Skip to main content

Purkinje Cell Migration and Differentiation

  • Reference work entry
Handbook of the Cerebellum and Cerebellar Disorders

Abstract

The Purkinje cell is the pivotal element of the cerebellar network, which integrates distinct extracerebellar inputs and generates the ultimate cortical output to be conveyed to the deep cerebellar nuclei. During development, the adult Purkinje cell phenotype is acquired through a complex sequence of ontogenetic processes, including migration from the ventricular neuroepithelium to the cortex, formation of the Purkinje cell plate and progressive arrangement into the final monolayer, axonal growth and expansion of the dendritic tree. Most of the distinctive features of Purkinje cells can be achieved even in dissociated cultures, suggesting that the acquisition of adult traits is regulated by the unfolding of a cell-autonomous program. On the other hand, the maturing Purkinje cells play a fundamental role in orchestrating the development of the entire cerebellum. Namely, Purkinje cells are required for the genesis or the survival of different populations of cerebellar and extracerebellar neurons. They contribute to regulate the morphogenic processes leading to construct the cortical layering and network. They provide positional information to extracerebellar afferent systems, so to direct the topographic arrangement of projection maps. These phenomena and the underlying mechanisms are described and discussed in the chapter, proposing that development of Purkinje cells is not just the acquisition of a mature neuronal phenotype, but represents an essential organizational event of the whole cerebellar ontogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Akintunde A, Eisenman LM (1994) External cuneocerebellar projection and Purkinje cellzebrin II bands: a direct comparison of parasagittal banding in the mouse cerebellum. J Chem Neuroanat 7:75–86

    PubMed  CAS  Google Scholar 

  • Altman J, Anderson WJ (1972) Experimental reorganization of the cerebellar cortex. I. Morphological effects of elimination of all microneurons with prolonged x-irradiation started at birth. J Comp Neurol 146:355–406

    PubMed  CAS  Google Scholar 

  • Altman J, Bayer SA (1997) Development of the cerebellar system in relation to its evolution, structures and functions. CRC, Boca Raton/New York

    Google Scholar 

  • Altman J, Winfree AT (1977) Postnatal development of the cerebellar cortex in the rat. V. Spatial organization of Purkinje cell perikarya. J Comp Neurol 171:1–16

    PubMed  CAS  Google Scholar 

  • Angaut P, Sotelo C (1989) Synaptology of the cerebello-olivary pathway. Double labelling with anterograde axonal tracing and GABA immunocytochemistry in the rat. Brain Res 479:361–365

    PubMed  CAS  Google Scholar 

  • Apps R, Hawkes R (2009) Cerebellar cortical organization: a one map hypothesis. Nat Rev Neurosci 10:670–681

    PubMed  CAS  Google Scholar 

  • Armengol JA, Sotelo C (1991) Early dendritic development of Purkinje cells in the rat cerebellum. A light and electron microscopic study using axonal tracing in “in vitro” slices. Brain Res Dev Brain Res 64:95–114

    PubMed  CAS  Google Scholar 

  • Armstrong CL, Hawkes R (2000) Pattern formation in the cerebellar cortex. Biochem Cell Biol 78:551–562

    PubMed  CAS  Google Scholar 

  • Arsénio Nunes ML, Sotelo C (1985) Development of the spinocerebellar system in the postnatal rat. J Comp Neurol 237:291–306

    PubMed  Google Scholar 

  • Arsenio-Nunes ML, Sotelo C, Wehrle R (1988) Organization of spinocerebellar projection map in three types of agranular cerebellum: Purkinje cells vs. granule cells as organizer element. J Comp Neurol 273:120–136

    PubMed  CAS  Google Scholar 

  • Baptista CA, Hatten ME, Blazeski R, Mason CA (1994) Cell-cell interactions influence survival and differentiation of purified Purkinje cells in vitro. Neuron 12:243–260

    PubMed  CAS  Google Scholar 

  • Berry M, Bradley P (1976) The growth of the dendritic trees of Purkinje cells in the cerebellum of the rat. Brain Res 112:1–35

    PubMed  CAS  Google Scholar 

  • Boukhtouche F, Janmaat S, Vodjdani G, Gautheron V, Mallet J, Dusart I, Mariani J (2006) Retinoid-related orphan receptor alpha controls the early steps of Purkinje cell dendritic differentiation. J Neurosci 26:1531–1538

    PubMed  CAS  Google Scholar 

  • Bourrat F, Sotelo C (1986) Neuronal migration and dendritic maturation of the medial cerebellar nucleus in rat embryos: an HRP in vitro study using cerebellar slabs. Brain Res 378:69–85

    PubMed  CAS  Google Scholar 

  • Bouslama-Oueghlani L, Wehrlé R, Sotelo C, Dusart I (2003) The developmental loss of the ability of Purkinje cells to regenerate their axons occurs in the absence of myelin: an in vitro model to prevent myelination. J Neurosci 23:8318–8329

    PubMed  CAS  Google Scholar 

  • Bradley P, Berry M (1976) Quantitative effects of climbing fibre deafferentation on the adult Purkinje cell dendritic tree. Brain Res 112:133–140

    PubMed  CAS  Google Scholar 

  • Bradley P, Berry M (1978) The Purkinje cell dendritic tree in mutant mouse cerebellum. A quantitative Golgi study of Weaver and Staggerer mice. Brain Res 142:135–141

    PubMed  CAS  Google Scholar 

  • Buffo A, Zagrebelsky M, Huber A, Skerra A, Schwab ME, Strata P, Rossi F (2000) Application of neutralising antibodies against NI-35/250 myelin-associated neurite growth inhibitory proteins to the adult rat cerebellum induces sprouting of uninjured Purkinje cell axons. J Neurosci 20:2275–2286

    PubMed  CAS  Google Scholar 

  • Buisseret-Delmas C, Angaut P (1993) The cerebellar olivo-corticonuclear connections in the rat. Prog Neurobiol 40:63–87

    PubMed  CAS  Google Scholar 

  • Carletti B, Rossi F (2008) Neurogenesis in the cerebellum. Neuroscientist 14:91–100

    PubMed  Google Scholar 

  • Carletti B, Williams IM, Leto K, Magrassi L, Rossi F (2008) Time constraints and positional cues in the developing cerebellum regulate Purkinje cell placement in the cortical architecture. Dev Biol 317:147–160

    PubMed  CAS  Google Scholar 

  • Chedotal A, Sotelo C (1992) Early development of olivocerebellar projections in the fetal rat using CGRP immunocytochemistry. Eur J Neurosci 4:1159–1179

    PubMed  Google Scholar 

  • Chedotal A, Sotelo C (1993) The “creeper stage” in cerebellar climbing fiber synaptogenesis precedes the “pericellular nest”, ultrastructural evidence with parvalbumin immunocytochemistry. Brain Res Dev Brain Res 76:207–220

    PubMed  CAS  Google Scholar 

  • Clark BA, Monsivais P, Branco T, London M, Hausser M (2005) The site of action potential initiation in cerebellar Purkinje neurons. Nat Neurosci 8:137–139

    PubMed  CAS  Google Scholar 

  • Crepel F, Delhaye-Bouchaud N, Dupont JL, Sotelo C (1980) Dendritic and axonic fields of Purkinje cells in developing and x-irradiated rat cerebellum. A comparative study using intracellular staining with horseradish peroxidase. Neuroscience 15:333–347

    Google Scholar 

  • Curmi PA, Gavet O, Charbaut E, Ozon S, Lachkar-Colmerauer S, Manceau V, Siavoshian S, Maucuer A, Sobel A (1999) Stathmin and its phosphoprotein family: general properties, biochemical and functional interaction with tubulin. Cell Struct Funct 24:345–357

    PubMed  CAS  Google Scholar 

  • D’Antoni S, Zambusi L, Codazzi F, Zacchetti D, Grohovaz F, Provini L, Catania MV, Morara S (2010) Calcitonin gene-related peptide (CGRP) stimulates Purkinje celldendrite growth in culture. Neurochem Res 35:2135–2143

    PubMed  Google Scholar 

  • Dahmane N, Ruiz i Altaba A (1999) Sonic hedgehog regulates the growth and patterning of the cerebellum. Development 126:3089–3100

    PubMed  Google Scholar 

  • Das GD (1977) Experimental analysis of embryogenesis of cerebellum in rat. I. Subnormal growth following x-ray irradiation on day 15 of gestation. J Comp Neurol 176:419–434

    PubMed  CAS  Google Scholar 

  • De Camilli P, Miller PE, Levitt P, Walter U, Greengard P (1984) Anatomy of cerebellar Purkinje cells in the rat determined by a specific immunohistochemical marker. Neuroscience 11:761–817

    PubMed  Google Scholar 

  • de Luca A, Vassallo A, Benitez-Temino B, Menichetti G, Rossi F, Buffo A (2009) Distinct modes of neuritic growth in Purkinje neurons at different developmental stages: axonal morphogenesis and cellular regulatory mechanisms. PLoS ONE 4:e6848

    PubMed  Google Scholar 

  • Eisenman LM, Schalekamp MPA, Voogd J (1991) Development of the cerebellar cortical efferent projection: an in vitro study in rat brain slices. Brain Res Dev Brain Res 60:261–266

    PubMed  CAS  Google Scholar 

  • Fernandez-Gonzalez A, La Spada AR, Treadaway J, Higdon JC, Harris BS, Sidman RL, Morgan JI, Zuo J (2002) Purkinje cell degeneration (pcd) phenotypes caused by mutations in the axotomy-induced gene, Nna1. Science 295:1904–1906

    PubMed  CAS  Google Scholar 

  • Fink AJ, Englund C, Daza RAM, Pham D, Lau C, Nivison M, Kovalczyk T, Hevner R (2006) Development of the deep cerebellar nuclei: transcription factors and cell migration from the rhombic lip. J Neurosci 26:3066–3076

    PubMed  CAS  Google Scholar 

  • Flora A, Klisch TJ, Schuster G, Zoghbi HY (2009) Deletion of Atoh1 disrupts Sonic Hedgehog signaling in the developing cerebellum and prevents medulloblastoma. Science 326:1424–1427

    PubMed  CAS  Google Scholar 

  • Foscarin S, Gianola S, Carulli D, Fazzari P, Mi S, Tamagnone L, Rossi F (2009) Overexpression of GAP-43 modifies the distribution of the receptors for myelin-associated growth-inhibitory proteins in injured Purkinje axons. Eur J Neurosci 30:1837–1848

    PubMed  Google Scholar 

  • Gardette R, Debono M, Dupont JL, Crepel F (1985) Electrophysiological studies on the postnatal development of intracerebellar nuclei neurons in rat cerebellar slices maintained in vitro. I. Postsynaptic potentials. Brain Res 351:47–55

    PubMed  CAS  Google Scholar 

  • Gianola S, Savio T, Schwab ME, Rossi F (2003) Cell-autonomous mechanisms and myelin-associated factors contribute to the development of Purkinje axon intracortical plexus in rat cerebellum. J Neurosci 23:4613–4624

    PubMed  CAS  Google Scholar 

  • Gianola S, de Castro SF, Rossi F (2009) Anosmin-1 stimulates outgrowth and branching of developing Purkinje axons. Neuroscience 158:570–584

    PubMed  CAS  Google Scholar 

  • Gilmore EC, Herrup K (2000) Cortical development: receiving reelin. Curr Biol 10:R162–R166

    PubMed  CAS  Google Scholar 

  • Goffinet AM (1983) The embryonic development of the cerebellum in normal and reeler mutant mice. Anat Embryol 168:73–86

    PubMed  CAS  Google Scholar 

  • Golgi C (1883) Sulla fina anatomia degli organi centrali del sistema nervoso IV. Sulla fina anatomia delle circonvoluzioni cerebellari. Riv Sper Freniatr Med Leg 9:1–17

    Google Scholar 

  • Gravel C, Leclerc N, Rafrafi J, Sasseville R, Thivierge L, Hawkes R (1987) Monoclonal antibodies reveals the global organization of the cerebellar cortex. J Neurosci Meth 21:145–157

    CAS  Google Scholar 

  • Hack I, Bancila M, Loulier K, Carroll P, Cremer H (2002) Reelin is a detachment signal in tangential chain-migration during postnatal neurogenesis. Nat Neurosci 5:939–945

    PubMed  CAS  Google Scholar 

  • Hamilton BA, Frankel WN, Kerrebrock AW, Hawkins TL, FitzHugh W, Kusumi K, Russell LB, Mueller K, van Berkel V, Birren BW, Kruglyak L, Lander ES (1996) Disruption of the nuclear hormone receptor RORalpha in staggerer mice. Nature 379:736–739

    PubMed  CAS  Google Scholar 

  • Hatten ME (1999) Central nervous system neuronal migration. Annu Rev Neurosci 22:511–539

    PubMed  CAS  Google Scholar 

  • Hatten ME, Heintz N (1995) Mechanism of neural patterning and specialization in the developing cerebellum. Annu Rev Neurosci 18:385–408

    PubMed  CAS  Google Scholar 

  • Hawkes R, Gravel C (1991) The modular cerebellum. Prog Neurobiol 36:309–327

    PubMed  CAS  Google Scholar 

  • Hawkes R, Colonnier M, Leclerc N (1985) Monoclonal antibodies reveal sagittal banding in the rodent cerebellar cortex. Brain Res 333(2):359–365

    PubMed  CAS  Google Scholar 

  • Hawkes R, Brochu G, Doré L, Gravel C, Leclerc N (1992) Zebrins: molecular markers of compartmentation in the cerebellum. In: Llinas R, Sotelo C (eds) The cerebellum revisited. Springer, New York, pp 22–55

    Google Scholar 

  • Henke RM, Savage TK, Meredith DM, Glasgow SM, Hori K, Dumas J, MacDonald RJ, Johnson JE (2009) Neurog2 is a direct downstream target of the Ptf1a-Rbpj transcription complex in dorsal spinal cord. Development 136:2945–2954

    PubMed  CAS  Google Scholar 

  • Hirai H, Launey T (2000) The regulatory connection between activity of granule cells NMDA receptors and dendritic differentiation of cerebellar Purkinje cells. J Neurosci 20:5217–5224

    PubMed  CAS  Google Scholar 

  • Hirano A, Dembitzer HM (1973) Cerebellar alterations in the weaver mouse. J Cell Biol 56:478–486

    PubMed  CAS  Google Scholar 

  • Hoshino M (2006) Molecular machinery governing GABAergic neuron specification in the cerebellum. Cerebellum 5:193–198

    PubMed  CAS  Google Scholar 

  • Hoshino M, Nakamura S, Mori K, Kawauchi T, Terao M, Nishimura YV, Fukuda A, Fuse T, Matsuo N, Sone M, Watanabe M, Bito H, Terashima T, Wright CVE, Kawaguchi Y, Nakao K, Nabeshima Y (2005) Ptf1a, a bHLH transcriptional gene, defines GABAergic neuronal fates in cerebellum. Neuron 47:201–213

    PubMed  CAS  Google Scholar 

  • Ito M (2006) Cerebellar circuitry as a neuronal machine. Prog Neurobiol 78:272–303

    PubMed  Google Scholar 

  • Jensen P, Zoghbi HY, Goldowitz D (2002) Dissection of the cellular and molecular events that position cerebellar Purkinje cells: a study of the math1 null-mutant mouse. J Neurosci 22:8110–8116

    PubMed  CAS  Google Scholar 

  • Jensen P, Smeyne R, Goldowitz D (2004) Analysis of cerebellar development in math1 null embryos and chimeras. J Neurosci 24:2202–2211

    PubMed  CAS  Google Scholar 

  • Ji Z, Hawkes R (1994) Topography of Purkinje cell compartments and mossy fiber terminal fields in lobules II and III of the rat cerebellar cortex: spinocerebellar and cuneocerebellar projections. Neuroscience 61:935–954

    PubMed  CAS  Google Scholar 

  • Kapfhammer JP (2004) Cellular and molecular control of dendritic growth and development of cerebellar Purkinje cells. Prog Histochem Cytochem 39:131–182

    PubMed  Google Scholar 

  • Kawaguchi K, Habara T, Terashima T, Kikkawa S (2010) GABA modulates development of cerebellar Purkinje cell dendrites under the control of endocannbinoid signaling. J Neurochem 114:627–638

    PubMed  CAS  Google Scholar 

  • Kim D, Ackerman S (2011) The UNC5C Netrin receptor regulates dorsal guidance of mouse hindbrain axons. J Neurosci 31:2167–2179

    PubMed  CAS  Google Scholar 

  • King JS, Bishop GA (1982) The synaptic features of horseradish peroxidase-labelled recurrent collaterals in the ganglionic plexus of the cat cerebellar cortex. J Neurocytol 11:867–880

    PubMed  CAS  Google Scholar 

  • Larramendi LN, Victor T (1967) Synapses on the Purkinje cell spines in the mouse. An electron microscopic study. Brain Res 5:15–30

    PubMed  CAS  Google Scholar 

  • Li J, Gu X, Ma Y, Calicchio ML, Kong D, Teng YD, Yu L, Crain AM, Vartanian TK, Pasqualini R, Arap W, Libermann TA, Snyder EY, Sidman RL (2010) Nna1 mediates Purkinje cell dendritic development via lysyl oxidase propeptide and NF-kB signaling. Neuron 68:45–60

    PubMed  CAS  Google Scholar 

  • Machold R, Fishell G (2005) Math1 is expressed in temporally discrete pools of cerebellar rhombic-lip neural progenitors. Neuron 48:17–24

    PubMed  CAS  Google Scholar 

  • Magdaleno S, Keshvara L, Curran T (2002) Rescue of ataxia and preplate splitting by ectopic expression of reelin in reeler mice. Neuron 33:573–586

    PubMed  CAS  Google Scholar 

  • Mallet J, Huchet M, Pougeois R, Changeux JP (1976) Anatomical, physiological and biochemical studies on the cerebellum from mutant mice. III. Protein differences associated with the weaver, staggerer and nervous mutations. Brain Res 103:291–312

    PubMed  CAS  Google Scholar 

  • Mariani J, Crepel F, Mikoshiba K, Changeux JP, Sotelo C (1977) Anatomical, physiological and biochemical studies of the cerebellum from Reeler mutant mouse. Philos Trans R Soc Lond B Biol Sci 281:1–28

    PubMed  CAS  Google Scholar 

  • Mason CA, Gregory E (1984) Postnatal maturation of cerebellar mossy and climbing fibers: transient expression of dual features on single axons. J Neurosci 4:1715–1735

    PubMed  CAS  Google Scholar 

  • Mason CA, Christakos S, Catalano SM (1990) Early climbing fiber interactions with Purkinje cells in the postnatal mouse cerebellum. J Comp Neurol 297:77–90

    PubMed  CAS  Google Scholar 

  • Miale IL, Sidman RL (1961) An autoradiographic analysis of histogenesis in the mouse cerebellum. Exp Neurol 4:277–296

    PubMed  CAS  Google Scholar 

  • Minaki Y, Nakatani T, Mizuhara E, Inoue T, Ono Y (2008) Identification of a novel transcriptional corepressor, Corl2, as a cerebellar Purkinje cell-selective marker. Gene Expr Patterns 8:418–423

    PubMed  CAS  Google Scholar 

  • Miyata T, Nakajima K, Aruga J, Takahashi S, Ikenaka K, Mikoshiba K, Ogawa M (1996) Distribution of a reeler gene-related antigen in the developing cerebellum: an immunohistochemical study with an allogeneic antibody CR-50 on normal and reeler mice. J Comp Neurol 372:215–228

    PubMed  CAS  Google Scholar 

  • Miyata T, Nakajima K, Mikoshiba K, Ogawa M (1997) Regulation of Purkinje cell alignment by reelin as revealed with CR-50 antibody. J Neurosci 17:3599–3609

    PubMed  CAS  Google Scholar 

  • Miyata T, Ono Y, Okamoto M, Masaoka M, Sakakibara A, Kawaguchi A, Hashimoto M, Ogawa M (2010) Migration, early axonogenesis, and Reelin-dependent layer-forming behavior of early/posterior-born Purkinje cells in the developing mouse lateral cerebellum. Neural Dev 5:23

    PubMed  Google Scholar 

  • Mizuhara E, Minaki Y, Nakatani T, Kumai M, Inoue T, Muguruma K, Sasai Y, Ono Y (2010) Purkinje cells originate from cerebellar ventricular zone progenitors positive for Neph3 and E-cadherin. Dev Biol 338:202–214

    PubMed  CAS  Google Scholar 

  • Morara S, van der Want JJ, de Weerd H, Provini L, Rosina A (2001) Ultrastructural analysis of climbing fiber-Purkinje cell synaptogenesis in the rat cerebellum. Neuroscience 108:655–671

    PubMed  CAS  Google Scholar 

  • Nishida K, Hoshino M, Kawaguchi Y, Murakami F (2010) Ptf1a directly controls expression of immunoglobulin superfamily molecules Nephrin and Neph3 in the developing central nervous system. J Biol Chem 285:373–380

    PubMed  CAS  Google Scholar 

  • Obata J, Yano M, Mimura H, Goto T, Nakayama R, Mibu Y, Oka C, Kawaichi M (2001) p48 subunit of mouse PTF1 binds to RBP-Jkappa/CBF-1, the intracellular mediator of Notch signalling, and is expressed in the neural tube of early stage embryos. Genes Cells 6:345–360

    PubMed  CAS  Google Scholar 

  • Oliver TG, Grasfeder LL, Carroll AL, Kaiser C, Gillingham CL, Lin SM, Wickramasinghe R, Scott MP, Wechsler-Reya RJ (2003) Transcriptional profiling of Sonic hedgehog response: a critical role for N-myc in proliferation of neuronal precursors. Proc Natl Acad Sci USA 100:7331–7336

    PubMed  CAS  Google Scholar 

  • Orduz D, Llano I (2007) Recurrent axon collaterals underlie facilitating synapses between cerebellar Purkinje cells. Proc Natl Acad Sci USA 104:17831–17836

    PubMed  CAS  Google Scholar 

  • Oscarsson O (1979) Functional units of the cerebellum: sagittal zones and microzones. Trends Neurosci 2:143–145

    Google Scholar 

  • Palay SL, Chan-Palay V (1974) Cerebellar cortex. Cytology and organization. Springer, Berlin/Heidelberg/New York

    Google Scholar 

  • Pascual M, Abasolo I, Mingorance-Le Meur A, Martinez A, Del Rio JA, Wright CV, Real FX, Soriano E (2007) Cerebellar GABAergic progenitors adopt an external granule cell-like phenotype in the absence of Ptf1a transcription factor expression. Proc Natl Acad Sci USA 104:5193–5198

    PubMed  CAS  Google Scholar 

  • Patil N, Cox DR, Bhat D, Faham M, Myers RM, Peterson AS (1995) A potassium channel mutation in weaver mice implicates membrane excitability in granule cell differentiation. Nat Genet 11:126–129

    PubMed  CAS  Google Scholar 

  • Pijpers A, Voogd J, Ruigrok TJ (2005) Topography of olivo-cortico-nuclear modules in the intermediate cerebellum of the rat. J Comp Neurol 497:670–682

    Google Scholar 

  • Pijpers A, Apps R, Pardoe J, Voogd J, Ruigrok TJH (2006) Precise spatial relationships between mossy fibers and climbing fibers in the rat cerebellar cortical zones. J Neurosci 26:12067–12080

    PubMed  CAS  Google Scholar 

  • Pons S, Trejo JL, Martinez-Morales JR, Marti E (2001) Vitronectin regulates Sonic hedgehog activity during cerebellum development through CREB phosphorylation. Development 128:1481–1492

    PubMed  CAS  Google Scholar 

  • Poulain FE, Chauvin S, Wehrlé R, Desclaux M, Mallet J, Vodjdani G, Dusart I, Sobel A (2008) SCLIP is crucial for the formation and development of the Purkinje cell dendritic arbor. J Neurosci 28:7387–7398

    PubMed  CAS  Google Scholar 

  • Purkinje JE (1837) Neueste Untersuchungen aus der Nervenund Hirnanatomie. In: Sternberg K, von Krombhloz JV (eds) Bericht €uber die Versammlung deutscher Naturforscher und Ärzte im September 1837. Hasse, Prag, pp 177–180

    Google Scholar 

  • Rakic P, Sidman RL (1970) Histogenesis of cortical layers in human cerebellum, particularly the lamina dissecans. J Comp Neurol 139:473–500

    PubMed  CAS  Google Scholar 

  • Rakic P, Sidman RL (1973) Organization of cerebellar cortex secondary to deficit of granule cells in weaver mutant mice. J Comp Neurol 152:133–161

    PubMed  CAS  Google Scholar 

  • Ramón y Cajal S (1888) Sobre las fibras nerviosas de la capa molecular del cerebelo. Rev Trim Histol Norm Patol 2:33–41

    Google Scholar 

  • Ramón y Cajal S (1890) À propos de certain éléments bipolaires du cervelet avec quelques détails nouveaux sur l’évolution des fibres cérébelleuses. Int Msch Anat Physiol 7:12–30

    Google Scholar 

  • Ramón y Cajal S (1911) Histologie du Système Nerveux de l’Homme et des Vertébrés, vol II. A. Maloine, Paris

    Google Scholar 

  • Reynolds R, Wilkins GP (1988) Development of macroglial cell in rat cerebellum. II. An in situ immunohistochemical study of oligodendroglial lineage from precursor to mature myelinating cell. Development 102:409–425

    PubMed  CAS  Google Scholar 

  • Rice DS, Curran T (2001) Role of the Reelin signaling pathway in central nervous system development. Annu Rev Neurosci 24:1005–1039

    PubMed  CAS  Google Scholar 

  • Rossi F, Gianola S, Corvetti L (2006) The strange case of Purkinje axon regeneration and plasticity. Cerebellum 5:174–182

    PubMed  Google Scholar 

  • Rossi F, Gianola S, Corvetti L (2007) Regulation of intrinsic neuronal properties for axon growth and regeneration. Prog Neurobiol 81:1–28

    PubMed  CAS  Google Scholar 

  • Schiffmann SN, Bernier B, Goffinet AM (1997) Reelin mRNA expression during mouse brain development. Eur J Neurosci 9:1055–1071

    PubMed  CAS  Google Scholar 

  • Sellick GS, Garrett C, Houlston RS (2003) A novel gene for neonatal diabetes maps to chromosome 10p12.1-p13. Diabetes 52:2636–2638

    PubMed  CAS  Google Scholar 

  • Sellick GS, Barker KT, Stolte-Dijkstra I, Fleischmann C, Coleman RJ, Garrett C, Gloyn AL, Edghill EL, Hattersley AT, Wellauer PK, Goodwin G, Houlston RS (2004) Mutations in PTF1A causes pancreatic and cerebellar agenesis. Nat Genet 36:1301–1305

    PubMed  CAS  Google Scholar 

  • Shima Y, Kengaku M, Hirano T, Takeichi M, Uemura T (2004) Regulation of dendritic maintenance and growth by a mammalian 7-pass transmembrane cadherin. Dev Cell 7:205–216

    PubMed  CAS  Google Scholar 

  • Sillitoe RV, Joyner AL (2007) The three-dimensional complexity of the cerebellum. Annu Rev Cell Dev Biol 23:549–577

    PubMed  CAS  Google Scholar 

  • Sillitoe RV, Gopal N, Joyner AL (2009) Embryonic origins of ZebrinII parasagittal stripes and establishment of topographic Purkinje cell projections. Neuroscience 162:574–588

    PubMed  CAS  Google Scholar 

  • Sirzen-Zelenskaya A, Zeyse J, Kapfhammer JP (2006) Activation of class I metabotropic glutamate receptors limits dendritic growth of Purkinje cells in organotypic slice cultures. Eur J Neurosci 24:2978–2986

    PubMed  Google Scholar 

  • Smeyne RJ, Chu T, Lewin A, Bian F, S-Crisman S, Kunsch C, Lira SA, Oberdick J (1995) Local control of granule cell generation by cerebellar Purkinje cells. Mol Cell Neurosci 6:230–251

    PubMed  CAS  Google Scholar 

  • Sotelo C (1973) Permanence and fate of paramembranous synaptic specializations in “mutants” experimental animals. Brain Res 62:345–351

    PubMed  CAS  Google Scholar 

  • Sotelo C (1975) Anatomical, physiological and biochemical studies of the cerebellum from mutant mice. II. Morphological study of cerebellar cortical neurons and circuits in the weaver mouse. Brain Res 94:19–44

    PubMed  CAS  Google Scholar 

  • Sotelo C (1978) Purkinje cell ontogeny: formation and maintenance of spines. Prog Brain Res 48:149–170

    PubMed  CAS  Google Scholar 

  • Sotelo C (2004) Cellular and genetic regulation of the development of the cerebellar system. Prog Neurobiol 72:295–339

    PubMed  CAS  Google Scholar 

  • Sotelo C (2008) Development of “Pinceaux” formations and dendritic translocation of climbing fibers during the acquisition of the balance between glutamatergic and gamma-aminobutyric acidergic inputs in developing Purkinje cells. J Comp Neurol 506:240–262

    PubMed  CAS  Google Scholar 

  • Sotelo C, Alvarado-Mallart RM (1991) The reconstruction of cerebellar circuits. Trends Neurosci 14:350–355

    PubMed  CAS  Google Scholar 

  • Sotelo C, Arsenio-Nunes ML (1976) Development of Purkinje cells in absence of climbing fibers. Brain Res 111:289–295

    PubMed  CAS  Google Scholar 

  • Sotelo C, Changeux JP (1974) Transsynaptic degeneration “en cascade” in the cerebellar cortex of staggerer mutant mice. Brain Res 67:519–526

    PubMed  CAS  Google Scholar 

  • Sotelo C, Chédotal A (1997) Development of the olivocerebellar projection. Perspect Dev Neurobiol 5:57–67

    PubMed  CAS  Google Scholar 

  • Sotelo C, Dusart I (2009) Intrinsic versus extrinsic determinants of the development of Purkinje celldendrites. Neuroscience 162:589–600

    PubMed  CAS  Google Scholar 

  • Sotelo C, Wassef M (1991a) Cerebellar development: afferent organization and Purkinje cell heterogeneity. Philos Trans R Soc Lond B Biol Sci 331:307–313

    PubMed  CAS  Google Scholar 

  • Sotelo C, Wassef M (1991b) Purkinje cell heterogeneity in four cerebellar mutations revealed by Zebrin-1 expression. Soc Neurosci Abstr 17:918

    Google Scholar 

  • Sotelo C, Alvarado-Mallart RM, Gardette R, Crepel F (1990) Fate of grafted embryonic Purkinje cells in the cerebellum of the adult “Purkinje cell degeneration” mutant mouse. I. Development of reciprocal graft-host interactions. J Comp Neurol 295:165–187

    PubMed  CAS  Google Scholar 

  • Soussi-Yanicostas N, de Castro F, Julliard AK, Perfettini I, Chédotal A, Petit C (2002) Anosmin-1, defective in the X-linked form of Kallmann syndrome, promotes axonal branch formation from olfactory bulb output neurons. Cell 109:217–228

    PubMed  CAS  Google Scholar 

  • Sperry RW (1963) Chemoaffinity in the orderly growth of nerve fiber patterns and connections. Proc Natl Acad Sci USA 50:703–710

    PubMed  CAS  Google Scholar 

  • Steinmayr M, Andre E, Conquet F, Rondi-Reig L, Delhaye-Bouchaud N, Auclair N, Daniel H, Crepel F, Mariani J, Sotelo C, Becker-Andre M (1998) Staggerer phenotype in retinoid-related orphan receptor alpha-deficient mice. Proc Natl Acad Sci USA 95:3960–3965

    PubMed  CAS  Google Scholar 

  • Szebenyi G, Callaway JL, Dent EW, Kalil K (1998) Interstitial branches develop from active regions of the axon demarcated by the primary growth cone during pausing behaviors. J Neurosci 18:7930–7940

    PubMed  CAS  Google Scholar 

  • Takeda T, Maekawa K (1989) Transient direct connection of vestibular mossy fibers to the vestibulocerebellar Purkinje cells in early postnatal development of kittens. Neuroscience 32:99–111

    PubMed  CAS  Google Scholar 

  • Tanaka S, Ishii K, Kasai K, Yoon SO, Saeki Y (2007) Neural expression of G protein-coupled receptors GPR3, GPR6, and GPR12 up-regulates cyclic AMP levels and promotes neurite outgrowth. J Biol Chem 282:10506–10515

    PubMed  CAS  Google Scholar 

  • Tanaka S, Shaikh IM, Chiocca EA, Saeki Y (2009) The GS-linked receptor GPR3 inhibits the proliferation of cerebellar granule cells during postnatal development. PLoS ONE 4:e5922

    PubMed  Google Scholar 

  • Van Der Giessen RS, Koekkoek SK, van Dorp S, De Gruijl JR, Cupido A, Khosrovani S, Dortland B, Wellershaus K, Degen J, Deuchars J, Fuchs EC, Monyer H, Willecke K, De Jeu MT, De Zeeuw CI (2008) Role of olivary electrical coupling in cerebellar motor learning. Neuron 58:599–612

    Google Scholar 

  • Voogd J (1969) The importance of fiber connections in the comparative anatomy of the mammalian cerebellum. In: Llinas R (ed) Neurobiology of cerebellar evolution and development. AMA-ERF Institute for Biomedical Research, Chicago, pp 493–514

    Google Scholar 

  • Wallace VA (1999) Purkinje-cell-derived Sonic hedgehog regulates granule neuron precursor cell proliferation in the developing mouse cerebellum. Curr Biol 9:445–448

    PubMed  CAS  Google Scholar 

  • Wassef M, Sotelo C (1984) Asynchrony in the expression of guanosine 3′:5′-phosphate-dependent protein kinase by clusters of Purkinje cells during the perinatal development of rat cerebellum. Neuroscience 13:1217–1241

    PubMed  CAS  Google Scholar 

  • Wassef M, Zanetta JP, Brehier A, Sotelo C (1985) Transient biochemical compartmentationof Purkinje cells during early cerebellar development. Dev Biol 111:129–137

    PubMed  CAS  Google Scholar 

  • Wassef M, Sotelo C, Thomasset M, Granholm AC, Leclerc N, Rafrafi J, Hawkes R (1990) Expression of compartmentation antigen zebrin I in cerebellar transplants. J Comp Neurol 294:223–234

    PubMed  CAS  Google Scholar 

  • Wassef M, Angaut P, Arsenio-Nunes ML, Bourrat F, Sotelo C (1992a) Purkinje cell heterogeneity: its role in organizing the topography of the cerebellar cortex connections. In: Llinas R, Sotelo C (eds) The cerebellum revisited. Springer, New York, pp 5–21

    Google Scholar 

  • Wassef M, Chedotal A, Cholley B, Thomasset M, Heizmann CW, Sotelo C (1992b) Development of the olivocerebellar projection in the rat: I. Transient biochemical compartmentation of the inferior olive. J Comp Neurol 323:519–536

    PubMed  CAS  Google Scholar 

  • Wassef M, Cholley B, Heizmann CW, Sotelo C (1992c) Development of the olivocerebellar projection in the rat: II. Matching of the developmental compartmentations of the cerebellum and inferior olive through the projection map. J Comp Neurol 323:537–550

    PubMed  CAS  Google Scholar 

  • Watt AJ, Cuntz H, Mori M, Nusser Z, Sjöström PJ, Häusser M (2009) Traveling waves in developing cerebellar cortex mediated by asymmetrical Purkinje cell connectivity. Nat Neurosci 12:463–473

    PubMed  CAS  Google Scholar 

  • Wechsler-Reya RJ, Scott MP (1999) Control of neuronal precursor proliferation in the cerebellum by Sonic Hedgehog. Neuron 22:103–114

    PubMed  CAS  Google Scholar 

  • Yuasa S, Kawamura K, Ono K, Yamakuni T, Takahashi Y (1991) Development and migration of Purkinje cells in the mouse cerebellar primordium. Anat Embryol 184:195–212

    PubMed  CAS  Google Scholar 

  • Yuasa S, Kawamura K, Kuwano R, Ono K (1996) Neuron-glia interactions during migration of Purkinje cells in the mouse embryonic cerebellum. Int J Dev Neurosci 14:429–438

    PubMed  CAS  Google Scholar 

  • Zordan P, Croci L, Hawkes R, Consalez GG (2008) Comparative analysis of proneural gene expression in the embryonic cerebellum. Dev Dyn 237:726–735

    Google Scholar 

Download references

Acknowledgments

The scientific work of Ferdinando Rossi is supported by grants from Ministero dell’Università e della Ricerca Scientifica e Tecnologica (MIUR-PRIN 2007 prog. nr. 2007F7AJYJ), Compagnia di San Paolo (Neurotransplant Project 2008; GABAGEN Neuroscience project 2009), Regione Piemonte (Project A14/05; Ricerca Sanitaria Finalizzata, 2008, 2009), Ataxia UK, Fondazione Cavaliere del Lavoro Mario Magnetto of Turin. The work of Constantino Sotelo is supported by MINISTERIO CIENCIA E INNOVACION (grants: MICINN BFU-2008-00588 and CSD2007-00023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ferdinando Rossi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Sotelo, C., Rossi, F. (2013). Purkinje Cell Migration and Differentiation. In: Manto, M., Schmahmann, J.D., Rossi, F., Gruol, D.L., Koibuchi, N. (eds) Handbook of the Cerebellum and Cerebellar Disorders. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1333-8_9

Download citation

Publish with us

Policies and ethics