Skip to main content

Zinkgruppe: Elemente der zweiten Nebengruppe

Handbuch der chemischen Elemente

Zusammenfassung

Die Eigenschaften der Elemente der zweiten Nebengruppe (Zink, Cadmium, Quecksilber, Copernicium) sind relativ ähnlich. Cadmium steht in seinen Eigenschaften zwischen Zink und Quecksilber. Zink und Cadmium haben negative Normalpotenziale und sind damit unedle Metalle, wogegen Quecksilber ein Halbedelmetall ist. Die Elemente dieser Gruppe geben meist ein oder zwei äußere Valenzelektronen ab, um eine stabile Elektronenkonfiguration zu erreichen. Bei Zink und Cadmium sind die Oxidationsstufen +2 am stabilsten, bei Quecksilber +1 und +2. Für das höchste Element dieser Nebengruppe, das Copernicium, konnten bisher kaum chemische Untersuchungen durchgeführt werden. Es ist zu erwarten, dass es sich chemisch ähnlich wie Quecksilber verhält.

Zink als Element kennt man seit dem 17. Jahrhundert, Cadmium seit 1817, wogegen Quecksilber schon in der Antike bekannt war. Die erstmalige Darstellung von Atomen des Coperniciums gelang 1996.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Literatur

  • Adachi S (2004) Handbook on physical properties of semiconductors. Wolters Kluwer, Alphen aan den Rijn, S 420. ISBN 978-1-4020-7820-0

    Google Scholar 

  • Albanese G et al (1992) Formation of cadmium-containing W-type hexagonal ferrite. J Mater Sci 27(2):6146–6150

    Article  CAS  Google Scholar 

  • Almkvist J (1948) Über die Quecksilberbehandlung in Europa während des Mittelalters. Klin Wochenschr 60:15–19

    CAS  Google Scholar 

  • Amin N et al (2007) Numerical modeling of CdS/CdTe and CdS/CdTe/ZnTe solar cells as a function of CdTe thickness. Sol Energy Mater Sol Cells 91(13):1202–1208

    Article  CAS  Google Scholar 

  • Amiri H et al (2014) Plain abdominal radiography: a powerful tool to prognosticate outcome in patients with zinc phosphide poisoning. Clin Radiol 69(10):1062–1065

    Article  PubMed  Google Scholar 

  • Arndt K et al (2001) Göttinger Gelehrte: Die Akademie der Wissenschaften zu Göttingen in Bildnissen und Würdigungen 1751–2001. Wallstein-Verlag, Göttingen, S 88. ISBN 3-89244-485-4

    Google Scholar 

  • Barber RC et al (2009) Discovery of the element with atomic number 112. Pure Appl Chem 81(7):1331

    Article  CAS  Google Scholar 

  • Bardelli L et al (2006) Further study of CdWO4 crystal scintillators as detectors for high sensitivity experiments: scintillation properties and pulse-shape discrimination. Nucl Instrum Methods Phys Res Sect A 569:743. https://doi.org/10.1016/j.nima.2006.09.094

    Article  CAS  Google Scholar 

  • Biesalski HK et al (2010) Ernährungsmedizin, 4. Aufl. Georg Thieme-Verlag, Stuttgart. ISBN 978-3-13-100294-5

    Google Scholar 

  • Bildfell RJ et al (2013) A review of episodes of zinc phosphide toxicosis in wild geese (Branta spp.) in Oregon (2004–2011). J Vet Diagn Investig 25(1):162–167

    Article  Google Scholar 

  • Bindi L (2010) Atheneite, [Pd2][As0.75Hg0.25], from Itabira, Minas Gerais, Brazil: crystal structure and revision of the chemical formula. Can Mineral 48:1149–1155. https://doi.org/10.3749/canmin.48.5.1149

    Article  CAS  Google Scholar 

  • Blachnik R (1998) Taschenbuch für Chemiker und Physiker. Band III: Elemente, anorganische Verbindungen und Materialien, Minerale, 4. Aufl. Springer, Berlin/Heidelberg, S 484. ISBN 3-540-60035-3

    Google Scholar 

  • Bode H, Ludwig H (2013) Chemisches Praktikum für Mediziner. Springer, Berlin/Heidelberg, S 70. ISBN 978-3-540-60035-3

    Google Scholar 

  • Brauer G (1975) Handbuch der Präparativen Anorganischen Chemie, Bd I, 3. Aufl. Enke-Verlag, Stuttgart. ISBN 3-432-87813-3

    Google Scholar 

  • Brauer G (1978) Handbuch der Präparativen Anorganischen Chemie, Bd II, 3. Aufl. Enke-Verlag, Stuttgart. ISBN 3-432-87813-3

    Google Scholar 

  • Brebrick RF (1988) Thermodynamic modeling of the Hg-Cd-Te and Hg-Zn-Te systems. J Cryst Growth 86:39–48

    Article  CAS  Google Scholar 

  • Brückner R (2004) Reaktionsmechanismen, 3. Aufl. Spektrum Akademischer Verlag, München, S 776. ISBN 3-8274-1579-9

    Google Scholar 

  • Bruhns C (1876) Copernicus, Nicolaus. In: Allgemeine Deutsche Biographie, Bd 4. Duncker & Humblot-Verlag, Leipzig, S 461–469

    Google Scholar 

  • Brutlag AG et al (2011) Potential zinc phosphide rodenticide toxicosis in dogs: 362 cases (2004–2009). J Am Vet Med Assoc 239(5):646–651

    Article  PubMed  Google Scholar 

  • Calvo F et al (2013) Evidence for low-temperature melting of mercury owing to relativity. Angew Chem Int Ed 52:7583–7585

    Article  CAS  Google Scholar 

  • Capper P, Garland J (2011) Mercury cadmium telluride. Wiley, Chichester. ISBN 978-0-470-69706-1

    Google Scholar 

  • Carrier M (2001) Nikolaus Kopernikus. C. H. Beck-Verlag, München. ISBN 3-406-47577-9

    Google Scholar 

  • Caruso TJ et al (2007) Treatment of naturally acquired common colds with zinc: a structured review. Clin Infect Dis 45(5):569–574

    Article  CAS  PubMed  Google Scholar 

  • Chen Z et al (2009) Catalytic kinetic methods for photometric or fluorometric determination of heavy metal ions. Microchim Acta 164:311–336

    Article  CAS  Google Scholar 

  • Chen GQ et al (2016) An overview of mercury emissions by global fuel combustion: the impact of international trade. Renew Sust Energ Rev 65:345–355

    Article  CAS  Google Scholar 

  • Clevenger W et al (1997) Trace determination of mercury: a review. Crit Rev Anal Chem 27:1–26

    Article  CAS  Google Scholar 

  • Colagar AH et al (2009) Zinc levels in seminal plasma are associated with sperm quality in fertile and infertile men. Nutr Res 29(2):82–88

    Article  CAS  PubMed  Google Scholar 

  • Craig P et al (1999) The analysis of inorganic and methyl mercury by derivatization methods. Chemosphere 39:1181–1197

    Article  CAS  Google Scholar 

  • Csuros M, Csuros C (2002) Environmental sampling and analysis for metals. CRC Press, Boca Raton, S 55. ISBN 978-1-4200-3234-5

    Google Scholar 

  • Doğan E et al (2014) Zinc phosphide poisoning. Case Rep Crit Care 2014:589712

    PubMed  PubMed Central  Google Scholar 

  • Dorm E (1971) Studies on the crystal chemistry of the mercurous ion and of mercurous salts. J Chem Soc D Chem Commun 81:466–467

    Article  Google Scholar 

  • Dwivedi A et al (2015) Superconducting properties of zinc diboride nanoclusters. J Sci Res Adv 2(1):48–50

    Google Scholar 

  • Ebinghaus R et al (1999) Mercury contaminated sites – characterization, risk assessment and remediation. Springer, Berlin/Heidelberg. ISBN 3-540-63731-1

    Book  Google Scholar 

  • Ebru ST et al (2007) Structural and optical properties of zinc nitride films prepared by pulsed filtered cathodic vacuum arc deposition. Chin Phys Lett 24(12):3477. https://doi.org/10.1088/0256-307x/24/12/051

    Article  Google Scholar 

  • Eichler R et al (2007) Chemical characterization of element 112. Nature 447(7140):72–75

    Article  CAS  PubMed  Google Scholar 

  • Eichler R et al (2008) Thermochemical and physical properties of element 112. Angew Chem 47(17):3262–3266

    Article  CAS  Google Scholar 

  • Eisenbrand G, Metzler M (1994) Toxikologie für Chemiker. Georg Thieme-Verlag, Stuttgart, S 66. ISBN 3-13-127001-2

    Google Scholar 

  • Elphimoff-Felkin P, Sarda P (1977) Reductive cleavage of allylic alcohols, ethers, or acetates to olefins: 3-methylcyclohexene. Org Synth 56:101

    Article  CAS  Google Scholar 

  • Flores E et al (2001) Determination of mercury in mineral coal using cold vapor generation directly from slurries, trapping in a graphite tube, and electrothermal atomization. Spectrochim Acta 56:1605–1614

    Article  Google Scholar 

  • Frech W et al (2000) Rapid determination of methylmercury in biological materials by GCMIP-AES or GC-ICP-MS following simultaneous ultrasonic-assisted in situ ethylation and solvent extraction. J Anal At Spectrom 15:1583–1588

    Article  Google Scholar 

  • Freely J (2015) Kopernikus: Revolutionär des Himmels. Klett-Cotta-Verlag, Stuttgart. ISBN 3-608-94917-8

    Google Scholar 

  • Freyland W et al (1983) Physics of non-tetrahedrally bonded elements and binary compounds I. Springer, Berlin/Heidelberg, S 203. ISBN 3-540-11780-6

    Google Scholar 

  • Gerdes E (2001) Qualitative Anorganische Analyse, 2. Aufl. Springer, Berlin/Heidelberg, S 64–65

    Book  Google Scholar 

  • Gronowitz S, Raznikiewicz T (1964) 3-Bromothiophene. Org Synth 44:9

    Article  CAS  Google Scholar 

  • Habibi MH, Mallouk TE (1991) Photochemical selective fluorination of organic molecules using mercury (II) fluoride. J Fluor Chem 51:291–294

    Article  CAS  Google Scholar 

  • Hager H et al (1999) Hagers Handbuch der Pharmazeutischen Praxis. Springer, Berlin/Heidelberg, S 472–473. ISBN 3-540-52641-2

    Google Scholar 

  • Hamel J (1994) Nicolaus Copernicus. Leben, Werk und Wirkung. Spektrum Akademischer Verlag, Heidelberg/Berlin. ISBN 3-86025-307-7

    Google Scholar 

  • Hartwig A (2006) Zink. In: Römpp online. Georg Thieme-Verlag, Stuttgart

    Google Scholar 

  • Hermann CSL (1818) Über das schlesische Zinkoxyd, und über ein darin gefundenes sehr wahrscheinlich noch unbekanntes Metall. Gilberts Ann Phys 59:95 und 66:285–289 (1820)

    Google Scholar 

  • Herrmann WA (1999) Synthetic methods of organometallic and inorganic chemistry: copper, silver, gold, zinc, cadmium, and mercury. Georg Thieme-Verlag, Stuttgart, S 196. ISBN 3-13-103061-5

    Google Scholar 

  • Heyrovský J, Zuman P (1959) Einführung in die praktische Polarographie. VEB Verlag Technik, Ost-Berlin, S 179

    Google Scholar 

  • Hiscocks SER, Elliott CT (1969) On the preparation, growth and properties of Cd3As2. J Mater Sci 4:784–788

    Article  CAS  Google Scholar 

  • Hofmann S et al (1996) The new element 112. Z Phys A 354(1):229–230

    Article  CAS  Google Scholar 

  • Hofmann S et al (2002) New results on element 111 and 112. Eur Phys J A 14(2):147–157

    Article  CAS  Google Scholar 

  • Holleman F, Wiberg E, Wiberg N (2007) Lehrbuch der Anorganischen Chemie, 102. Aufl. De Gruyter-Verlag, Berlin. ISBN 978-3-11-017770-1

    Book  Google Scholar 

  • Horton D (2004) Advances in carbohydrate chemistry and biochemistry, Bd 72. Elsevier-Verlag, Amsterdam. ISBN 0-120-07259-9

    Google Scholar 

  • Hosseinpour-Mashkani SM, Sobhani-Nasab A (2016) A simple sonochemical synthesis and characterization of CdWO4 nanoparticles and its photocatalytic application. J Mater Sci Mater Electron 27:3240. https://doi.org/10.1007/s10854-015-4150-5

    Article  CAS  Google Scholar 

  • Hu EH et al (1998) Unprecedented catalytic three component one-pot condensation reaction: an efficient synthesis of 5-alkoxycarbonyl-4-aryl-3,4-dihydropyrimidin-2(1H)-ones. J Org Chem 63(10):3454–3457

    Article  CAS  Google Scholar 

  • Jefferson PH et al (2008) Bandgap and effective mass of epitaxial cadmium oxide. Appl Phys Lett 92:022101

    Article  CAS  Google Scholar 

  • Jones C, Hitchman ML (2009) Chemical vapour deposition: precursors, processes and applications. Royal Society of Chemistry, London, S 546. ISBN 0-85404-465-5

    Google Scholar 

  • Kamm O (1925) β-Phenylhydroxylamin. Org Synth 4:57

    Article  Google Scholar 

  • Kampe CO (2005) The Biginelli reaction. In: Zhu J, Bienaymé H (Hrsg) Multicomponent reactions. Wiley-VCH, Weinheim. ISBN 978-3-527-30806-4

    Google Scholar 

  • Karau F, Schnick W (2007) Synthese von Cadmiumnitrid Cd3N2 durch thermischen Abbau von Cadmiumazid Cd(N3)2 und Kristallstrukturbestimmung aus Röntgen-Pulverbeugungsdaten. Z Anorg Allg Chem 6(2):223–226. https://doi.org/10.1002/zaac.200600253

    Article  CAS  Google Scholar 

  • Kaupp M et al (2007) Mercury is a transition metal: the first experimental evidence for HgF4. Angew Chem 119:8523–8527

    Article  Google Scholar 

  • Khadilkar CB (1947) Mercury and its uses in medicine (for the last 3000 years). Med Bull (Bombay) 15:152–162

    Google Scholar 

  • Kim D-T et al (2006) Composition and temperature dependence of band gap and lattice constants of MgxCd1-xSe single crystals. Phys Status Solidi 3(8):2665–2668

    Article  CAS  Google Scholar 

  • Kojima H et al (1968) Melting points of inorganic fluorides. Can J Chem 46(18):2968–2971

    Article  CAS  Google Scholar 

  • Kozin LF, Hansen SC (2013) Mercury handbook chemistry, applications and environmental impact. Royal Society of Chemistry, London, S 101. ISBN 978-1-84973-409-7

    Google Scholar 

  • Krug HF et al (2016) Zinkoxid. In: Römpp online. Georg Thieme-Verlag, Stuttgart

    Google Scholar 

  • Lew K (2008) Mercury. The Rosen Publishing Group, New York, S 5. ISBN 978-1-4042-1780-5

    Google Scholar 

  • Lewis RJ Sr (2008) Hazardous chemicals desk reference. Wiley, New York, S 879. ISBN 0-470-33445-2

    Book  Google Scholar 

  • Lobinski R, Marczenko Z (1997) Spectrochemical trace analysis for metals and metalloids. Elsevier-Verlag, Amsterdam. ISBN 0-444-82879-6

    Google Scholar 

  • Madelung O (2004) Semiconductors: Data handbook. Springer, Berlin/Heidelberg, S 239. ISBN 978-3-540-40488-0

    Google Scholar 

  • Marshall I (2007) Zinc for the common cold. Cochrane Database Syst Rev 2:CD001364

    Google Scholar 

  • Meija J (2009) The need for a fresh symbol to designate copernicium. Nature 461(7262):341

    Article  CAS  PubMed  Google Scholar 

  • Mellor JW (1964) A comprehensive treatise on inorganic and theoretical chemistry, part 1, 8. Aufl. Longmans Green, London, S 160–161

    Google Scholar 

  • Milara FJC (2011) The mining park of Almadén. Urban Res Pract 4(2):215–218

    Article  Google Scholar 

  • Moody B (2013) Comparative inorganic chemistry. Elsevier-Verlag, Amsterdam, S 414. ISBN 978-1-4832-8008-0

    Google Scholar 

  • Morita K (2004) Decay of an isotope 277 112 produced by 208Pb + 70Zn reaction. In: Penionzhkevich YE, Cherepanov EA (Hrsg) Exotic nuclei: proceedings of the international symposium. World Scientific Publishers/Russische Akademie der Wissenschaften, S 188–191

    Google Scholar 

  • Narsaiah AV et al (2004) Cadmium chloride, an efficient catalyst for one-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones. Synthesis 8:1253–1256

    Google Scholar 

  • Nayak PK (2008) Synthesis and characterization of cadmium ferrite. Mater Chem Phys 112(1):24–26. https://doi.org/10.1016/j.matchemphys.2008.05.018

    Article  CAS  Google Scholar 

  • Neeb R (1969) Inverse Polarographie und Voltammetrie. Akademie-Verlag, Berlin, S 192

    Google Scholar 

  • Niestroj I (2000) Praxis der orthomolekularen Medizin: Physiologische Grundlagen. Therapie mit Mikronährstoffen, 2. Aufl. Georg Thieme-Verlag, Stuttgart, S 419. ISBN 3-7773-1470-6

    Google Scholar 

  • Odegaard N, Sadongei A (2005) Old poisons, new problems. AltaMira Press, Rowman & Littlefield, Lanham

    Google Scholar 

  • Palik ED (1998) Handbook of optical constants of solids. Academic/Elsevier, New York, S 595. ISBN 0-12-544423-0

    Google Scholar 

  • Partin DE, O’Keeffe M (1991) The structures and crystal chemistry of magnesium chloride and cadmium chloride. J Solid State Chem 95:176–183

    Article  CAS  Google Scholar 

  • Pederson O (2006) Pharmaceutical chemical analysis. Taylor & Francis, London. ISBN 0-849-31978-1

    Book  Google Scholar 

  • Perry DL (2011) Handbook of inorganic compounds, 2. Aufl. Taylor & Francis, London, S 273. ISBN 1-4398-1462-7

    Book  Google Scholar 

  • Perry DL (2016) Handbook of inorganic compounds, 2. Aufl. CRC Press, Boca Raton, S 84. ISBN 978-1-4398-1462-8

    Google Scholar 

  • Poggendorff JC (1863) Biographisch-literarisches Handwörterbuch, Bd 1. Johann Ambrosius Barth-Verlag, Leipzig, S 1080

    Google Scholar 

  • Prabhu GM et al (1984) Kinetics of the oxidation of zinc sulfide. Ind Eng Chem Fundam 23:271–273

    Article  CAS  Google Scholar 

  • RHW-Redaktion (2011) Ökotrophologie, Bd 2. Verlag Neuer Merkur, Planegg, S 273. ISBN 1-4398-1462-7

    Google Scholar 

  • Riedel E, Janiak C (2007) Anorganische Chemie, 7. Aufl. De Gruyter-Verlag, Berlin, S 138/765. ISBN 978-3-11-018903-2

    Book  Google Scholar 

  • Rjabova V (2001) Einfluss der Struktur CH-acider Nitrile auf die elektrochemische Synthese von Organometallkomplexen des Kupfers und Zinks. Dissertation, Universität Halle/Saale

    Google Scholar 

  • Salaun P, Van der Berg C (2006) Voltammetric detection of mercury and copper in seawater using a gold microwire electrode. Anal Chem 78:5052–5060

    Article  PubMed  CAS  Google Scholar 

  • Sauer R (2008) Halbleiterphysik, Lehrbuch für Physiker und Ingenieure. Oldenbourg/Cornelsen, Düsseldorf, S 402. ISBN 978-3-486-58863-7

    Google Scholar 

  • Schmit H et al (2014) Three-step method to determine the eutectic composition of binary and ternary mixtures – tested on two novel eutectic phase change materials based on salt hydrates. J Therm Anal Calorim 117:595–602

    Article  CAS  Google Scholar 

  • Schröcke H, Weiner K-L (1981) Mineralogie. Ein Lehrbuch auf systematischer Grundlage. De Gruyter-Verlag, Berlin, S 142–177. ISBN 3-11-006823-0

    Book  Google Scholar 

  • Schröter W, Lautenschläger K-H (1996) Chemie für Ausbildung und Praxis. Verlag Harri Deutsch, Frankfurt am Main, S 314

    Google Scholar 

  • Schulte-Schrepping K-H, Piscator M (2002) Cadmium and cadmium compounds. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH, Weinheim

    Google Scholar 

  • Schulze W (1962) Aus der Geschichte der Stadt Schönebeck. Stadtarchiv Schönebeck, Blatt 524.4:474–485

    Google Scholar 

  • Schwedt G (1995) Analytische Chemie. Georg Thieme-Verlag, Stuttgart, S 197

    Google Scholar 

  • Schweinsberg F (2002) Bedeutung von Quecksilber in der Umweltmedizin – Eine Übersicht. Umweltmed Forsch Prax 7(5):263–278

    CAS  Google Scholar 

  • Sharma RK (2007) Chemistry of hydrides and carbides. Discovery Publishing House, New Delhi, S 313. ISBN 81-8356-227-2

    Google Scholar 

  • Silva O, Morais PC (2005) Investigation of anisotropy in cadmium ferrite-based ionic magnetic fluid using magnetic resonance. J Magn Magn Mater 289:136

    Article  CAS  Google Scholar 

  • Silvester I (2005) Psyche-Physe-Fit. Books on Demand, Norderstedt, S 199–200. ISBN 978-3-8311-2209-7

    Google Scholar 

  • Simon M et al (2006) Mercury, mercury alloys, and mercury compounds. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH, Weinheim

    Google Scholar 

  • Soverna S (2004) Indication for a gaseous element 112. GSI Scientific Report 2003, GSI Report 2004-1, Darmstadt, S 187. ISSN 0174-0814

    Google Scholar 

  • Srivastava OK, Secco EA (1967) Studies on metal hydroxy compounds. I. Thermal analyses of zinc derivatives ε-Zn(OH)2, Zn5(OH)8Cl2·H2O, β-ZnOHCl, and ZnOHF. Can J Chem 45(6):579–583

    Article  CAS  Google Scholar 

  • Stellman JM (1998) Encyclopaedia of occupational health and safety chemical, industries and occupations. International Labour Organization, Genf, S 83.24. ISBN 92-2109816-8

    Google Scholar 

  • Stick RV, Williams SJ (2001) Carbohydrates: the sweet molecules of life. Elsevier-Verlag, Amsterdam. ISBN 0-126-70960-2

    Google Scholar 

  • Streets DG et al (2009) Projections of global mercury emissions in 2050. Environ Sci Technol 43(8):2983–2988

    Article  CAS  PubMed  Google Scholar 

  • Tenne R et al (2003) CdI2 nanoparticles with closed-cage (fullerene-like) structures. J Mater Chem 13:1631–1634

    Article  CAS  Google Scholar 

  • Tolcin A (2015) Zinc, mineral commodity summaries. United States Geological Survey, U. S. Department of the Interior, Washington, DC

    Google Scholar 

  • Toyoura K et al (2005) Optical properties of zinc nitride formed by molten salt electrochemical process. Thin Solid Films 492:88–92. https://doi.org/10.1016/j.tsf.2005.06.057

    Article  CAS  Google Scholar 

  • Van der Snickt G et al (2009) Characterization of a degraded cadmium yellow (CdS) pigment in an oil painting by means of synchrotron radiation based X-ray techniques. Anal Chem 81(7):2600–2610

    Article  PubMed  CAS  Google Scholar 

  • Villars P, Cenzual K (2006) Structure types. Part 4: space groups (189)–(174). In: Landolt-Börnstein – group III condensed matters. Springer, Berlin/Heidelberg

    Google Scholar 

  • Vogt E et al (2001) On the discovery of the elements 110–112. Pure Appl Chem 73(6):959–967

    Article  Google Scholar 

  • Vogt E et al (2003) On the claims for discovery of elements 110, 111, 112, 114, 116 and 118. Pure Appl Chem 75(10):1061–1611

    Google Scholar 

  • Von Wilcke G (1969) Der Chemiker Friedrich Stromeyer, Vorfahren und Seitenverwandte. Arch Sippenforschung 33/34:130–134

    Google Scholar 

  • Wang Y et al (2012) Controllable synthesis of CdWO4 nanorods and nanowires via a surfactant-free hydrothermal method. J Ceram Soc Jpn 120:259. https://doi.org/10.2109/jcersj2.120.259

    Article  CAS  Google Scholar 

  • Watras CJ, Huckabee JW (1994) Mercury pollution – integration and synthesis. Lewis Publishers, Ann Arbor. ISBN 1-56670-066-3

    Google Scholar 

  • Weiss P (2006) Quantum-dot leap – tapping tiny crystals’ inexplicable light-harvesting talent. Sci News 169(22):344

    Article  Google Scholar 

  • Weller M (2014) Inorganic chemistry. Oxford University Press, Oxford, S 513. ISBN 978-0-19-964182-6

    Google Scholar 

  • Wells AF (1984) Structural inorganic chemistry, 5. Aufl. Oxford Science Publications, Oxford. ISBN 0-19-855370-6

    Google Scholar 

  • Welsch U, Delle T (2010) Lehrbuch Histologie, 3. Aufl. Urban & Fischer/Elsevier, München, S 19. ISBN 978-3-437-44431-9

    Google Scholar 

  • Williams RT et al (2000) Electronic structure and optical properties of CdMoO4 and CdWO4. Phys Rev B 62:1733. https://doi.org/10.1103/PhysRevB.62.1733

    Article  Google Scholar 

  • Winter M, Besenhard JO (1999) Wiederaufladbare Batterien. Chem Unserer Zeit 33(6):320–332

    Article  CAS  Google Scholar 

  • Yokoyama M et al (1998) Magnetic properties of ultrafine particles and bulk material of cadmium ferrite. J Magn Magn Mater 183:173

    Article  CAS  Google Scholar 

  • Zhao JG et al (2010) Structural stability of Zn3N2 under high pressure. Phys B Condens Matter 405(7):1836–1838

    Article  CAS  Google Scholar 

  • Ziman JM (1961) A theory of the electrical properties of liquid metals. I: the monovalent metals. Philos Mag 6(68):1013

    Article  CAS  Google Scholar 

  • Zimmer H, Niedenzu K (1976) Methodicum chimicum: preparation of transition metal derivatives. Academic, New York

    Google Scholar 

  • Zimmermann V (1989) Die beiden Harburger Syphilis-Traktate. Würzbg Medizinhist Mitt 7:72–77

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hermann Sicius .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Sicius, H. (2019). Zinkgruppe: Elemente der zweiten Nebengruppe. In: Handbuch der chemischen Elemente. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-55944-4_17-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-55944-4_17-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer Spektrum, Berlin, Heidelberg

  • Print ISBN: 978-3-662-55944-4

  • Online ISBN: 978-3-662-55944-4

  • eBook Packages: Springer Referenz Naturwissenschaften

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Zinkgruppe: Elemente der zweiten Nebengruppe
    Published:
    08 December 2022

    DOI: https://doi.org/10.1007/978-3-662-55944-4_17-2

  2. Original

    Zinkgruppe: Elemente der zweiten Nebengruppe
    Published:
    08 April 2019

    DOI: https://doi.org/10.1007/978-3-662-55944-4_17-1