Skip to main content

Purkinje Neurons: Synaptic Plasticy

  • Reference work entry
Handbook of the Cerebellum and Cerebellar Disorders
  • 647 Accesses

Abstract

After three decades of research, it is now well established that molecular mechanisms underlying cerebellar motor learning lead to activity-dependent changes in synaptic strength, such as long-term depression (LTD) and long-term potentiation (LTP) at cerebellar parallel fiber (PF)-Purkinje cell (PC) glutamatergic synapses. This review focuses on mechanisms of these long-term changes in synaptic efficacy, even though short-term forms of synaptic plasticity also exist at these synapses and may also contribute to neural processing of information within the cerebellum. In light of the newly obtained experimental data from transgenic mice, it will also be discussed as to why these forms of synaptic plasticity are proposed as the cellular basis for error-driven learning and memory in the motor system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

5′GMP:

5′ Guanosine monophosphate

AA:

Arachidonic acid

AMPA-R:

AMPA receptor

cGMP:

cyclic Guanosine monophosphate

CPI-17:

17-kDa phosphatase-1 inhibitor protein

DAG:

1,2-diacylglycerol

GLU:

Glutamate

Gq:

G protein

GRIP1/2:

Glutamate receptor interacting protein 1/2

InsP3 :

Inositol-1,4,5-trisphosphate

MAPK:

Mitogen-activated protein kinase

mGluR1:

Type-1 metabotropic glutamate receptor

NMDA-R:

N-Methyl-D-aspartic acid-receptor (* present at least in adult mice)

nNOS:

neuronal Nitric Oxide-Synthase

NO:

Nitric oxide

PICK-1:

Protein interacting with C-kinase 1

PIP2:

Phosphatidylinositol 4,5-bisphosphate

PKC:

Protein kinase C

PKG1:

Protein kinase G 1

PLA2 :

Phospholipase A2

PLCβ:

Phospholipase Cβ

PP-1:

Protein Phosphatase-1

PP-2:

Protein Phosphatase-2

PSD:

Postsynaptic-Density

sGC:

soluble Guanylyl Cyclase

VGCC:

Voltage-Gated-Calcium-Channel

References

  • Ahn S, Ginty DD, Linden DJ (1999) A late phase of cerebellar long-term depression requires activation of CaMKIV and CREB. Neuron 23:559–568

    Article  PubMed  CAS  Google Scholar 

  • Aiba A, Kano M, Chen C et al (1994) Deficient cerebellar long-term depression and impaired motor learning in mGluR1 mutant mice. Cell 79:377–388

    Article  PubMed  CAS  Google Scholar 

  • Akazawa C, Shigemoto R, Bessho Y et al (1994) Differential expression of five N-methyl-D-aspartate receptor subunit mRNAs in the cerebellum of developing and adult rats. J Comp Neurol 347:150–160

    Article  PubMed  CAS  Google Scholar 

  • Belmeguenai A, Hansel C (2005) A role for protein phosphatases 1, 2A, and 2B in cerebellar long-term potentiation. J Neurosci 25:10768–10772

    Article  PubMed  CAS  Google Scholar 

  • Belmeguenai A, Hosy E, Bengtsson F et al (2010) Intrinsic plasticity complements long-term potentiation in parallel fiber input gain control in cerebellar Purkinje cells. J Neurosci 30:13630–13643

    Article  PubMed  CAS  Google Scholar 

  • Bidoret C, Ayon A, Barbour B et al (2009) Presynaptic NR2A-containing NMDA receptors implement a high-pass filter synaptic plasticity rule. Proc Natl Acad Sci USA 106:14126–14131

    Article  PubMed  CAS  Google Scholar 

  • Boxall AR, Garthwaite J (1996) Long-term depression in rat cerebellum requires both NO synthase and NO-sensitive guanylyl cyclase. Eur J Neurosci 8:2209–2212

    Article  PubMed  CAS  Google Scholar 

  • Brenowitz SD, Regehr WG (2003) Calcium dependence of retrograde inhibition by endocannabinoids at synapses onto Purkinje cells. J Neurosci 23:6373–6378

    PubMed  CAS  Google Scholar 

  • Burguière E, Arabo A, Jarlier F et al (2010) Role of the cerebellar cortex in conditioned goal-directed behavior. J Neurosci 30:13265–13271

    Article  PubMed  Google Scholar 

  • Carey MR, Myoga MH, McDaniels KR et al (2011) Presynaptic CB1 receptors regulate synaptic plasticity at cerebellar parallel fiber synapses. J Neurophysiol 105:958–963

    Article  PubMed  CAS  Google Scholar 

  • Casado M, Dieudonné S, Ascher P (2000) Presynaptic N-methyl-D-aspartate receptors at the parallel fiber-Purkinje cell synapse. Proc Natl Acad Sci USA 97:11593–11597

    Article  PubMed  CAS  Google Scholar 

  • Casado M, Isope P, Ascher P (2002) Involvement of presynaptic N-methyl-D-aspartate receptors in cerebellar long-term depression. Neuron 33:123–130

    Article  PubMed  CAS  Google Scholar 

  • Chung HJ, Steinberg JP, Huganir RL et al (2003) Requirement of AMPA receptor GluR2 phosphorylation for cerebellar long-term depression. Science 300:1751–1755

    Article  PubMed  CAS  Google Scholar 

  • Coesmans M, Weber JT, De Zeeuw CI et al (2004) Bidirectional parallel fiber plasticity in the cerebellum under climbing fiber control. Neuron 44:691–700

    Article  PubMed  CAS  Google Scholar 

  • Conquet F, Bashir ZI, Davies CH et al (1994) Motor deficit and impairment of synaptic plasticity in mice lacking mGluR1. Nature 372:237–243

    Article  PubMed  CAS  Google Scholar 

  • Crepel F (2007) Developmental changes in retrograde messengers involved in depolarization-induced suppression of excitation at parallel fiber-Purkinje cell synapses in rodents. J Neurophysiol 97:824–836

    Article  PubMed  CAS  Google Scholar 

  • Crepel F (2009) Role of presynaptic kainate receptors at parallel fiber-Purkinje cell synapses in induction of cerebellar LTD: interplay with climbing fiber input. J Neurophysiol 102:965–973

    Article  PubMed  CAS  Google Scholar 

  • Crepel F, Jaillard D (1990) Protein Kinases, nitric oxide and long-term depression of synapses in the cerebellum. Neuroreport 1:133–136

    Article  PubMed  CAS  Google Scholar 

  • Crepel F, Jaillard D (1991) Pairing of pre- and postsynaptic activities in cerebellar Purkinje cells induces long-term changes in synaptic efficacy in vitro. J Physiol 432:123–141

    PubMed  CAS  Google Scholar 

  • Crepel F, Dhanjal SS, Sears TA (1982) Effect of glutamate, aspartate and related derivatives on cerebellar Purkinje cell dendrites in the rat: an in vitro study. J Physiol 329:297–317

    PubMed  CAS  Google Scholar 

  • Crepel F, Krupa M (1988) Activation of protein kinase C induces a long-term depression of glutamate sensitivity of cerebellar Purkinje cells. An in vitro study. Brain Res 458:397–401

    CAS  Google Scholar 

  • Daniel H, Hemart N, Jaillard D et al (1992) Coactivation of metabotropic glutamate receptors and of voltage-gated calcium channels induces long-term depression in cerebellar Purkinje cells in vitro. Exp Brain Res 90:327–331

    Article  PubMed  CAS  Google Scholar 

  • Daniel H, Hemart N, Jaillard D, Crepel F (1993) Long-term depression requires nitric oxide and guanosine 3′:5′ cyclic monophosphate production in rat cerebellar Purkinje cells. Eur J Neurosci 5:1079–1082

    Article  PubMed  CAS  Google Scholar 

  • Daniel H, Levenes C, Crepel F (1998) Cellular mechanisms of cerebellar LTD. Trends Neurosci 21:401–407

    Article  PubMed  CAS  Google Scholar 

  • Daniel H, Levenes C, Fagni L et al (1999) Inositol-1,4,5-trisphosphate-mediated rescue of cerebellar long-term depression in subtype 1 metabotropic glutamate receptor mutant mouse. Neuroscience 92:1–6

    Article  PubMed  CAS  Google Scholar 

  • De Zeeuw CI, Hansel C, Bian F et al (1998) Expression of a protein kinase C inhibitor in Purkinje cells blocks cerebellar LTD and adaptation of the vestibulo-ocular reflex. Neuron 20:495–508

    Article  PubMed  Google Scholar 

  • Delaney AJ, Jahr CE (2002) Kainate receptors differentially regulate release at two parallel fiber synapses. Neuron 36:475–482

    Article  PubMed  CAS  Google Scholar 

  • Diana MA, Levenes C, Mackie K et al (2002) Short-term retrograde inhibition of GABAergic synaptic currents in rat Purkinje cells is mediated by endogenous cannabinoids. Neurosci 22:200–208

    CAS  Google Scholar 

  • Dittman JS, Regehr WG (1997) Mechanism and kinetics of heterosynaptic depression at a cerebellar synapse. J Neurosci 17:9048–9059

    PubMed  CAS  Google Scholar 

  • Duguid IC, Smart TG (2004) Retrograde activation of presynaptic NMDA receptors enhances GABA release at cerebellar interneuron-Purkinje cell synapses. Nat Neurosci 7:525–533

    Article  PubMed  CAS  Google Scholar 

  • Eto M, Bock R, Brautigan DL et al (2002) Cerebellar long-term synaptic depression requires PKC-mediated activation of CPI-17, a myosin/moesin phosphatase inhibitor. Neuron 36:1145–1158

    Article  PubMed  CAS  Google Scholar 

  • Feil R, Hartmann J, Luo C et al (2003) Impairment of LTD and cerebellar learning by Purkinje cell-specific ablation of cGMP-dependent protein kinase I. J Cell Biol 163:295–302

    Article  PubMed  CAS  Google Scholar 

  • Goossens J, Daniel H, Rancillac A et al (2001) Expression of protein kinase C inhibitor blocks cerebellar long-term depression without affecting Purkinje cell excitability in alert mice. J Neurosci 21:5813–5823

    PubMed  CAS  Google Scholar 

  • Hall KU, Collins SP, Gamm DM et al (1999) Phosphorylation-dependent inhibition of protein phosphatase-1 by G-substrate. A Purkinje cell substrate of the cyclic GMP-dependent protein kinase. J Biol Chem 274:3485–3495

    Article  PubMed  CAS  Google Scholar 

  • Hansel C, Linden DJ (2000) Long-term depression of the cerebellar climbing fiber-Purkinje neuron synapse. Neuron 26:473–482

    Article  PubMed  CAS  Google Scholar 

  • Hansel C, de Jeu M, Belmeguenai A et al (2006) alphaCaMKII is essential for cerebellar LTD and motor learning. Neuron 51:835–843

    Article  PubMed  CAS  Google Scholar 

  • Hartell NA (1994) cGMP acts within cerebellar Purkinje cells to produce long term depression via mechanisms involving PKC and PKG. Neuroreport 5:833–836

    Article  PubMed  CAS  Google Scholar 

  • Hartell NA, Furuya S, Jacoby S et al (2001) Intercellular action of nitric oxide increases cGMP in cerebellar Purkinje cells. Neuroreport 12:25–28

    Article  PubMed  CAS  Google Scholar 

  • Hartmann J, Blum R, Kovalchuk Y et al (2004) Distinct roles of Galpha(q) and Galpha11 for Purkinje cell signaling and motor behavior. J Neurosci 24:5119–5130

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto K, Miyata M, Watanabe M et al (2001) Roles of phospholipase Cbeta4 in synapse elimination and plasticity in developing and mature cerebellum. Mol Neurobiol 23:69–82

    Article  PubMed  CAS  Google Scholar 

  • Hemart N, Daniel H, Jaillard D, Crépel F (1995) Receptors and second messengers involved in long-term depression in rat cerebellar slices in vitro: a reappraisal. Eur J Neurosci 7:45–53

    Article  PubMed  CAS  Google Scholar 

  • Hirono M, Sugiyama T, Kishimoto Y et al (2001) Phospholipase Cβ4 and protein kinase Cα and/or protein kinase CβI are involved in the induction of long term depression in cerebellar Purkinje cells. J Biol Chem 276:45236–45242

    Article  PubMed  CAS  Google Scholar 

  • Ichise T, Kano M, Hashimoto K et al (2000) mGluR1 in cerebellar Purkinje cells essential for long-term depression, synapse elimination, and motor coordination. Science 288:1832–1835

    Article  PubMed  CAS  Google Scholar 

  • Ito M (2001) Cerebellar long-term depression: characterization, signal transduction, and functional roles. Physiol Rev 81:1143–1195

    PubMed  CAS  Google Scholar 

  • Ito M, Karachot L (1990) Messengers mediating long-term desensitization in cerebellar Purkinje cells. Neuroreport 1:129–132

    Article  PubMed  CAS  Google Scholar 

  • Ito M, Karachot L (1992) Protein kinases and phosphatase inhibitors mediating long-term desensitization of glutamate receptors in cerebellar Purkinje cells. Neurosci Res 14:27–38

    Article  PubMed  CAS  Google Scholar 

  • Ito M, Sakurai M, Tongroach P (1982) Climbing fibre induced depression of both mossy fibre responsiveness and glutamate sensitivity of cerebellar Purkinje cells. J Physiol 324:113–134

    PubMed  CAS  Google Scholar 

  • Kamikubo Y, Tabata T, Kakizawa S et al (2007) Postsynaptic GABAB receptor signalling enhances LTD in mouse cerebellar Purkinje cells. J Physiol 585:549–563

    Article  PubMed  CAS  Google Scholar 

  • Kano M, Kato M (1987) Quisqualate receptors are specifically involved in cerebellar synaptic plasticity. Nature 325:276–279

    Article  PubMed  CAS  Google Scholar 

  • Kano M, Rexhausen U, Dreessen J et al (1992) Synaptic excitation produces a long-lasting rebound potentiation of inhibitory synaptic signals in cerebellar Purkinje cells. Nature 356:601–604

    Article  PubMed  CAS  Google Scholar 

  • Karachot L, Shirai Y, Vigot R et al (2001) Induction of long-term depression in cerebellar Purkinje cells requires a rapidly turned over protein. J Neurophysiol 86:280–289

    PubMed  CAS  Google Scholar 

  • Kimura T, Sugimori M, Llinás RR (2005) Purkinje cell long-term depression is prevented by T-588, a neuroprotective compound that reduces cytosolic calcium release from intracellular stores. Proc Natl Acad Sci USA 102:17160–17165

    Article  PubMed  CAS  Google Scholar 

  • Kishimoto Y, Kano M (2006) Endogenous cannabinoid signaling through the CB1 receptor is essential for cerebellum-dependent discrete motor learning. J Neurosci 26:8829–8837

    Article  PubMed  CAS  Google Scholar 

  • Koekkoek SK, Hulscher HC, Dortland BR et al (2003) Cerebellar LTD and learning-dependent timing of conditioned eyelid responses. Science 301:1736–1739

    Article  PubMed  CAS  Google Scholar 

  • Konnerth A, Dreessen J, Augustine GJ (1992) Brief dendritic calcium signals initiate long-lasting synaptic depression in cerebellar Purkinje cells. Proc Natl Acad Sci USA 89:7051–7055

    Article  PubMed  CAS  Google Scholar 

  • Krupa M, Crepel F (1990) Transient sensitivity of rat cerebellar Purkinje cells to N-methyl-D-aspartate during development. A voltage clamp study in in vitro slices. Eur J Neurosci 2:312–316

    Article  PubMed  Google Scholar 

  • Kulik A, Nakadate K, Nyíri G et al (2002) Distinct localization of GABA(B) receptors relative to synaptic sites in the rat cerebellum and ventrobasal thalamus. Eur J Neurosci 15:291–307

    Article  PubMed  Google Scholar 

  • Kuroda S, Schweighofer N, Kawato M (2001) Exploration of signal transduction pathways in cerebellar long-term depression by kinetic simulation. J Neurosci 21:5693–5702

    PubMed  CAS  Google Scholar 

  • Launey T, Endo S, Sakai R et al (2004) Protein phosphatase 2A inhibition induces cerebellar long-term depression and declustering of synaptic AMPA receptor. Proc Natl Acad Sci USA 101:676–681

    Article  PubMed  CAS  Google Scholar 

  • Leitges M, Kovac J, Plomann M et al (2004) A unique PDZ ligand in PKCalpha confers induction of cerebellar long-term synaptic depression. Neuron 44:585–594

    Article  PubMed  CAS  Google Scholar 

  • Levenes C, Daniel H, Crepel F (2001) Retrograde modulation of transmitter release by postsynaptic subtype 1 metabotropic glutamate receptors in the rat cerebellum. J Physiol 537:125–140

    Article  PubMed  CAS  Google Scholar 

  • Lev-Ram V, Makings LR, Keitz PF, Kao JP, Tsien RY (1995) Long-term depression in cerebellar Purkinje neurons results from coincidence of nitric oxide and depolarization-induced Ca2+ transients. Neuron 15:407–415

    Article  PubMed  CAS  Google Scholar 

  • Lev-Ram V, Wong ST, Storm DR et al (2002) A new form of cerebellar long-term potentiation is postsynaptic and depends on nitric oxide but not cAMP. Proc Natl Acad Sci USA 99:8389–8393

    Article  PubMed  CAS  Google Scholar 

  • Lev-Ram V, Mehta SB, Kleinfeld D et al (2003) Reversing cerebellar long-term depression. Proc Natl Acad Sci USA 100:15989–15993

    Article  PubMed  CAS  Google Scholar 

  • Linden DJ (1996) A protein synthesis-dependent late phase of cerebellar long-term depression. Neuron 17:483–490

    Article  PubMed  CAS  Google Scholar 

  • Linden DJ, Ahn S (1999) Activation of presynaptic cAMP-dependent protein kinase is required for induction of cerebellar long-term potentiation. J Neurosci 19:10221–10227

    PubMed  CAS  Google Scholar 

  • Linden DJ, Connor JA (1991) Participation of postsynaptic PKC in cerebellar long-term depression in culture. Science 254:1656–1659

    Article  PubMed  CAS  Google Scholar 

  • Linden DJ, Dickinson MH, Smeyne M, Connor JA (1991) A long-term depression of AMPA currents cerebellar Purkinje neurons. Neuron 7:81–89

    Article  PubMed  CAS  Google Scholar 

  • Llano I, Marty A, Armstrong CM et al (1991) Synaptic- and agonist-induced excitatory currents of Purkinje cells in rat cerebellar slices. J Physiol 434:183–213

    PubMed  CAS  Google Scholar 

  • Lonart G, Schoch S, Kaeser PS et al (2003) Phosphorylation of RIM1alpha by PKA triggers presynaptic long-term potentiation at cerebellar parallel fiber synapses. Cell 115:49–60

    Article  PubMed  CAS  Google Scholar 

  • Matsuda S, Launey T, Mikawa S et al (2000) Disruption of AMPA receptor GluR2 clusters following long-term depression induction in cerebellar Purkinje neurons. EMBO J 19:2765–2774

    Article  PubMed  CAS  Google Scholar 

  • Petralia RS, Wang YX, Wenthold RJ (1994) Histological and ultrastructural localization of the kainate receptor subunits, KA2 and GluR6/7, in the rat nervous system using selective antipeptide antibodies. J Comp Neurol 349:85–110

    Article  PubMed  CAS  Google Scholar 

  • Piochon C, Irinopoulou T, Brusciano D et al (2007) NMDA receptor contribution to the climbing fiber response in the adult mouse Purkinje cell. J Neurosci 27:10797–10809

    Article  PubMed  CAS  Google Scholar 

  • Piochon C, Levenes C, Ohtsuki G et al (2010) Purkinje cell NMDA receptors assume a key role in synaptic gain control in the mature cerebellum. J Neurosci 30:15330–15335

    Article  PubMed  CAS  Google Scholar 

  • Qiu DL, Knöpfel T (2007) An NMDA receptor/nitric oxide cascade in presynaptic parallel fiber-Purkinje neuron long-term potentiation. J Neurosci 27:3408–3415

    Article  PubMed  CAS  Google Scholar 

  • Qiu DL, Knöpfel T (2009) Presynaptically expressed long-term depression at cerebellar parallel fiber synapses. Pflugers Arch 457:865–875

    Article  PubMed  CAS  Google Scholar 

  • Rancillac A, Crépel F (2004) Synapses between parallel fibres and stellate cells express long-term changes in synaptic efficacy in rat cerebellum. J Physiol 554:707–720

    Article  PubMed  CAS  Google Scholar 

  • Sacchetti B, Scelfo B, Tempia F et al (2004) Long-term synaptic changes induced in the cerebellar cortex by fear conditioning. Neuron 42:973–982

    Article  PubMed  CAS  Google Scholar 

  • Safo PK, Regehr WG (2005) Endocannabinoids control the induction of cerebellar LTD. Neuron 48:647–659

    Article  PubMed  CAS  Google Scholar 

  • Sakurai M (1990) Calcium is an intracellular mediator of the climbing fiber in induction of cerebellar long-term depression. Proc Natl Acad Sci USA 87:3383–3385

    Article  PubMed  CAS  Google Scholar 

  • Salin PA, Malenka RC, Nicoll RA (1996) Cyclic AMP mediates a presynaptic form of LTP at cerebellar parallel fiber synapses. Neuron 16:797–803

    Article  PubMed  CAS  Google Scholar 

  • Schmolesky MT, De Ruiter MM, De Zeeuw CI et al (2007) The neuropeptide corticotropin-releasing factor regulates excitatory transmission and plasticity at the climbing fibre-Purkinje cell synapse. Eur J Neurosci 25:1460–1466

    Article  PubMed  CAS  Google Scholar 

  • Schonewille M, Belmeguenai A, Koekkoek S et al (2010) Purkinje cell-specific knockout of the protein phosphatase PP2B impairs potentiation and cerebellar motor learning. Neuron 67:618–628

    Article  PubMed  CAS  Google Scholar 

  • Shibuki K, Gomi H, Chen L, Bao S, Kim JJ, Wakatsuki H, Fujisaki T, Fujimoto K, Katoh A, Ikeda T, Chen C, Thompson RF, Itohara S (1996) Deficient cerebellar long-term depression, impaired eyeblink conditioning, and normal motor coordination in GFAP mutant mice. Neuron 16:587–599

    Article  PubMed  CAS  Google Scholar 

  • Shibuki K, Okada D (1991) Endogenous nitric oxide release required for long-term synaptic depression in the cerebellum. Nature 349:326–328

    Article  PubMed  CAS  Google Scholar 

  • Shin JH, Linden DJ (2005) An NMDA receptor/nitric oxide cascade is involved in cerebellar LTD but is not localized to the parallel fiber terminal. J Neurophysiol 94:4281–4289

    Article  PubMed  CAS  Google Scholar 

  • Smith-Hicks C, Xiao B, Deng R et al (2010) SRF binding to SRE 6.9 in the Arc promoter is essential for LTD in cultured Purkinje cells. Nat Neurosci 13:1082–1089

    Article  PubMed  CAS  Google Scholar 

  • Song I, Huganir RL (2002) Regulation of AMPA receptors during synaptic plasticity. Trends Neurosci 25:578–588

    Article  PubMed  CAS  Google Scholar 

  • Steinberg JP, Takamiya K, Shen Y et al (2006) Targeted in vivo mutations of the AMPA receptor subunit GluR2 and its interacting protein PICK1 eliminate cerebellar long-term depression. Neuron 49:845–860

    Article  PubMed  CAS  Google Scholar 

  • Storm DR, Hansel C, Hacker B et al (1998) Impaired cerebellar long-term potentiation in type I adenylyl cyclase mutant mice. Neuron 20:1199–1210

    Article  PubMed  CAS  Google Scholar 

  • Suárez J, Bermúdez-Silva FJ, Mackie K et al (2008) Immunohistochemical description of the endogenous cannabinoid system in the rat cerebellum and functionally related nuclei. J Comp Neurol 509:400–421

    Article  PubMed  Google Scholar 

  • Takamiya K, Mao L, Huganir RL et al (2008) The glutamate receptor-interacting protein family of GluR2-binding proteins is required for long-term synaptic depression expression in cerebellar Purkinje cells. J Neurosci 28:5752–5755

    Article  PubMed  CAS  Google Scholar 

  • Tanaka K, Augustine GJ (2008) A positive feedback signal transduction loop determines timing of cerebellar long-term depression. Neuron 59:608–620

    Article  PubMed  CAS  Google Scholar 

  • van Woerden GM, Hoebeek FE, Gao Z et al (2009) betaCaMKII controls the direction of plasticity at parallel fiber-Purkinje cell synapses. Nat Neurosci 12:823–825

    Article  PubMed  Google Scholar 

  • Wang YT, Linden DJ (2000) Expression of cerebellar long-term depression requires postsynaptic clathrin-mediated endocytosis. Neuron 25:635–647

    Article  PubMed  CAS  Google Scholar 

  • Wang SS, Denk W, Häusser M (2000) Coincidence detection in single dendritic spines mediated by calcium release. Nat Neurosci 3:1266–1273

    Article  PubMed  CAS  Google Scholar 

  • Weber JT, De Zeeuw CI, Linden DJ et al (2003) Long-term depression of climbing fiber-evoked calcium transients in Purkinje cell dendrites. Proc Natl Acad Sci USA 100:2878–2883

    Article  PubMed  CAS  Google Scholar 

  • Welsh JP, Yamaguchi H, Zeng XH et al (2005) Normal motor learning during pharmacological prevention of Purkinje cell long-term depression. Proc Natl Acad Sci USA 102:17166–17171

    Article  PubMed  CAS  Google Scholar 

  • Xia J, Chung HJ, Wihler C et al (2000) Cerebellar long-term depression requires PKC-regulated interactions between GluR2/3 and PDZ domain-containing proteins. Neuron 28:499–510

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hervé Daniel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Daniel, H., Crepel, F. (2013). Purkinje Neurons: Synaptic Plasticy. In: Manto, M., Schmahmann, J.D., Rossi, F., Gruol, D.L., Koibuchi, N. (eds) Handbook of the Cerebellum and Cerebellar Disorders. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1333-8_32

Download citation

Publish with us

Policies and ethics