of a cysteine-rich secretory protein, Helicopsin. Arch Toxicol. 2011;85:305–13.

    Article  CAS  PubMed  Google Scholar 

  • Fox JW, Serrano SMT. Snake venom metalloproteinases. In: Mackessy SP, editor. Handbook of venoms and toxins of reptiles. Boca Raton: CRC Press; 2010. p. 95–113.

    Google Scholar 

  • Fry BG. From genome to “venome”: molecular origin and evolution of the snake venom proteome inferred from phylogenetic analysis of toxin sequences and related body proteins. Genome Res. 2005;15:403–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fry BG, Lumsden NG, Wuster W, Wickramaratna JC, Hodgson WC, Kini RM. Isolation of a neurotoxin (alpha colubritoxin) from a nonvenomous colubrid: evidence for early origin of venom in snakes. J Mol Evol. 2003a;57:446–52.

    Article  CAS  PubMed  Google Scholar 

  • Fry BG, Wuster W, Kini RM, Brusic V, Khan A, Venkataraman D, Rooney AP. Molecular evolution and phylogeny of elapid snake venom three-finger toxins. J Mol Evol. 2003b;57:110–29.

    Article  CAS  PubMed  Google Scholar 

  • Fry BG, Wuster W, Ramjan SFR, Jackson T, Martelli P, Kini RM. Analysis of Colubroidea snake venoms by liquid chromatography with mass spectrometry: evolutionary and toxinological implications. Rapid Commun Mass Spectrom. 2003c;17:2047–62.

    Article  CAS  PubMed  Google Scholar 

  • Fry BG, Scheib H, Junqueira de Azevedo I d LM, Silva DA, Casewell NR. Novel transcripts in the maxillary venom glands of advanced snakes. Toxicon. 2012;59:696–708.

    Article  CAS  PubMed  Google Scholar 

  • Gonçalves-Machado L, Pla D, Jorge RJB, Leitão-de-Araújo M, Alves MLM, Alvares DJ, de Miranda J, Nowatzki J, Morais-Zani K, Fernandes W, Tanaka-Azevedo AM, Fernández J, Zingali RB, Gutiérrez JM, Corrêa-Netto C, Calvete JJ. Combined venomics, venom gland transcriptomics, bioactivities, and antivenomics of two Bothrops jararaca populations from geographic isolated regions within the Brazilian Atlantic rainforest. J Proteomics. 2015. doi:10.1016/j.jprot.2015.04.029.

    Google Scholar 

  • Han X, Aslanian A, Yates 3rd JR. Mass spectrometry for proteomics. Curr Opin Chem Biol. 2008;12:483–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hargreaves AD, Swain MT, Hegarty MJ, Logan DW, Mulley JF. Restriction and recruitment – gene duplication and the origin and evolution of snake venom toxins. Genome Biol Evol. 2014;6:2088–95.

    Article  PubMed  PubMed Central  Google Scholar 

  • Heyborne WH, Mackessy SP. Cysteine-rich secretory proteins in reptile venoms. In: Mackessy SP, editor. Handbook of venoms and toxins of reptiles. Boca Raton: CRC Press; 2010. p. 325–36.

    Google Scholar 

  • Heyborne WH, Mackessy SP. Identification and characterization of a taxon-specific three-finger toxin from the venom of the Green Vinesnake (Oxybelis fulgidus; family Colubridae). Biochimie. 2013;95:1923–32.

    Article  CAS  PubMed  Google Scholar 

  • Hill RE, Mackessy SP. Venom yields from several species of colubrid snakes and differential effects of ketamine. Toxicon. 1997;35:671–8.

    Article  CAS  PubMed  Google Scholar 

  • Hill RE, Mackessy SP. Characterization of venom (Duvernoy’s secretion) from twelve species of colubrid snakes and partial sequence of four venom proteins. Toxicon. 2000;38:1663–87.

    Article  CAS  PubMed  Google Scholar 

  • Huang P, Mackessy SP. Biochemical characterization of phospholipase A2 (trimorphin) from the venom of the Sonoran Lyre Snake Trimorphodon biscutatus lambda (family Colubridae). Toxicon. 2004;44:27–36.

    Article  CAS  PubMed  Google Scholar 

  • Junqueira-de-Azevedo ILM, Mancini Val Bastos C, Ho PL, Schmidt Luna M, Yamanouye N, Casewell NR. Venom-related transcripts from Bothrops jararaca tissues provide novel molecular insights into the production and evolution of snake venom. Mol Biol Evol. 2014;32:754–66.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kardong KV, Kiene TL, Bels V. Evolution of trophic systems in squamates. Neth J Zool. 1997;47:411–27.

    Article  Google Scholar 

  • Kini RM, Doley R. Structure, function and evolution of three-finger toxins: mini proteins with multiple targets. Toxicon. 2010;56:855–67.

    Article  CAS  PubMed  Google Scholar 

  • Kuch U, Mebs D. Envenomations by colubrid snakes in Africa, Europe, and the Middle East. J Toxicol Toxin Rev. 2002;21:159–79.

    Article  Google Scholar 

  • Kukhtina VV, Weise C, Osipov AV, Starkov VG, Titov MI, Esipov SE, Ovchinnikova TV, Tsetlin VI, Utkin YN. The MALDI mass spectrometry in the identification of new proteins in snake venoms. Bioorg Khim. 2000;26:803–7.

    CAS  PubMed  Google Scholar 

  • Lewis RJ. Conotoxin Venom Peptide Therapeutics. Pharmaceutical Biotechnology. 2009;655:44–48.

    Article  CAS  Google Scholar 

  • Li M, Fry BG, Kini RM. Putting the brakes on snake venom evolution: the unique molecular evolutionary patterns of Aipysuras eydouxii (Marbled sea snake) phospholipase A(2) toxins. Mol Biol Evol. 2005;22:934–41.

    Article  CAS  PubMed  Google Scholar 

  • Lumsden NG, Banerjee Y, Kini RM, Kuruppu S, Hodgson WC. Isolation and characterization of rufoxin, a novel protein exhibiting neurotoxicity from venom of the psammophiine, Rhamphiophis oxyrhynchus (Rufous beaked snake). Neuropharmacology. 2007;52:1065–70.

    Article  CAS  PubMed  Google Scholar 

  • Mackessy SP. Biochemistry and pharmacology of colubrid snake venoms. J Toxicol Toxin Rev. 2002;21:43–83.

    Article  CAS  Google Scholar 

  • Mackessy SP. The field of reptile toxinoilogy: snakes, lizards and their venoms. In: Mackessy SP, editor. Handbook of venoms and toxins of reptiles. Boca Raton: CRC Press; 2010. p. 3–23.

    Google Scholar 

  • Mackessy SP, Sixberry NM, Heyborne WH, Fritts T. Venom of the brown treesnake, Boiga irregularis: ontogenetic shifts and taxa-specific toxicity. Toxicon. 2006;47:537–48.

    Article  CAS  PubMed  Google Scholar 

  • Minton SA, Weinstein SA. Colubrid snake venoms: immunologic relationships, electrophoretic patterns. Copeia. 1987;1987:993–1000.

    Article  Google Scholar 

  • O’Donnell RP, Staniland K, Mason RT. Experimental evidence that oral secretions of northwestern ring-necked snakes (Diadophis punctatus occidentalis) are toxic to their prey. Toxicon. 2007;50:810–5.

    Article  PubMed  Google Scholar 

  • OmPraba G, Chapeaurouge A, Doley R, Devi KR, Padmanaban P, Venkatraman C, Velmurugan D, Lin Q, Kini RM. Identification of a novel family of snake venom proteins veficolins from Cerberus rynchops using a venom gland transcriptomics and proteomics approach. J Proteome Res. 2010;9:1882–93.

    Article  CAS  PubMed  Google Scholar 

  • Pahari S, Mackessy SP, Kini RM. The venom gland transcriptome of the desert massasauga rattlesnake (Sistrurus catenatus edwardsii): towards an understanding of venom composition among advanced snakes (superfamily Colubroidea). BMC Mol Biol. 2007;8:115.

    Article  PubMed  PubMed Central  Google Scholar 

  • Paiva OK, Pla D, Wright CE, Beutler M, Sanz L, Gutiérrez JM, Williams DJ, Calvete JJ. Combined venom gland cDNA sequencing and venomics of the New Guinea small-eyed snake, Micropechis ikaheka. J Proteomics. 2014;110:109–229.

    Article  Google Scholar 

  • Pawlak J, Kini RM. Unique gene organization of colubrid three-finger toxins: complete cDNA and gene sequences of denmotoxin, a bird-specific toxin from colubrid snake Boiga dendrophila (Mangrove Catsnake). Biochimie. 2008;90:868–77.

    Article  CAS  PubMed  Google Scholar 

  • Pawlak J, Mackessy SP, Fry BG, Bhatia M, Mourier G, Fruchart-Gaillard C, Servent D, Menez R, Stura E, Menez A, Kini RM. Denmotoxin, a three-finger toxin from the colubrid snake Boiga dendrophila (mangrove catsnake) with bird-specific activity. J Biol Chem. 2006;281:29030–41.

    Article  CAS  PubMed  Google Scholar 

  • Pawlak J, Mackessy SP, Sixberry NM, Stura EA, Le Du MH, Menez R, Foo CS, Menez A, Nirthanan S, Kini RM. Irditoxin, a novel covalently linked heterodimeric three-finger toxin with high taxon-specific neurotoxicity. FASEB J. 2009;23:534–45.

    Article  CAS  PubMed  Google Scholar 

  • Peichoto ME, Teibler P, Mackessy SP, Leiva L, Acosta O, Goncalves LR, Tanaka-Azevedo AM, Santoro ML. Purification and characterization of patagonfibrase, a metalloproteinase showing alpha-fibrinogenolytic and hemorrhagic activities, from Philodryas patagoniensis snake venom. Biochim Biophys Acta. 2007;1770:810–9.

    Article  CAS  PubMed  Google Scholar 

  • Peichoto ME, Mackessy SP, Teibler P, Tavares FL, Burckhardt PL, Breno MC, Acosta O, Santoro ML. Purification and characterization of a cysteine-rich secretory protein from Philodryas patagoniensis snake venom. Comp Biochem Physiol Part C Toxicol Pharmacol. 2009;150:79–84.

    Article  Google Scholar 

  • Peichoto ME, Tavares FL, Dekrey G, Mackessy SP. A comparative study of the effects of venoms from five rear-fanged snake species on the growth of Leishmania major: identification of a protein with inhibitory activity against the parasite. Toxicon. 2011;58:28–34.

    Article  CAS  PubMed  Google Scholar 

  • Peichoto ME, Tavares FL, Santoro ML, Mackessy SP. Venom proteomes of South and North American opisthoglyphous (Colubridae and Dipsadidae) snake species: a preliminary approach to understanding their biological roles. Comp Biochem Physiol Part D Genomics Proteomics. 2012;7:361–9.

    Article  CAS  PubMed  Google Scholar 

  • Petras D, Heiss P, Süssmuth R, Calvete JJ. Venom proteomics of Indonesian king cobra, Ophiophagus hannah: integrating top-down and bottom-up approaches. J Proteome Res. 2015;14:2539–56.

    Article  CAS  PubMed  Google Scholar 

  • Prado-Franceschi J, Hyslop S. South American colubrid envenomations. J Toxicol Toxin Rev. 2002;21:117–58.

    Article  Google Scholar 

  • Reyes-Velasco J, Card DC, Andrew A, Shaney KJ, Adams RH, Schield D, Casewell N, Mackessy SP, Castoe TA. Expression of venom gene homologs in diverse python tissues suggests a new model for the evolution of snake venom. Mol Biol Evol. 2015;32:173–83.

    Article  CAS  PubMed  Google Scholar 

  • Rokyta DR, Wray KP, Lemmon AR, Lemmon EM, Caudle SB. A high-throughput venom-gland transcriptome for the Eastern Diamondback Rattlesnake (Crotalus adamanteus) and evidence for pervasive positive selection across toxin classes. Toxicon. 2011;57:657–71.

    Article  CAS  PubMed  Google Scholar 

  • Rokyta DR, Wray KP, Margres MJ. The genesis of an exceptionally lethal venom in the timber rattlesnake (Crotalus horridus) revealed through comparative venom-gland transcriptomics. BMC Genomics. 2013;14:394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenberg HI. An improved method for collecting secretion from Duvernoy’s gland of colubrid snakes. Copeia. 1992;1992:244–6.

    Article  Google Scholar 

  • Sanchez MN, Timoniuk A, Marunak S, Teibler P, Acosta O, Peichoto ME. Biochemical and biological analysis of Philodryas baroni (Baron’s Green Racer; Dipsadidae) venom: relevance to the findings of human risk assessment. Hum Exp Toxicol. 2014;33:22–31.

    Article  CAS  PubMed  Google Scholar 

  • Saviola AJ, Peichoto ME, Mackessy SP. Rear-fanged snake venoms: an untapped source of novel compounds and potential drug leads. Toxin Rev. 2014;33:185–201.

    Article  CAS  Google Scholar 

  • Sunagar K, Jackson T, Undheim E, Ali S, Antunes A, Fry B. Three-fingered RAVERs: rapid accumulation of variations in exposed residues of snake venom toxins. Toxins. 2013;5:2172–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sunagar K, Undheim EA, Scheib H, Gren EC, Cochran C, Person CE, Koludarov I, Kelln W, Hayes WK, King GF, Antunes A, Fry BG. Intraspecific venom variation in the medically significant Southern Pacific Rattlesnake (Crotalus oreganus helleri): biodiscovery, clinical and evolutionary implications. J Proteomics. 2014;99c:68–83.

    Article  Google Scholar 

  • Takacs Z, Nathan S. Animal Venoms in Medicine. Encyclopedia of Toxicology (Third Edition). Edited by Wexler P. Oxford. Academic Press. 2014:252–259.

    Google Scholar 

  • Vonk FJ, Jackson K, Doley R, Madaras F, Mirtschin PJ, Vidal N. Snake venom: from fieldwork to the clinic. Bioessays. 2011;33:269–79.

    Article  CAS  PubMed  Google Scholar 

  • Vonk FJ, Casewell NR, Henkel CV, Heimberg AM, Jansen HJ, McCleary RJ, Kerkkamp HM, Vos RA, Guerreiro I, Calvete JJ, Wuster W, Woods AE, Logan JM, Harrison RA, Castoe TA, de Koning AP, Pollock DD, Yandell M, Calderon D, Renjifo C, Currier RB, Salgado D, Pla D, Sanz L, Hyder AS, Ribeiro JM, Arntzen JW, van den Thillart GE, Boetzer M, Pirovano W, Dirks RP, Spaink HP, Duboule D, McGlinn E, Kini RM, Richardson MK. The king cobra genome reveals dynamic gene evolution and adaptation in the snake venom system. Proc Natl Acad Sci U S A. 2013;110:20651–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagstaff SC, Sanz L, Juárez P, Harrison RA, Calvete JJ. Combined snake venomics and venom gl and venom gland transcriptomic analysis of the ocellated carpet viper, Echis ocellatus. J Proteomics. 2009;71:609–23.

    Article  CAS  PubMed  Google Scholar 

  • Wang YM, Parmelee J, Guo YW, Tsai IH. Absence of phospholipase A(2) in most Crotalus horridus venom due to translation blockage: comparison with Crotalus horridus atricaudatus venom. Toxicon. 2010;56:93–100.

    Article  CAS  PubMed  Google Scholar 

  • Weinstein SA, Warrell DA, White J, Keyler DE. “Venomous” bites from non-venomous snakes: a critical analysis of risk and management of “colubrid” snake bites. Waltham: Elsevier; 2011. 335 p.

    Google Scholar 

  • Weinstein SA, White J, Keyler DE, Warrell DA. Non-front-fanged colubroid snakes: a current evidence-based analysis of medical significance. Toxicon. 2013;69:103–13.

    Article  CAS  PubMed  Google Scholar 

  • Weldon CL, Mackessy SP. Biological and proteomic analysis of venom from the Puerto Rican Racer (Alsophis portoricensis: Dipsadidae). Toxicon. 2010;55:558–69.

    Article  CAS  PubMed  Google Scholar 

  • Weldon CL, Mackessy SP. Alsophinase, a new P-III metalloproteinase with alpha-fibrinogenolytic and hemorrhagic activity from the venom of the rear-fanged Puerto Rican Racer Alsophis portoricensis (Serpentes: Dipsadidae). Biochimie. 2012;94:1189–98.

    Article  CAS  PubMed  Google Scholar 

  • Yamazaki Y, Morita T. Structure and function of snake venom cysteine-rich secretory proteins. Toxicon. 2004;44:227–31.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cassandra M. Modahl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Modahl, C.M., Saviola, A.J., Mackessy, S.P. (2016). Venoms of Colubrids. In: Gopalakrishnakone, P., Calvete, J. (eds) Venom Genomics and Proteomics. Toxinology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6416-3_9

Download citation

Publish with us

Policies and ethics