Skip to main content

Titangruppe: Elemente der vierten Nebengruppe

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Handbuch der chemischen Elemente
  • 30 Accesses

Zusammenfassung

In diesem Kapitel werden die Elemente der vierten Nebengruppe des Periodensystems der Elemente mit ihren wichtigsten Verbindungen beschrieben. Vor allem ist Titan Bestandteil vieler Gebrauchsgegenstände des täglichen Bedarfs und in technologischer Hinsicht für die Zukunft unverzichtbar, aber auch Zirconium und Hafnium gehen in viele Anwendungen. Es werden ihre chemischen und physikalischen Eigenschaften, ihr Vorkommen, bedeutsame Herstellverfahren, Anwendungen und Patente aufgeführt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Literatur

  • Al-Khatatbeh Y et al (2009) High-pressure behavior of TiO2 as determined by experiment and theory. Phys Rev B 79(13):134114

    Article  Google Scholar 

  • Allendorf MD (1999) Proceedings of the symposium on fundamental gas phase and surface chemistry, Bd 265. The Electrochemical Society, Pennington. ISBN 1-56677-217-6

    Google Scholar 

  • Alsfasser R, Meyer H-J (2007) Moderne Anorganische Chemie. De Gruyter, Berlin, S 295/350. ISBN 3-11-019060-5

    Google Scholar 

  • Angelkort J et al (2009) Low- and high-temperature crystal structures of titanium(III)-iodide. J Sol State Chem 182:525–531. https://doi.org/10.1016/j.jssc.2008.11.028

    Article  CAS  Google Scholar 

  • Anil K (2007) A textbook of inorganic chemistry. New Age International, Delhi, S 684. ISBN 978-81-224-1384-7

    Google Scholar 

  • Arkel AE van, de Boer JH (1924a) Die Trennung von Zirconium und Hafnium durch Kristallisation ihrer Ammoniumdoppelfluoride, Z Anorg Allg Chem 141:284

    Google Scholar 

  • Arkel AE van, de Boer JH (1924b) Die Trennung des Zirconiums von anderen Metallen, einschließlich Hafnium, durch fraktionierte Destillation. Z Anorg Allg Chem 141:289

    Google Scholar 

  • Arkel AE van, de Boer JH (1925) Darstellung von reinem Titanium-, Zirconium-, Hafnium- und Thoriummetall. Z Anorg Allg Chem 148(1):345–350. https://doi.org/10.1002/zaac.19251480133

  • Audi G et al (2003) The NUBASE evaluation of nuclear and decay properties. Nucl Phys A 729:3–128

    Article  Google Scholar 

  • Baenziger NC, Rundle RE (1948) The structure of TiCl2. Acta Crystallogr 1:274. https://doi.org/10.1107/S0365110X48000740

    Article  CAS  Google Scholar 

  • Barber RC et al (1993) Discovery of the transfermium elements. Part II: introduction to discovery profiles. Part III: discovery profiles of the transfermium elements. Pure Appl Chem 65:1757–1814

    Article  Google Scholar 

  • Bear IJ, Mumme WG (1969) The crystal chemistry of zirconium sulphates. III. The structure of the β-pentahydrate, Zr2(SO4)4(H2O) ∙ 8.2 H2O, and the inter-relationship of the four higher hydrates. Acta Crystallogr Sect B Struct Crystallogr Cryst Chem 25:1572–1581

    Article  CAS  Google Scholar 

  • Bedinger GM (2015) Zirconium, mineral commodity summaries. United States Geological Survey, U. S. Department of the Interior, Washington, DC. Zugegriffen am 07.11.2015

    Google Scholar 

  • Beglov VM et al (1992) Effect of boron and hafnium on the corrosion resistance of high-temperature nickel alloys. Met Sci Heat Treat 34(4):251

    Article  Google Scholar 

  • Bemis CE et al (1973) X-Ray identification of element 104. Phys Rev Lett 31(10):647–650

    Article  CAS  Google Scholar 

  • Benner G, Müller BG (1990) Zur Kenntnis binärer Fluoride des ZrF4-Typs: HfF4 und ThF4. Z Anorg Allg Chem 588:133. https://doi.org/10.1002/zaac.19905880105

    Article  Google Scholar 

  • Bialowons H et al (1995) Titantetrafluorid – Eine überraschend einfache Kolumnarstruktur. Z Anorg Allg Chem 621:1227–1231

    Article  CAS  Google Scholar 

  • Bischoff F (1950) Über die Zersetzlichkeit von Titan(III)-sulfat-Lösungen und deren Stabilisierung durch Eisen(II)-Ionen. Monatsh Chem 81:333–338. https://doi.org/10.1007/BF00903035

    Article  CAS  Google Scholar 

  • Blachnik R (1998) Taschenbuch für Chemiker und Physiker. Bd III: Elemente, Anorganische Verbindungen und Materialien, Minerale, 4. Aufl. Springer, Berlin/Heidelberg, S 478/766–770/818–820. ISBN 3-540-60035-3

    Google Scholar 

  • Blichert-Toft J, Albarède F (1997) The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth Planet Sci Lett 148(1–2):243–258

    Article  CAS  Google Scholar 

  • Blumenthal G et al (2007) Chemie – Grundwissen für Ingenieure. Springer, Berlin/Heidelberg, S 239. ISBN 978-3-8351-9047-4

    Google Scholar 

  • Bohr N (1924) The theory of spectra and atomic constitution: three essays. Cambridge University Press, Cambridge, S 114. ISBN 1-4365-0368-4

    Google Scholar 

  • Böscke TS et al (2011) Ferroelectricity in hafnium oxide thin films. Appl Phys Lett 99(10):102903. https://doi.org/10.1063/1.3634052

    Article  CAS  Google Scholar 

  • Bouroushian M (2010) Electrochemistry of metal chalcogenides. Springer, Berlin/Heidelberg. ISBN 978-3-642-03967-6

    Book  Google Scholar 

  • Bowman R et al (1983) Electronic structure of zirconium hydride: a proton NMR study. Phys Rev B 27(3):1474–1488. https://doi.org/10.1103/PhysRevB.27.1474

    Article  CAS  Google Scholar 

  • Bowman R et al (1985) Effects of thermal treatments on the lattice properties and electronic structure of ZrHx. Phys Rev B 31(9):5604–5615. https://doi.org/10.1103/PhysRevB.31.5604

    Article  CAS  Google Scholar 

  • Bradley HB, Dowell LG (1958) Crystallographic Data. 168. Bis(cyclopentadienyl)Zirconium Dichloride. Anal Chem 30(4):548. https://doi.org/10.1021/ac60136a601

    Article  CAS  Google Scholar 

  • Brauer G (1975) Handbuch der Präparativen Anorganischen Chemie, Bd I, 3. Aufl. Enke Verlag, Stuttgart, S 259–260. ISBN 3-432-87813-3

    Google Scholar 

  • Brauer G (1978a-k) Handbuch der Präparativen Anorganischen Chemie, Bd II, 3. Aufl. Enke Verlag, Stuttgart, S 916/1333/1336/1341/1343-1350/1354/1358-1360/1366-1371/1374-1379/1383-1389. ISBN 3-432-87813-3

    Google Scholar 

  • Breuer H (2000) dtv-Atlas Chemie, Bd 1, 9. Aufl. dtv, München. ISBN 3-423-03217-0

    Google Scholar 

  • Briehl H (2007) Chemie der Werkstoffe. Springer Science & Business Media, Heidelberg, S 244/253. ISBN 978-3-8351-0223-1

    Google Scholar 

  • Brinkman H (2013) Coster, Dirk (1889–1950). In: Biografisch Woordenboek van Nederland, Huygens ING, Den Haag, 1989, zuletzt bearbeitet 2013

    Google Scholar 

  • Brintzinger H, Bercaw J-E (1970) Nature of so-called titanocene, (C10H10Ti)2. J Am Chem Soc 92:6182–6185. https://doi.org/10.1021/ja00724a013

    Article  CAS  Google Scholar 

  • Brock T et al (2000) Lehrbuch der Lacktechnologie, 2. Aufl. Vincentz Network, Hannover, S 123. ISBN 3-87870-569-7

    Google Scholar 

  • Brown PL (2005) Chemical Thermodynamics of Zirconium. Gulf Professional Publishing, Houston, S 320. ISBN 0-444-51803-7

    Google Scholar 

  • Buchwald SL et al (1993) Schwartz’s Reagent. Organic Synth 71:77. https://doi.org/10.15227/orgsyn.071.0077

    Article  CAS  Google Scholar 

  • Bullis K (2008) Neuverdrahtung der Elektronik. technology review, 8. Mai 2008. Zugegriffen am 24.10.2015

    Google Scholar 

  • Cacuci DG (2010) Handbook of nuclear engineering. Vol. 5: fuel cycles, decommissioning, waste disposal and safeguards. Springer, New York, S 2961. ISBN 0387981306

    Book  Google Scholar 

  • Campbell J (1999) Rutherford. Scientist Supreme. AAS Publications, Christchurch. ISBN 0-473-05700-X

    Google Scholar 

  • Çamurlu HE, Maglia F (2009) Preparation of nano-size ZrB2 powder by self-propagating high-temperature synthesis. J Eur Ceram Soc 29:1501–1506. https://doi.org/10.1016/j.jeurceramsoc.2008.09.006

    Article  CAS  Google Scholar 

  • Cardarelli F (2008) Materials handbook: a concise desktop reference. Springer, New York, S 617–619. ISBN 978-1-84628-669-8

    Google Scholar 

  • Carrillo CW, Lundström T (1979) New phases in the Ti-P and Ti-Cu-P systems. Acta Chem Scand Ser A 33:401–402

    Article  Google Scholar 

  • Carrillo CW, Lundström T (1980) Crystal structure refinement of Ti5P3. Acta Chem Scand Ser A 34:415–419

    Article  Google Scholar 

  • Ceresana (2013) Marktstudie Titan-IV-oxid. Ceresana Technologiezentrum, Konstanz

    Google Scholar 

  • Chamberlain AL et al (2009) Reactive hot pressing of zirconium diboride. J Eur Ceram Soc 29:3401–3408. https://doi.org/10.1016/j.jeurceramsoc.2009.07.006

    Article  CAS  Google Scholar 

  • Chen LJ (2004) Silicide technology for integrated circuits. IET Digital Library, London, S 49. ISBN 0-86341-352-8

    Book  Google Scholar 

  • Chianelli RR, Dines MB (1975) Reaction of n-Butyllithium with transition metal trichalcogenides. Inorg Chem 14(10):2417–2421

    Article  CAS  Google Scholar 

  • Choi JH et al (2011) Development of hafnium based high-k materials – a review. Mat Sci Eng R72(6):97–136. https://doi.org/10.1016/j.mser.2010.12.001

    Article  CAS  Google Scholar 

  • Clark RJH et al (2013) The chemistry of titanium, zirconium and hafnium, Pergamon texts in inorganic chemistry. Elsevier, Amsterdam, S 436. ISBN 978-1-4831-5921-8

    Google Scholar 

  • Cockroft JD (1967) George de Hevesy 1885–1966. Biograph Mem Fell Royal Soc 13:126–166

    Google Scholar 

  • Conley JF et al (2002) Atomic layer deposition of hafnium oxide using anhydrous hafnium nitrate. Electrochem Solid St 5(5):C57. https://doi.org/10.1149/1.1462875

    Article  CAS  Google Scholar 

  • Conroy LE (1970) Group IV sulfides. Inorg Synth 12:158. https://doi.org/10.1002/9780470132432.ch28

    Article  CAS  Google Scholar 

  • Coster D, Hevesy G (1923) On the missing element of atomic number 72. Nature 111(2777):79

    Article  CAS  Google Scholar 

  • Cunningham D (2014) A first-principles examination of Dopants in HfO2. Honors Scholar Theses, Paper 359. University of Connecticut, Hartford, S 25

    Google Scholar 

  • D’Ans J, Lax E (1997) Taschenbuch für Chemiker und Physiker. Springer, Berlin/Heidelberg, S 766. ISBN 3-540-60035-3

    Google Scholar 

  • Davidovich RL et al (2013) Crystal structure of monoclinic modifications of zirconium and hafnium tetrafluoride trihydrates. J Struct Chem 54:541–546

    Article  CAS  Google Scholar 

  • Deer WA et al (1982) The rock-forming minerals, volume 1 A: orthosilicates. Longman Group Ltd., Pearson/London, S 418–442. ISBN 0-582-46526-5

    Google Scholar 

  • Deniz D (2008) Texture evolution in metal nitride (aluminum nitride, titanium nitride, hafnium nitride) thin films prepared by off-normal incidence reactive magnetron sputtering. ProQuest, Ann Arbor, S 6. ISBN 9781109037821

    Google Scholar 

  • Der Standard (2011) NASA-Daten weisen auf reiche Titan-Vorkommen auf dem Mond hin, Wien. http://derstandpard.at/1317019743040/Rohstoffquelle-NASA-Daten-weisen-auf-reiche-Titan-Vorkommen-auf-dem-Mond-hin. Zugegriffen am 09.10.2011

  • Devi A (2007) Hafniumoxid bringt den Durchbruch. AG der RUB entwickelt neuartige Verbindung. Preis im Erfinderwettbewerb, Fakultät für Chemie und Biochemie, Lehrstuhl für Anorganische Chemie II der Ruhr-Universität Bochum

    Google Scholar 

  • Die Welt (2011) Forscher preisen den Mond als Rohstofflieferanten, Hamburg. http://www.welt.de/wissenschaft/weltraum/article13647963/Forscher-preisen-den-Mond-als-Rohstofflieferanten.html. Zugegriffen am 10.10.2011

  • Dubrovinsky LS et al (2001) Materials science: the hardest known oxide. Nature 410(6829):653–654

    Article  CAS  Google Scholar 

  • Dzivenko D (2009) High-pressure synthesis, structure and properties of cubic zirconium(IV)- and hafnium(IV) nitrides. Dissertation, Technische Universität Darmstadt

    Google Scholar 

  • Ebbinghaus T (2002) Kombinierter biologisch-photokatalytischer Abbau von umweltrelevanten Stickstoffverbindungen zur Reinigung von landwirtschaftlichen Abwässern mit bewachsenen Pflanzen-filtern und TiO2/UV. Dissertation, Universität Dortmund

    Google Scholar 

  • Eberly KC (1963) Zirconium(IV) Iodide. Inorg Synth 7:52–54. https://doi.org/10.1002/9780470132388.ch13

    Article  CAS  Google Scholar 

  • Ehrlich P et al (1961) Darstellung und Kristallstruktur von Titandibromid. Z Anorg Allg Chem 312:80–86. https://doi.org/10.1002/zaac.19613120112

    Article  CAS  Google Scholar 

  • Ehrlich P et al (1964) Über Zirconium(III)-fluorid. Versuche zur Darstellung von Thorium(III)-fluorid. Z Anorg Allg Chem 333:209–215

    Article  CAS  Google Scholar 

  • Ellison P et al (2010) New superheavy element isotopes: 242Pu(48Ca,5n)285114. Phys Rev Lett 105(18):182701

    Article  CAS  Google Scholar 

  • Elschenbroich C (2008) Organometallchemie, 6. Teubner, Wiesbaden, S 479. ISBN 978-3-8351-0167-8

    Google Scholar 

  • Fahrenholtz WG (2007) Thermodynamic analysis of ZrB2–SiC oxidation: formation of a SiC-Depleted region. J Am Ceram Soc 90(1):143–148. https://doi.org/10.1111/j.1551-2916.2006.01329.x

    Article  CAS  Google Scholar 

  • Fast JD (1939) The preparation of pure titanium iodides. Rec Trav Chim Pays-Bas 58:174–180. https://doi.org/10.1002/recl.19390580209

    Article  CAS  Google Scholar 

  • Flerov GN et al (1964) Synthesis and physical identification of the isotope of element 104 with mass number 260. Phys Lett 13:73–75

    Article  CAS  Google Scholar 

  • Forsberg CW et al (2011) Water reactor. In: Nuclear hydrogen production handbook. CRC Press, Boca Raton, S 192. ISBN 978-1-4398-1084-2

    Google Scholar 

  • Friese KH, Grünwald W (1995) Sensor element for limit sensors for determining the lambda value of gaseous mixtures. (EP 0386006, Robert Bosch GmbH, Stuttgart, veröffentlicht 12. Juli 1995)

    Google Scholar 

  • Gal’perin EL, Sandler RA (1962) TiCl2. Kristallografiya 7:217–219

    Google Scholar 

  • Gambogi J (2011) Mineral commodity summaries 2011: Zirconium and Hafnium, United States Geological Survey. U. S. Department of the Interior, Washington, DC, S 190–191

    Google Scholar 

  • Gemmi M et al (2003) Structure of Ti2P solved by three-dimensional electron diffraction data collected with the precession technique and high-resolution electron microscopy. Acta Cryst A 59:117–126. https://doi.org/10.1107/S0108767302022559

    Article  CAS  Google Scholar 

  • Ghiorso A et al (1969) Positive identification of two alpha-particle-emitting isotopes of element 104. Phys Rev Lett 22:1317–1320. https://doi.org/10.1103/PhysRevLett.22.1317

    Article  CAS  Google Scholar 

  • Ghiorso A et al (1970) 261Rf; new isotope of element 104. Phys Lett B 32(2):95–98

    Google Scholar 

  • Ghiorso A et al (1993) Responses on ‚Discovery of the transfermium elements‘ by Lawrence Berkeley Laboratory, California; Joint Institute for Nuclear Research, Dubna; and Gesellschaft für Schwerionenforschung, Darmstadt followed by reply to responses by the Transfermium Working Group. Pure Appl Chem 65(8):1815–1824

    Article  Google Scholar 

  • Gilbert LH, Barr MM (1955) Preliminary investigation of Hafnium metal by the Kroll process. J Electrochem Soc 102(5):243

    Article  CAS  Google Scholar 

  • Gonzalez F et al (1924) Über das Atomgewicht des Zirconiums. Z Allg Anorg Chem 139:293–309

    Article  Google Scholar 

  • Grätzel M, Rotzinger FP (1985) The influence of the crystal lattice structure on the conduction band energy of oxides of titanium(IV). Chem Phys Lett 118(5):474–477

    Article  Google Scholar 

  • Greenwood NN, Earnshaw A (1988) Chemie der Elemente, 1. Aufl. Wiley VCH, Weinheim, S 1231. ISBN 3-527-26169-9

    Google Scholar 

  • Griffith RF (1952) Zirconium and Hafnium, Minerals Yearbook Metals and Minerals (except fuels). The first production plants Bureau of Mines. Albany, S 1162–1171

    Google Scholar 

  • Gylfe JD (1954) Fuel moderator element for a nuclear reactor, and method of making. (US 3145150, U. S. Government, veröffentlicht 18. August 1954)

    Google Scholar 

  • Hagen AP (2009) Inorganic reactions and methods, the formation of bonds to halogens. Wiley, New York, S 288. ISBN 0-470-14539-0

    Google Scholar 

  • Halter U et al (1986) Hydrogen absorption in Ti3P. J Less Comm Met 118:343–348

    Article  CAS  Google Scholar 

  • Hart DW, Schwartz J (1974) Hydrozirconation. Organic synthesis via organozirconium intermediates. Synthesis and rearrangement of alkylzirconium(IV) complexes and their reaction with electrophiles. J Am Chem Soc 96(26):8115–8116. https://doi.org/10.1021/ja00833a048

    Article  CAS  Google Scholar 

  • Hasaninejad A et al (2012) Zirconium nitrate: a reusable water tolerant Lewis acid catalyst for the synthesis of N-substituted pyrroles in aqueous media. RSC Adv 2(15):6174. https://doi.org/10.1039/C2RA20294H

    Article  CAS  Google Scholar 

  • Hatta K et al (1996) Floating zone growth and characterization of aluminum-doped rutile single crystals. J Cryst Growth 163:279–284

    Article  CAS  Google Scholar 

  • Hedrick JB (2001) Zirconium and Hafnium, United States Geological Survey. U. S. Department of the Interior, Washington, DC

    Google Scholar 

  • Heilbron JL (1966) The work of H. G. J. Moseley Isis 57(3):336

    Article  CAS  Google Scholar 

  • Heimann PM (1967) Moseley and celtium: the search for a missing element. Ann Sci 23(4):249

    Article  CAS  Google Scholar 

  • Hering E (2012) Sensoren in Wissenschaft und Technik. Vieweg und Teubner Verlag, Wiesbaden, S 107. ISBN 978-3-834-88635-4

    Book  Google Scholar 

  • Heßberger FP et al (1997) Spontaneous fission and alpha-decay properties of neutron deficient isotopes 257–253104 and 258106. Z Phys A 359(4):415

    Article  Google Scholar 

  • Heßberger FP et al (2001) Decay properties of neutron-deficient isotopes 256,257Db, 255Rf, 252,253Lr. Eur Phys J A 12(1):57–67

    Article  Google Scholar 

  • Hevesy G de (1923) Über die Auffindung des Hafniums und den gegenwärtigen Stand unserer Kenntnisse von diesem Element. Ber Dt Chem Ges 56(7):1503

    Google Scholar 

  • Hevesy G de (1925) The discovery and properties of hafnium. Chem Rev 2(1):1–41

    Google Scholar 

  • Hippel ARvon (1950) Ferroelectricity, domain structure, and phase transitions of barium titanate. Rev Mod Phys 22:221–237

    Google Scholar 

  • Hodul DT, Stacy AM (1984) Anomalies in the properties of Hf(S2−xTex)1-y and Hf(Se2−xTex)1-y near the metal-insulator transition. J Solid State Chem 54(3):438. https://doi.org/10.1016/0022-4596(84)90176-2

    Article  CAS  Google Scholar 

  • Hofmann S (2009) The euroschool lectures on physics with exotic beams, Vol. III Lecture notes in physics. Springer, Berlin, S 203–252

    Google Scholar 

  • Holleman AF, Wiberg E, Wiberg N (1995) Lehrbuch der Anorganischen Chemie, 101. Aufl. De Gruyter, Berlin, S 1700. ISBN 3-11-012641-9

    Google Scholar 

  • Holleman AF, Wiberg E, Wiberg N (2007) Lehrbuch der Anorganischen Chemie, 102. Aufl. de Gruyter Verlag, Berlin, S 1525. /1528/1533. ISBN 978-3-11-017770-1

    Book  Google Scholar 

  • Housecroft CE, Sharpe AG (2005) Inorganic Chemistry. Pearson Education, London, S 601/652. ISBN 0-13-039913-2

    Google Scholar 

  • Hund-Rinke K et al (2013) Biological efficiency measurements for photocatalysts. Fraunhofer-Institut für Molekularbiologie und Angewandte Ökologie, Schmallenberg

    Google Scholar 

  • Hutchings I, Shipway P (2017) Tribology friction and wear of engineering materials. Butterworth-Heinemann, Oxford, S 171. ISBN 978-0-08-100951-2

    Google Scholar 

  • Irani KS, Gingerich KA (1963) Structural transformation of zirconium phosphide. J Phys Chem Solid 24(10):1153–1158. https://doi.org/10.1016/0022-3697(63)90231-2

    Article  CAS  Google Scholar 

  • IUPAC Commission (1997) Names and symbols of transfermium elements (IUPAC Recommendations. Pure Appl Chem 69(12):2471–2474

    Article  Google Scholar 

  • Jander G, Blasius E (1990) Einführung in das anorganisch chemische Praktikum (Qualitative Analyse), 13. Aufl. Hirzel, Stuttgart, S 130

    Google Scholar 

  • Jayaraman S et al (2005) Hafnium diboride thin films by chemical vapor deposition from a single source precursor. J Vac Sci Tech A Vac Surf Films 23:1619. https://doi.org/10.1116/1.2049307

    Article  CAS  Google Scholar 

  • Johnson BFG (1972) Inorganic chemistry of the transition elements. Royal Society of Chemistry, London, S 22. ISBN 978-0-85186-500-3

    Book  Google Scholar 

  • Jones MN et al (2005) Dielectric constant and current transport for HfO2 thin films on ITO. Appl Phys A 81:285–288. https://doi.org/10.1007/s00339-005-3208-2

    Article  CAS  Google Scholar 

  • Kaji M, Mendeleev’s DI (2002) Concept of chemical elements and the principles of chemistry. Bull Hist Chem 27:4

    CAS  Google Scholar 

  • Kalpakjian S et al (2011) Werkstofftechnik. Pearson GmbH, Hallbergmoos, S 634. ISBN 9783868940060

    Google Scholar 

  • Kaminskii BT et al (1973) Manufacture of zirconium and hafnium sulfide powders. Sov Powd Metallurgy Met Ceram 12(7):521–524. https://doi.org/10.1007/BF00796747

    Article  Google Scholar 

  • Kanazawa T et al (2016) Few-layer HfS2 transistors. Sci Rep 6:22277. https://doi.org/10.1038/srep22277

    Article  CAS  Google Scholar 

  • Karuna PRP et al (2010) Microstructure and phase composition of composite coatings formed by plasma spraying of ZrO2 and B4C powders. J Therm Spray Tech 19:816–823. https://doi.org/10.1007/s11666-010-9479-y

    Article  CAS  Google Scholar 

  • Kaur H et al (2018) High yield synthesis and chemical exfoliation of two-dimensional layered hafnium disulphide. Nano Res 11(1):343–353. https://doi.org/10.1007/s12274-017-1636-x

    Article  CAS  Google Scholar 

  • Kieffer R, Schwarzkopf P (2013) Hartstoffe und Hartmetalle. Springer, Berlin/Heidelberg, S 259. ISBN 978-3-7091-3901-1

    Google Scholar 

  • Kienel G (1997) Vakuumbeschichtung: Bd 5: Anwendungen. Springer, Heidelberg, S 46. ISBN 978-3-6425-8008-6

    Google Scholar 

  • Klare M (1999) Möglichkeiten des photokatalytischen Abbaus umweltrelevanter Stickstoffverbindungen unter Einsatz von TiO2. Dissertation, Universität Dortmund

    Google Scholar 

  • Kojić-Prodić B et al (1984) Structure of aquatetrafluorozirconium(IV). Acta Crystallogr Sect B Struct Crystallogr Cryst Chem 37:1963–1965

    Article  Google Scholar 

  • Kollenberg W (2004) Technische Keramik Grundlagen, Werkstoffe, Verfahrenstechnik. Vulkan, Essen, S 339. ISBN 978-3-8027-2927-9

    Google Scholar 

  • Kratz JV (2003) Critical evaluation of the chemical properties of the transactinide elements (IUPAC Technical Report). Pure Appl Chem 75(1):103

    Article  CAS  Google Scholar 

  • Kratz JV et al (2003) An EC-branch in the decay of 27-s 263Db: evidence for the new isotope 263Rf. Radiochim Acta 91(1):59–62

    Article  CAS  Google Scholar 

  • Krebs B, Sinram D (1980) Hafniumtetrajodid HfI4: Struktur und Eigenschaften. Ein neuer AB4-strukturtyp. J Less Comm Met 76(7). https://doi.org/10.1016/0022-5088(80)90005-3

  • Krebs B et al (1979) Kristallstruktur von Zirconiumtetrajodid ZrI4: ein neuer AB4-Strukturtyp. Acta Crystallogr B 35:274–278. https://doi.org/10.1107/S0567740879003344

    Article  Google Scholar 

  • Kroll P (2003) Hafnium nitride with thorium phosphide structure: physical properties and an assessment of the Hf-N, Zr-N, and Ti-N phase diagrams at high pressures and temperatures. Phys Rev Lett 90:125501

    Article  Google Scholar 

  • Kroll W (1940) Method for manufacturing titanium and alloys thereof. US 2205854, veröffentlicht 25. Juni 1940

    Google Scholar 

  • Lachgar A et al (1990) Revision of the structure of zirconium triiodide. The presence of metal dimers. Inorg Chem 29:2242–2246. https://doi.org/10.1021/ic00337a013

    Article  CAS  Google Scholar 

  • Lamas DG, de Walsöe Reca NE (2000) X-ray diffraction study of compositionally homogeneous, nanocrystalline yttria-doped zirconia powders. J Mater Sci 35:5563–5567

    Article  CAS  Google Scholar 

  • Lane MR et al (1996) Spontaneous fission properties of 104 262Rf. Phys Rev C 53(6):2893–2899

    Article  CAS  Google Scholar 

  • Larsen E et al (1943) Concentration of hafnium. Preparation of hafnium-free Zirconia. Ind Eng Chem Anal 15(8):512

    Article  CAS  Google Scholar 

  • Latscha H-P, Mutz M (2011) Chemie der Elemente: Chemie. Springer, Heidelberg, S 211/394. ISBN 3642169147

    Book  Google Scholar 

  • Lawson JW et al (2011) Lattice thermal conductivity of ultra high temperature ceramics ZrB2 and HfB2 from atomistic simulations. J Appl Phys 110:083507. https://doi.org/10.1063/1.3647754

    Article  CAS  Google Scholar 

  • Lee OI (1928) The mineralogy of hafnium. Chem Rev 5:17

    Article  CAS  Google Scholar 

  • Legein C et al (2006) 19F high magnetic field NMR study of beta-ZrF4 and CeF4: from spectra reconstruction to correlation between fluorine sites and 19F isotopic chemical shifts. Inorg Chem 45(26):10636–10641

    Google Scholar 

  • Lide DR (2010) Geophysics, astronomy, and acoustics; Abundance of elements in the earth’s crust and in the sea. In: CRC Handbook of chemistry and physics, 90. Aufl. CRC Press, Boca Raton, S 14–18

    Google Scholar 

  • Lindner M (1997) Optimierung der photokatalytischen Wasserreinigung mit Titandioxid, Festkörper- und Oberflächenstruktur des Photokatalysators. Dissertation, Universität Hannover

    Google Scholar 

  • Liss KD et al (2003) High energy X-rays: a tool for advanced bulk investigations in materials science and physics. Text Microstruct 35(3/4):219–252. https://doi.org/10.1080/07303300310001634952

    Article  Google Scholar 

  • Loehman RE et al (2006) Ultrahigh-temperature ceramics for hypersonic vehicle applications. Sandia report 2006–2925. Sandia National Laboratories, Albuquerque/Livermore

    Google Scholar 

  • Machida H, Fukuda T (1991) Difficulties encountered during the Czochralski growth of TiO2 single crystals. J Cryst Growth 112:835–837

    Article  CAS  Google Scholar 

  • Magnuson M (2017) Bonding structures of ZrHx thin films by X-ray spectroscopy. J Phys Chem C 121:25750. https://doi.org/10.1021/acs.jpcc.7b03223

    Article  CAS  Google Scholar 

  • Magnuson M et al (2018) Chemical bonding in epitaxial ZrB2 studied by X-ray spectroscopy. Thin Solid Films 649:89–96. https://doi.org/10.1016/j.tsf.2018.01.021

    Article  CAS  Google Scholar 

  • Majewski T (2002) Spurenbestimmung metallischer Verunreinigungen in γ-TiAl und den hochreinen Ausgangsmaterialien Al und Ti mittels ICP-Massenspektrometrie. Dissertation, Universität Hannover, S 5, DNB 965453219/34

    Google Scholar 

  • Martienssen W, Warlimont H (2005) Springer Handbook of condensed matter and materials data. Springer, Heidelberg, S 468/470. ISBN 978-3-540-30437-1

    Book  Google Scholar 

  • Martin B (1994) Herstellung und Charakterisierung gesputterter TiN-Schichten auf Kupferwerkstoffen. Shaker Verlag, Herzogenrath. ISBN 3-86111-950-1

    Google Scholar 

  • Martin PM et al (2002) Investigation of sputtered HfF4 films and application to interference filters for thermophotovoltaics. Thin Solid Films 420–421:8. https://doi.org/10.1016/S0040-6090(02)00652-1

    Article  Google Scholar 

  • Maslenkov SB et al (1980) Effect of hafnium on the structure and properties of nickel alloys. Met Sci Heat Treat 22(4):283

    Article  Google Scholar 

  • Massie M, Dewan LC (2013) Nuclear reactors and related methods and apparatus. US 20130083878 A1, U. S. Government, veröffentlicht 4. April 2013

    Google Scholar 

  • McCauley JW et al (2012) Ceramic armor materials by design. Wiley, New York, S 633. ISBN 1-118-38110-6

    Google Scholar 

  • McNallan M (2000) High temperature corrosion and materials chemistry, proceedings of the Per Kofstad memorial symposium. The Electrochemical Society, Pennington, S 490. ISBN 978-1-56677-261-7

    Google Scholar 

  • Medvedev SA et al (2016) Pressure-driven superconductivity in the transition-metal pentatelluride HfTe5. Phys Rev B 94:054517. https://doi.org/10.1103/PhysRevB.94.054517

    Article  CAS  Google Scholar 

  • Mel’nikov VP (1982) Some details in the prehistory of the discovery of element 72. Centaurus 26(3):317

    Article  Google Scholar 

  • Middleburgh S et al (2011) Atomic scale modeling of point defects in Zirconium Diboride. J Am Ceram Soc 94(7):2225–2229. https://doi.org/10.1111/j.1551-2916.2010.04360.x

    Article  CAS  Google Scholar 

  • Mitrovic IZ et al (2007) Electrical and structural properties of hafnium silicate thin films. Microelectron Reliab 47(4-5):645–648. https://doi.org/10.1016/j.microrel.2007.01.065

    Article  CAS  Google Scholar 

  • Mittmann T et al (2017) Optimizing process conditions for improved Hf1−xZrxO2 ferroelectric capacitor performance. Microelectr Eng 178:48–51. https://doi.org/10.1016/j.mee.2017.04.031

    Article  CAS  Google Scholar 

  • Mompean F et al (2005) Chemical thermodynamics of zirconium. Gulf Professional Publishing, Elsevier, Amsterdam, S 144. ISBN 0080457533

    Google Scholar 

  • Morozov IV et al (2005) Synthesis and crystal structures of zirconium(IV) nitrate complexes (NO2)[Zr(NO3)3(H2O)3]2(NO3)3, Cs[Zr(NO3)5], and (NH4)[Zr(NO3)5](HNO3). Russ Chem Bull 54(1):93–98. https://doi.org/10.1007/s11172-005-0222-7

    Article  CAS  Google Scholar 

  • Müller J et al (2011a) Ferroelectric Zr0.5Hf0.5O2 thin films for nonvolatile memory applications. Appl Phys Lett 99(11):112901. https://doi.org/10.1063/1.3636417

    Article  CAS  Google Scholar 

  • Müller J et al (2011b) Ferroelectricity in yttrium-doped hafnium oxide. J Appl Phys 110(11):114113. https://doi.org/10.1063/1.3667205

    Article  CAS  Google Scholar 

  • Müller J et al (2012) Ferroelectricity in HfO2 enables nonvolatile data storage in 28 nm HKMG. 2012 Symposium on VLSI Technology. Honolulu. 15. Juni 2012, S 25–26. https://doi.org/10.1109/VLSIT.2012.6242443

  • Nagame Y et al (2005) Chemical studies on rutherfordium (Rf) at JAERI. Radiochim Acta 93:519

    Article  CAS  Google Scholar 

  • Nichols MC et al (2001) Osbornite, handbook of mineralogy. Mineralogical Society of America, Chantilly

    Google Scholar 

  • Niedźwiedź K et al (1993) 91Zr NMR in non-stoichiometric zirconium hydrides, ZrHx (1,55≤x≤2). J Alloys Compd 194(1):47–51. https://doi.org/10.1016/0925-8388(93)90643-2

  • Niewa R, Jacobs H (1995) Crystal structure of hafnium(IV) chloride, HfCl4. Z Krist Cryst Mat 210(9):687–687. https://doi.org/10.1524/zkri.1995.210.9.687

    Article  CAS  Google Scholar 

  • Nikiforov GB et al (2014) A survey of titanium fluoride complexes, their preparation, reactivity, and applications. Coord Chem Rev 258–259:16–57. https://doi.org/10.1016/j.ccr.2013.09.002

    Article  CAS  Google Scholar 

  • Ninov V et al (1999) Observation of superheavy nuclei produced in the reaction of 86Kr with 208Pb. Phys Rev Lett 83(6):1104–1107

    Article  CAS  Google Scholar 

  • Nishio-Hamane D (2010) The stability and equation of state for the cotunnite phase of TiO2 up to 70 GPa. Phys Chem Miner 37(3):129–136

    Article  CAS  Google Scholar 

  • Nishiyama K et al (2009) Preparation of ultrafine boride powders by metallothermic reduction method. J Phys, Conf Ser 176:012043

    Article  Google Scholar 

  • Nowotny H, Pesl J (1951) Untersuchungen im System Titan-Antimon. Monatsh Chem 82(2):336–343

    Article  CAS  Google Scholar 

  • Ogale SB (2005) Thin films and heterostructures for oxide electronics. Springer, Berlin/Heidelberg, S 38. ISBN 0-387-25802-7

    Book  Google Scholar 

  • Oganessian YT et al (2007) Synthesis of the isotope 282113Uut in the Np237 + Ca48 fusion reaction. Phys Rev C 76(1):011601

    Article  Google Scholar 

  • Oganessian YT et al (2009) Superheavy elements in D I Mendeleev’s periodic table. Russ Chem Rev 78(12):1077

    Article  CAS  Google Scholar 

  • Oganessian YT et al (2015) Experiments on the synthesis of superheavy nuclei 284Fl and 285Fl in the 239,240Pu + 48Ca reactions. Phys Rev C 92(3)

    Google Scholar 

  • Östlin A, Vitos L (2011) First-principles calculation of the structural stability of 6d transition metals. Phys Rev B 84(11):113104

    Article  Google Scholar 

  • Paetzold P (2010) Chemie: Eine Einführung. De Gruyter, Berlin, S 204. ISBN 3-11-020268-9

    Google Scholar 

  • Palló G (2009) Isotope research before isotopy: George Hevesy’s early radioactivity research in the Hungarian context. Dynamis 29:167–189

    Article  Google Scholar 

  • Papiernik R et al (1982) Structure du tetrafluorure de zirconium, ZrF4 alpha. Acta Crystallogr B 38:2347–2353

    Article  Google Scholar 

  • Park PK, Kang S-W (2006) Enhancement of dielectric constant in HfO2 thin films by the addition of Al2O3. Appl Phys Lett 89:192905. https://doi.org/10.1063/1.2387126

    Article  CAS  Google Scholar 

  • Patchett PJ (1983) Importance of the Lu-Hf isotopic system in studies of planetary chronology and chemical evolution. Geochim Cosmochim Acta 47(1):81–91

    Article  CAS  Google Scholar 

  • Patchett PJ, Tatsumoto M (1980) Lu–Hf total-rock isochron for the eucrite meteorites. Nature 288(5791):571–574

    Article  CAS  Google Scholar 

  • Patel SG et al (1998) Electrical properties of zirconium diselenide single crystals grown by iodine transport method. Bull Mat Sci 21(3):213–217

    Article  CAS  Google Scholar 

  • Pattarinee K (2010) Deposition of zirconium nitride thin films produced by reactive DC magnetron sputtering. As J Energy Environ 11(1):60–68

    Google Scholar 

  • Perry DL (2011) Handbook of inorganic compounds, 2. Aufl. Taylor & Francis, Abingdon, S 194/434/472/475/479/488. ISBN 1-4398-1462-7

    Google Scholar 

  • Peshev P, Bliznakov G (1968) On the borothermic preparation of titanium, zirconium and hafnium diborides. J Less Comm Met 14:23–32. https://doi.org/10.1016/0022-5088(68)90199-9

    Article  CAS  Google Scholar 

  • Pierson HO (1996) Handbook of refractory carbides & nitrides: properties, characteristics, processing and applications. William Andrew/Elsevier, Norwich, S 73/76. ISBN 0-08-094629-1

    Google Scholar 

  • Pierson HO (1999) Handbook of chemical vapor deposition, 22nd ed.: principles, technology. William Andrew Publishing, Norwich, S 256/331. ISBN 0-08094668-2

    Google Scholar 

  • Prechtl JJ (1826) Jahrbücher des kaiserlichen königlichen polytechnischen Instituts in Wien. 9:265

    Google Scholar 

  • Prieto P et al (1993) Electronic structure of insulating zirconium nitride. Phys Rev B 47:1613

    Article  CAS  Google Scholar 

  • Prout K et al (1974) The crystal and molecular structures of bent bis-π-cyclopentadienyl – metal complexes: (a) bis-π-cyclopentadienyldibromorhenium(V) tetrafluoroborate, (b) bis-π-cyclopentadienyldichloromolybdenum(IV), (c) bis-π-cyclopentadienylhydroxomethylaminomolybdenum(IV) hexafluorophosphate, (d) bis-π-cyclopentadienylethylchloromolybdenum(IV), (e) bis-π-cyclopentadienyldichloroniobium(IV), (f) bis-π-cyclopentadienyldichloromolybdenum(V) tetrafluoroborate, (g) μ-oxo-bis[bis-π-cyclopentadienylchloroniobium(IV)] tetrafluoroborate, (h) bis-π-cyclopentadienyldichlorozirconium. Acta Cryst Sect B Struct Cryst Crystal Chem 30(10):2290–2304. https://doi.org/10.1107/S0567740874007011

  • Quijano R (2009) Electronic structure and energetics of the tetragonal distortion for TiH2, ZrH2 and HfH2. Phys Rev B 184103:80. https://doi.org/10.1103/PhysRevB.80.184103

    Article  CAS  Google Scholar 

  • Ramakrishnany S, Rogozinski MW (1997) Properties of electric arc plasma for metal cutting. J Phys D Appl Phys 30(4):636

    Article  Google Scholar 

  • Randich E (1979) Chemical vapor deposited borides of the form (Ti,Zr)B2 and (Ta,Ti)B2. Thin Solid Films 63(2):309–313. https://doi.org/10.1016/0040-6090(79)90034-8

    Article  CAS  Google Scholar 

  • Rees WS Jr (2008) CVD of nonmetals. Wiley, New York, S 370. ISBN 352761480X

    Google Scholar 

  • Riedel E, Janiak C (2011) Anorganische Chemie. De Gruyter, Berlin, S 788/792–788/793. ISBN 3-11-022566-2

    Google Scholar 

  • Riekel C (1976) Structure refinement of TiSe2 by Neutron diffraction. J Solid State Chem 17(4):389–392. https://doi.org/10.1016/S0022-4596(76)80008-4

    Article  CAS  Google Scholar 

  • Ritterskamp P et al (2007) Ein auf Titandisilicid basierender, halbleitender Katalysator zur Wasserspaltung mit Sonnenlicht – reversible Speicherung von Sauerstoff und Wasserstoff. Angew Chem 119:7917–7921. https://doi.org/10.1002/ange.200701626

    Article  Google Scholar 

  • Roth A (1994) Vacuum sealing techniques. Springer, Berlin/Heidelberg, S 212. ISBN 978-1-56396-259-2

    Google Scholar 

  • Rouhi AM (1998) Organozirconium chemistry arrives. Chem Eng News 82(16):162. https://doi.org/10.1021/cen-v082n015.p035

    Article  Google Scholar 

  • Ruh R et al (1968) The system Zirconia-Hafnia. J Am Ceram Soc 51:23–27

    Article  CAS  Google Scholar 

  • Sale FR, Shelton RAJ (1965) Studies in the chemical metallurgy of the titanium group metals. J Less Comm Met 9:60–63. https://doi.org/10.1016/0022-5088(65)90036-6

    Article  CAS  Google Scholar 

  • Salmang H, Scholze H (2006) Keramik. Springer, Berlin/Heidelberg, S 380. ISBN 978-3-540-49469-0

    Google Scholar 

  • Sauthoff G (1995) Intermetallics. Wiley-VCH, Weinheim. ISBN 3-527-29320-5

    Book  Google Scholar 

  • Scerri ER (1994) Prediction of the nature of hafnium from chemistry, Bohr’s theory and quantum theory. Ann Sci 51(2):137

    Article  Google Scholar 

  • Schatt W et al (2006) Pulvermetallurgie. Springer, Heidelberg, S 506. ISBN 9783540236528

    Google Scholar 

  • Schemel JH (1977) ASTM Manual on Zirconium and Hafnium. ASTM International, West Conshohocken, S 1–5. ISBN 978-0-8031-0505-8

    Google Scholar 

  • Schlueter N et al (2007) Effect of titanium tetrafluoride and sodium fluoride on erosion progression in enamel and dentine in vitro. Caries Res 41:141–145

    Article  CAS  Google Scholar 

  • Schofield K (1980) Aromatic nitration. Cambridge University Press, Cambridge, S 97. ISBN 9780521233620

    Google Scholar 

  • Sekiya T, Kurita S (2008) Defects in Anatase Titanium Dioxide. In: Ohno K, Tanaka M, Takeda J, Kawazoe Y (Hrsg) Nano- and Micromaterials. Advances in materials research, Bd 9. Springer, Berlin/Heidelberg. https://doi.org/10.1007/978-3-540-74557-0_4

    Chapter  Google Scholar 

  • Sharpe AG (2005) Inorganic chemistry. Pearson Education, London, S 652. ISBN 978-0-13-039913-7

    Google Scholar 

  • Siervo A de et al. (2006) Hafnium silicide formation on Si(100) upon annealing, Phys Rev B, 74, 075319.

    Google Scholar 

  • Singh G (2007) Chemistry of D-block elements. Discovery Publishing House, New Delhi, S 107. ISBN 978-818356242-3

    Google Scholar 

  • Snell PO (1968) Phase relationships in the Ti-P system with some notes on the crystal structures of TiP2 and ZrP2. Acta Chem Scand 22:1942–1952

    Article  CAS  Google Scholar 

  • Söderlund U et al (2004) The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of precambrian mafic intrusions. Earth Planet Sci Lett 219(3–4):311–324

    Google Scholar 

  • Steudel R (2013) Chemie der Nichtmetalle Synthesen – Strukturen – Bindung – Verwendung. de Gruyter, Berlin, S 212. ISBN 978-3-11-030797-9

    Book  Google Scholar 

  • Stirn A (2009) Vom Triebwerk bis zum Campanile. Süddeutsche Zeitung 25:22

    Google Scholar 

  • Straumanis ME, Faunce CA (1967) Der unvollkommene Aufbau des Hafniumnitrids und das Bindungsproblem. Z Anorg Allg Chem 353:329–336. https://doi.org/10.1002/zaac.19673530514

    Article  CAS  Google Scholar 

  • Su K, Sneddon LG (1993) A polymer precursor route to metal borides. Chem Mater 5:1659–1668. https://doi.org/10.1021/cm00035a013

    Article  CAS  Google Scholar 

  • Swihart MT et al (2001) Fundamental gas-phase and surface chemistry of vapor-phase deposition II and Process control, diagnostics and modeling in semiconductor manufacturing IV: proceedings of the international symposium. The Electrochemical Society, Pennington, S 153. ISBN 978-1-56677-319-5

    Google Scholar 

  • Switendick AC (1984) Electronic structure of γ phase zirconium hydride. J Less Comm Met 103(2):309–315. https://doi.org/10.1016/0022-5088(84)90254-6

    Article  CAS  Google Scholar 

  • Terashima K, Imai I (1987) Indirect absorption edge of ZrS2 and HfS2. Solid State Commun 63(4):315. https://doi.org/10.1016/0038-1098(87)90916-1

    Article  CAS  Google Scholar 

  • Thiele ES (1998) Scattering of electromagnetic radiation by complex microstructures in the resonant regime. Ph.D. Thesis, University of Pennsylvania

    Google Scholar 

  • Thomas T et al (2011) Titanium arsenide films from the atmospheric pressure chemical vapour deposition of tetrakisdimethylamidotitanium and tert-butylarsine. Dalton Trans 40(40):10664–10669. https://doi.org/10.1039/c1dt10457h

    Article  CAS  Google Scholar 

  • Tornqvist EGM, Libby WF (1979) Crystal structure, solubility, and electronic spectrum of titanium tetraiodide. Inorg Chem 18:1792–1796

    Article  CAS  Google Scholar 

  • Toumanov IN (2003) Plasma and high frequency processes for obtaining and processing materials in the nuclear fuel cycle. Nova Publishers, Hauppauge, S 104. ISBN 978-1-59033-009-8

    Google Scholar 

  • Troyanov SI (1986) Crystal structure of gamma-ZrI4. Kristallografiya 31:446–449

    CAS  Google Scholar 

  • Türler A et al (1998) Evidence for relativistic effects in the chemistry of element 104. J Alloys Compd 271–273:287. https://doi.org/10.1016/S0925-8388(98)00072-3

    Article  Google Scholar 

  • Urbain MG (1911) Sur un nouvel élément qui accompagne le lutécium et le scandium dans les terres de la gadolinite: le celtium. Comptes Rendus 141:152

    Google Scholar 

  • Urbain MG (1922) Sur les séries L du lutécium et de l’ytterbium et sur l’identification d’un celtium avec l’élément de nombre atomique 72. Comptes Rendus 174:1347

    Google Scholar 

  • Vértes A (2007) George Hevesy (György Hevesy). J Radioanal Nucl Chem 271(1):19–26

    Article  Google Scholar 

  • Voitovich RF, Golovko ÉI (1975) Oxidation of hafnium alloys with nickel. Met Sci Heat Treat 17(3):207

    Article  Google Scholar 

  • Wailes PC, Weigold H (1970) Hydrido complexes of zirconium I. Preparation. J Organomet Chem 24(2):405–411. https://doi.org/10.1016/S0022-328X(00)80281-8

    Article  CAS  Google Scholar 

  • Wang S et al (2012) T.T. Chen Honorary Symposium on Hydrometallurgy, Electrometallurgy and Materials Characterization. Wiley, New York, S 289. ISBN 1-118-36484-8

    Book  Google Scholar 

  • Wang ZL, Kang ZC (1998) Functional and smart materials: structural evolution and structure analysis. Plenum Press, New York, S 74. ISBN 978-0-306-45651-0

    Book  Google Scholar 

  • Werner C (2009) Zahnimplantate aus Zirkonoxid auf dem Vormarsch? Neue Zürcher Zeitung, Zürich/Schweiz

    Google Scholar 

  • Westbrook H, Fleischer RL (1994) Intermetallic compounds: principles and applications. 2 volume set: principles/practice, Bd 1 & 2. Wiley, Chichester. ISBN 0-471-93453-4

    Google Scholar 

  • White JM et al (2000) A novel and expeditious reduction of tertiary amides to aldehydes using Cp2Zr(H)Cl. J Am Chem Soc 122(48):11995–11996. https://doi.org/10.1021/ja002149g

    Article  CAS  Google Scholar 

  • Whittingham MS (2004) Lithium batteries and cathode materials. Chem Rev 104:4273

    Article  Google Scholar 

  • Wilkinson G, Birmingham JM (1954) Bis-cyclopentadienyl Compounds of Ti, Zr, V, Nb and Ta. J Am Chem Soc 76(17):4281–4284. https://doi.org/10.1021/ja01646a008

    Article  CAS  Google Scholar 

  • Wilson D (1983) Rutherford. Simple genius. MIT Press, Cambridge. ISBN 0-262-23115-8

    Google Scholar 

  • Winkler J (2003) Titandioxid. Vincentz Network, Hannover, S 55. ISBN 3-87870-738-X

    Google Scholar 

  • Wochenblatt Paraguay (2010). http://latina-press.com/news/56028-riesige-titan-vorkommen-in-paraguay-entdeckt/. Zugegriffen am 08.11.2010

  • Wu DS et al (1996) Characterization of hafnium diboride thin film resistors by r.f. magnetron sputtering. Mater Chem Phys 45(163). https://doi.org/10.1016/0254-0584(96)80096-4

  • Yan Y et al (2006) New route to synthesize ultra-fine zirconium diboride powders using inorganic – organic hybrid precursors. J Am Ceram Soc 89:3585–3588. https://doi.org/10.1111/j.1551-2916.2006.01269.x

    Article  CAS  Google Scholar 

  • Zhang SC et al (2006) Pressureless densification of zirconium diboride with boron carbide additions. J Am Ceram Soc 89(5):1544–1550. https://doi.org/10.1111/j.1551-2916.2006.00949.x

    Article  CAS  Google Scholar 

  • Zhuang W et al (2002) Hafnium Nitrate Precursor Synthesis and HfO2 Thin Film Deposition. Integr Ferroelectr 48(1):3–12. https://doi.org/10.1080/10584580215449

    Article  CAS  Google Scholar 

  • Zoli L et al (2018) Synthesis of group IV and V metal diboride nanocrystals via borothermal reduction with sodium borohydride. J Am Ceram Soc 101(6):2627–2637. https://doi.org/10.1111/jace.15401

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Sicius, H. (2022). Titangruppe: Elemente der vierten Nebengruppe. In: Handbuch der chemischen Elemente. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-55944-4_9-3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-55944-4_9-3

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer Spektrum, Berlin, Heidelberg

  • Print ISBN: 978-3-662-55944-4

  • Online ISBN: 978-3-662-55944-4

  • eBook Packages: Springer Referenz Naturwissenschaften

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Titangruppe: Elemente der vierten Nebengruppe
    Published:
    25 January 2023

    DOI: https://doi.org/10.1007/978-3-662-55944-4_9-3

  2. Original

    Titangruppe: Elemente der vierten Nebengruppe
    Published:
    05 November 2019

    DOI: https://doi.org/10.1007/978-3-662-55944-4_9-2