Skip to main content

Mangangruppe: Elemente der siebten Nebengruppe

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Handbuch der chemischen Elemente
  • 30 Accesses

Zusammenfassung

Dieses Kapitel beschreibt die chemischen und physikalischen Eigenschaften, Vorkommen, Herstellverfahren, Anwendungen und Patente der Elemente der siebten Nebengruppe des Periodensystems der Elemente mit ihren wichtigsten Verbindungen. Reines Mangan nutzt man technisch zwar kaum, aber sehr große Mengen werden mit Stahl zu Ferromangan legiert, das wesentlich härter und korrosionsbeständiger als Stahl ist. Mangan-IV-oxid geht in großem Umfang in Alkali-Mangan-Batterien.

Technetium entsteht in Kernreaktoren in Mengen einiger t/a durch Spaltung des Uranisotops 23592U. Den größten Teil des gewonnenen Technetiums verwendet man als Radiotherapeutikum. Dessen wichtigstes Isotop ist 99m43Tc, dessen kurze Halbwertszeit, weiche γ-Strahlung und die Fähigkeit, sich an im menschlichen Körper vorhandene Moleküle anzulagern, es als Tracer für die Szintigrafie prädestinieren. Ammonium- oder Kaliumpertechnetat sind wirksame Rostschutzmittel für Stahl.

Rhenium ist oft in Legierungen mit Nickel zu finden, die gegen Ermüdungsbrüche widerstandsfähig sind. Außerdem ist es in Katalysatoren enthalten.

Bohrium kommt nicht in der Natur vor; alle seine Isotope sind radioaktiv und müssen künstlich erzeugt werden. Bei der offiziell erstmaligen Herstellung des Elements 1981 wurden fünf Atome des Isotops 262107Bh erhalten.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Literatur

  • Abram U et al (2021) [Tc(NO)Cl(Cp)(PPh3)] – a technetium(I) compound with an unexpected synthetic potential. Eur J Inorg Chem 37:3812–3818. https://doi.org/10.1002/ejic.202100521

    Article  CAS  Google Scholar 

  • Alscher RG (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot 53:1331–1341

    Article  CAS  Google Scholar 

  • Armbruster P (1961) Bau eines Massenseparators für Spaltprodukte und Nachweis einer Anregung innerer Elektronenschalen bei der Abbremsung von Spaltprodukten. Technische Hochschule München, München

    Google Scholar 

  • Armbruster P (1982) Betreten auf eigene Gefahr – Reflexionen über meinen Weg als Wissenschaftler. Phys Blätt 38:375–378. https://doi.org/10.1002/phbl.19820381210

    Article  Google Scholar 

  • Armbruster P (1989) Sein und Werden der schwersten Elemente. „Quantal“ für 267 Nukleonen. Phys Blätt 44:359–366. https://doi.org/10.1002/phbl.19880440904

    Article  Google Scholar 

  • Armbruster P (1999) Relativistische Schwerionen und Kerntechnik des 21. Jahrhunderts. Phys Blätt 55:33–36. https://doi.org/10.1002/phbl.19990550207

    Article  CAS  Google Scholar 

  • Armbruster P et al (1981) Identification of element 107 by α correlation chains. Z Phys A 300(1):107–108

    Article  Google Scholar 

  • Armbruster P et al (1983) Geschwindigkeitsfilter SHIP – ein Instrument zur Erforschung neuer Kerne weitab der Stabilität. Phys Blätt 39:398–400. https://doi.org/10.1002/phbl.19830391205

    Article  Google Scholar 

  • Aschoff H (1860) Ann Phys Chem 2(111):217–224

    Article  Google Scholar 

  • Bailey MF, Dahl LF (1965) The crystal structure of ditechnetium decacarbonyl. Inorg Chem 4(8):1140–1145

    Article  CAS  Google Scholar 

  • Bellin MF (2006) MR contrast agents, the old and the new. Eur J Radiol 60(3):314–323

    Article  Google Scholar 

  • Bertulani CA et al (2001) Physics of radioactive beams. Nova Science Publishers, Huntington. ISBN 1-59033-141-9

    Google Scholar 

  • Biltz W et al (1932) Rheniumtrichlorid. Nachr Ges Wiss Gött:579–587

    Google Scholar 

  • Binenboym J, Selig H (1976) J Inorg Nucl Chem Suppl:231–232

    Google Scholar 

  • Brauer G (1975) Handbuch der Präparativen Anorganischen Chemie, Bd I, 3. Aufl. Enke-Verlag, Stuttgart, S 271. ISBN 3-432-02328-6

    Google Scholar 

  • Brauer G (1981) Handbuch der präparativen anorganischen Chemie, Bd III, 3. Aufl. Enke-Verlag, Stuttgart, S 1582–1583, 1587, 1598–1600, 1608, 1610, 1612, 1615–1617, 1619, 1634. ISBN 3-432-87823-0

    Google Scholar 

  • Breuer H (2000) Allgemeine und anorganische Chemie, dtv-Atlas Chemie, Bd 1, 9. Aufl. Deutscher Taschenbuch-Verlag, München. ISBN 3-423-03217-0

    Google Scholar 

  • Briehl H (2007) Chemie der Werkstoffe. Springer, Berlin/Heidelberg, S 91. ISBN 383510223-0

    Google Scholar 

  • Brock WH (1997) Viewegs Geschichte der Chemie. Vieweg, Braunschweig, S 182. https://de.wikipedia.org/wiki/Spezial. ISBN 3-540-67033-5

    Book  Google Scholar 

  • Byers BH, Brown TL (1977) The characteristics of M(CO)5 and related metal carbonyl radicals; abstraction and dissociative and oxidative addition processes. J Am Chem Soc 99:2527–2532

    Article  CAS  Google Scholar 

  • Cepanec I (2004) Synthesis of biaryls. Elsevier, Amsterdam, S 104. ISBN 0080444121

    Google Scholar 

  • Chalmin E et al (2003) Analysis of rock art painting and technology of Palaeolithic painters. Meas Sci Technol 14:1590–1597. https://doi.org/10.1088/0957-0233/14/9/310

    Article  CAS  Google Scholar 

  • Chalmin E et al (2006) Minerals discovered in paleolithic black pigments by transmission electron microscopy and micro-X-ray absorption near-edge structure. Appl Phys A Mater Sci Process 83:213–218. https://doi.org/10.1007/s00339-006-3510-7

    Article  CAS  Google Scholar 

  • Chang T-S, Trucano P (1978) Lattice parameter and thermal expansion of ReO3 between 291 and 464 K. J Appl Crystallogr 11:286–288

    Article  CAS  Google Scholar 

  • Chung HY et al (2007) Synthesis of ultra-incompressible superhard rhenium diboride at ambient pressure. Science 316:436–439

    Article  CAS  Google Scholar 

  • Churchill MR et al (1981) Redetermination of the crystal structure of dimanganese decacarbonyl and determination of the crystal structure of dirhenium decacarbonyl. Inorg Chem 20:1609–1611

    Article  CAS  Google Scholar 

  • Claassen HH et al (1962) Vibrational spectra of MoF6 and TcF6. J Chem Phys 36(11):2888–2890

    Article  CAS  Google Scholar 

  • Claassen HH et al (1970) Raman spectra of MoF6, TcF6, ReF6, UF6, SF6, SeF6, and TeF6 in the vapor state. J Chem Phys 53(1):341–348

    Article  CAS  Google Scholar 

  • Colléry P et al (2019) Design of rhenium compounds in targeted anticancer therapeutics. Curr Pharm Des 25(31):3306–3322. https://doi.org/10.2174/1381612825666190902161400

    Article  CAS  Google Scholar 

  • Corathers LA (2015) Manganese. In: United States Geological Survey, mineral commodity summaries. U. S. Department of the Interior, Washington, DC

    Google Scholar 

  • Corathers LA, Machamer JF (2006) Manganese. In: Industrial minerals & rocks: commodities, markets, and uses, 7. Aufl. Society for Mining, Metallurgy, and Exploration, Littleton, S 631–636. ISBN 978-0-87335-233-8

    Google Scholar 

  • Cotton FA, Wilkinson G (1980) Advanced inorganic chemistry, 4. Aufl. Wiley, New York, S 746. ISBN 0-471-02775-8

    Google Scholar 

  • Cui T et al (2014) Concentration driving the hardness of rhenium nitrides. Sci Rep 4:4797

    Google Scholar 

  • Cui T et al (2017) Manganese mono-boride, an inexpensive room temperature ferromagnetic hard material. Sci Rep 7(43759). https://doi.org/10.1038/srep43759

  • Cumberland RW et al (2007) Osmium diboride, an ultra-incompressible, hard material. J Am Chem Soc 127(20):7264–7265. https://doi.org/10.1021/ja043806y

    Article  CAS  Google Scholar 

  • Curtis D (1999) Nature’s uncommon elements: plutonium and technetium. Geochim Cosmochim Acta 63(2):275–285

    Article  CAS  Google Scholar 

  • D’Ans J et al (1998) Taschenbuch für Chemiker und Physiker. Springer, Heidelberg, S 696. ISBN 364258842-5

    Book  Google Scholar 

  • De Simone D, Wood E Jr (1982) Manganese incorporation behavior in molecular beam epitaxial gallium arsenide. J Appl Phys 53(7):4938–4942. https://doi.org/10.1063/1.331328

    Article  Google Scholar 

  • Dilworth JR, Parrott SJ (1998) The biochemical chemistry of technetium and rhenium. Chem Soc Rev 27:43–55

    Article  CAS  Google Scholar 

  • Dixon P et al (1997) Analysis of naturally produced technetium and plutonium in geologic materials. Anal Chem 69(9):1692–1699

    Article  CAS  Google Scholar 

  • Drews T et al (2006) Solid state molecular structures of transition metal hexafluorides. Inorg Chem 45(9):3782–3788

    Article  CAS  Google Scholar 

  • Dumcenco D et al (2008) Optical characterization of Au-doped rhenium diselenide single crystals. J Appl Phys 104(6):063501. https://doi.org/10.1063/1.2977682

    Article  CAS  Google Scholar 

  • Edwards AJ et al (1963) New fluorine compounds of technetium. Nat 200:672

    Article  CAS  Google Scholar 

  • Ekmekcioglu C, Marktl W (2006) Essentielle Spurenelemente: Klinik und Ernährungsmedizin. Springer, Heidelberg, S 148. ISBN 978-3-211-20859-5

    Google Scholar 

  • Elschenbroich C (2008) Organometallchemie, 6. Aufl. Teubner, Wiesbaden, S 451/455. ISBN 978-3-8351-0167-8

    Google Scholar 

  • Emsley J (2001) Nature’s building blocks: an A–Z guide to the elements. Oxford University Press, Oxford, UK, S 422–425. ISBN 0-19-850340-7

    Google Scholar 

  • Engel M (1999) Noddack, Walter Karl Friedrich. In: Neue Deutsche Biografie, Bd 19. Duncker & Humblot, Berlin, S 307. ISBN 3-428-00200-8

    Google Scholar 

  • Farahati J et al (1997) Leitlinie für die Radiosynorviothese. Deutsche Gesellschaft für Nuklearmedizin, Göttingen

    Google Scholar 

  • Felcher GP, Kleb R (1996) Antiferromagnetic domains and the spin-flop transition of MnF2. Europhys Lett 36:455

    Article  CAS  Google Scholar 

  • Feng S et al (2017) Theoretical study on electronic, optical properties and hardness of technetium phosphides under high pressure. Crystals 7:176. https://doi.org/10.3390/cryst7060176

    Article  CAS  Google Scholar 

  • Friedrich A et al (2010) Novel rhenium nitrides. Phys Rev Lett 105:085504

    Article  Google Scholar 

  • Frlec B et al (1967) Hydrazinium(+2) hexafluorometalates(IV) and -(V) in the 4d and 5d transition series. Inorg Chem 6(10):1775–1783

    Article  CAS  Google Scholar 

  • Funk H, Kreis H (1967) Zur Kenntnis des dreiwertigen Mangans: Verbindungen des Mangan(III)-chlorids mit Aminen und einigen Äthern. Z Anorg Allg Chem 349:45–49

    Article  Google Scholar 

  • Furdyna JK (1988) Diluted magnetic semiconductors. J Appl Phys 64(4):R29–R64. https://doi.org/10.1063/1.341700

    Article  CAS  Google Scholar 

  • Gäggeler HW et al (2000) Chemical characterization of bohrium (element 107). Nat 407(6800):63–65

    Article  Google Scholar 

  • Gan ZG et al (2004) New isotope 265Bh. Eur Phys J A 20(3):385

    Article  CAS  Google Scholar 

  • Gebhardt E et al (1972) Hochschmelzende Metalle und ihre Legierungen. Mater Werkst 3(4):197–203

    Article  CAS  Google Scholar 

  • Geller S (1971) Structure of α-Mn2O3, (Mn0.983Fe0.017)2O3 and (Mn0.37Fe0.63)2O3 and relation to magnetic ordering. Acta Crystallogr B Struct Crystallogr Cryst Chem 27:821–828

    Article  Google Scholar 

  • Ghiorso A, Organessian YT, Armbruster P et al (1993) Responses on ‚Discovery of the transfermium elements‘ by Lawrence Berkeley laboratory, California; Joint institute for nuclear research, Dubna; and Gesellschaft fur Schwerionenforschung, Darmstadt followed by reply to responses by the Transfermium working group. Pure Appl Chem 65(8):1815–1824

    Article  Google Scholar 

  • Gigacher G et al (2004) Metallographische Besonderheiten bei hochmanganlegierten Stählen. Berg- Huettenmaenn Monatsh 3:112–117

    Google Scholar 

  • Granados-Fitcha MG et al (2016) Mechanosynthesis of rhenium carbide at ambient pressure and temperature. Int J Refract Met Hard Mater 55:11–15. https://doi.org/10.1016/j.ijrmhm.2015.11.002

    Article  CAS  Google Scholar 

  • Greenwood NN, Earnshaw A (1984) Chemistry of the elements. Pergamon Press, Oxford, S 1221. ISBN 978-0-08-022057-4

    Google Scholar 

  • Greenwood NN, Earnshaw A (1988) Chemie der Elemente, 1. Aufl. VCH, Weinheim. ISBN 3-527-26169-9

    Google Scholar 

  • Harrison JD, Phipps A (2001) Gut transfer and doses from environmental technetium. J Radiol Prot 21:9–11

    Article  CAS  Google Scholar 

  • Hartwig A (2006) Mangan. In: Römpp Online. Georg Thieme, Stuttgart, zuletzt bearbeitet März 2006

    Google Scholar 

  • Heckl AK (2011) Auswirkungen von Rhenium und Ruthenium auf die Mikrostruktur und Hochtemperaturfestigkeit von Nickel-Basis Superlegierungen unter Berücksichtigung der Phasenstabilität. Dissertation, Universität Erlangen, Deutschland

    Google Scholar 

  • Hepworth MA, Jack KH (1957) The crystal structure of manganese trifluoride, MnF3. Acta Cryst 10:345–351

    Article  CAS  Google Scholar 

  • Hepworth MA et al (1957) Interatomic bonding in manganese trifluoride. Nat 179:211–212

    Article  CAS  Google Scholar 

  • Herrell AY et al (1977) Technetium(VII) oxide. Inorg Synth 12:155–158

    Google Scholar 

  • Herrmann W et al (2007) Kostengünstige, effiziente und umweltfreundliche Synthese des vielseitigen Katalysators Methyltrioxorhenium (MTO). Angew Chem 119:7440–7442

    Article  Google Scholar 

  • Hieber W, Fuchs H (1941) Über Metallcarbonyle. XXXVIII. Über Rheniumpentacarbonyl. Z Anorg Allg Chem 248:256–268

    Article  CAS  Google Scholar 

  • Hileman JC et al (1961) Technetium carbonyl. J Am Chem Soc 83(13):2953–2954

    Article  CAS  Google Scholar 

  • Hintenberger H (1990) Mattauch, Joseph. In: Neue Deutsche Biografie, Bd 16. Duncker & Humblot, Berlin, S 388. ISBN 3-428-00197-4

    Google Scholar 

  • Hofberg H et al (1906) Johan Gottlieb Gahn. In: Rubenson O (Hrsg) Svenskt biografiskt handlexikon, Bd 1: A–K, 2. Aufl. Albert Bonniers, Stockholm, S 378

    Google Scholar 

  • Hoffman DC et al (2006) Transactinides and the future elements. In: Fuger J et al (Hrsg) The chemistry of the actinide and transactinide elements, 3. Aufl. Springer Science and Business Media, Dordrecht. ISBN 1-4020-3555-1

    Google Scholar 

  • Holleman AF, Wiberg E, Wiberg N (1995) Lehrbuch der Anorganischen Chemie, 101. Aufl. De Gruyter, Berlin. ISBN 3-11-012641-9

    Google Scholar 

  • Holleman AF, Wiberg E, Wiberg N (2007) Lehrbuch der Anorganischen Chemie, 102. Aufl. De Gruyter, Berlin, S 1614/1619. ISBN 978-3-11-017770-1

    Google Scholar 

  • Hoppe R et al (1961) Mangan-IV-fluorid, MnF4. Die Naturwiss 48:429

    Article  CAS  Google Scholar 

  • Housecroft CE (2005) Inorganic chemistry. Pearson Education, New York, S 669. ISBN 013039913-2

    Google Scholar 

  • Hugill D, Peacock RD (1966) Some quinquevalent fluorotechnetates. J Chem Soc A:1339–1341

    Google Scholar 

  • Humphries M (2014) Colossal Magneto Resistance. geek.com, New York, Zugegriffen am 28.01.2014

  • Hurd LC (1936) Qualitative reactions of rhenium. Ind Eng Chem Anal Ed 8:11–15

    Article  CAS  Google Scholar 

  • Inui H (2005) Rhenium silicide as a new class of thermoelectric material. MRS Online Proc 886:0886-F06-08. https://doi.org/10.1557/PROC-0886-F06-08

    Article  Google Scholar 

  • IUPAC (1994) Names and symbols of transfermium elements (IUPAC recommendations 1994). Pure Appl Chem 66(12):2419

    Article  Google Scholar 

  • Ivanenko L et al (2002) Transport properties of semiconducting rhenium silicide. Microelectron Eng 64(1–4):225–232. https://doi.org/10.1016/S0167-9317(02)00794-3

    Article  CAS  Google Scholar 

  • Jiang S et al (2018) Direct synthesis and in situ characterization of monolayer parallelogrammic rhenium diselenide on gold foil. Commun Chem 1:17. https://doi.org/10.1038/s42004-018-0010-6

    Article  CAS  Google Scholar 

  • Johnson E et al (2002) Ionization Potenzials and radii of neutral and ionized species of elements 107 (bohrium) and 108 (hassium) from extended multiconfiguration Dirac – Fock calculations. J Chem Phys 116:1862

    Article  CAS  Google Scholar 

  • Jonge FAA de, Pauwels EKJ (1996) Technetium, the missing element. Eur J Nucl Med 23(3):336–344

    Google Scholar 

  • Kasper JS et al (1956) Antiferromagnetic structure of α-manganese and a magnetic structure study of β-manganese. Phys Rev 101:537–544

    Article  CAS  Google Scholar 

  • Kemmitt RDW, Peacock RD (2013) The chemistry of manganese, technetium and rhenium: Pergamon texts in inorganic chemistry. Elsevier, Amsterdam, S 873. ISBN 1-4831-8762-4

    Google Scholar 

  • Kenna BT (1962) The search for technetium in nature. J Chem Educ 39(2):436–442

    Article  CAS  Google Scholar 

  • Kern S (1877) Le Nouveau Métal „Le Davyum“. Nat 234:401–402

    Google Scholar 

  • Kim SH et al (2005) Ferrimagnetism in γ-manganese sesquioxide (γ − Mn2O3) nanoparticles. J Korean Phys Soc 46(4):941–944

    Article  CAS  Google Scholar 

  • Kirillova M et al (2007) Group 5–7 transition metal oxides as efficient catalysts for oxidative functionalization of alkanes under mild conditions. J Catal 248:130–136

    Article  CAS  Google Scholar 

  • Klee E (2005) Das Personenlexikon zum Dritten Reich. Wer war was vor und nach 1945, 2. Aufl. Fischer Taschenbuch, Frankfurt am Main, S 438. ISBN 978-3-596-16048-8

    Google Scholar 

  • Korzhinsky MA et al (1994) Discovery of a pure rhenium mineral at Kudriavy volcano. Nat 369:51–53

    Article  CAS  Google Scholar 

  • Krebs B (1969) Technetium(VII)-oxid: Ein Übergangsmetalloxid mit Molekülstruktur im festen Zustand. Angew Chem 81(9):328–329

    Article  Google Scholar 

  • Krebs B et al (1969) The crystal structure of rhenium(VII) oxide. Inorg Chem 8(3):436–443

    Article  CAS  Google Scholar 

  • Kropp H et al (2012) Manganese nitride complexes in oxidation states III, IV, and V: synthesis and electronic structure. J Am Chem Soc 134(37):15538–15544. https://doi.org/10.1021/ja306647c

    Article  CAS  Google Scholar 

  • Kryutchkov SV (1996) Chemistry of technetium cluster compounds. Top Curr Chem 176:191–249

    Google Scholar 

  • Kunitomi N et al (1964) Neutron diffraction study on manganese telluride. J Phys 25:568. https://doi.org/10.1051/jphys:01964002505056800

    Article  CAS  Google Scholar 

  • Latscha H-P, Mutz M (2011) Chemie der Elemente. Springer, Berlin/Heidelberg, S 239. ISBN 3642169155

    Book  Google Scholar 

  • Law NA et al (1998) Manganese redox enzymes and model systems: properties, structures, and reactivity. Adv Inorg Chem 46:305–440

    Article  CAS  Google Scholar 

  • Lee DG, Chen T (1989) Oxidation of hydrocarbons. 18. Mechanism of the reaction between permanganate and carbon-carbon double bonds. J Am Chem Soc 111(19):7534–7538. https://doi.org/10.1021/ja00201a039

    Article  CAS  Google Scholar 

  • Lee DG, Chen T (1993) Reduction of manganate(VI) by mandelic acid and its significance for development of a general mechanism of oxidation of organic compounds by high-valent transition metal oxides. J Am Chem Soc 115(24):11231–11236. https://doi.org/10.1021/ja00077a023

    Article  CAS  Google Scholar 

  • Lexikon der Chemie (1998) Rhenium. Spektrum Akademischer, Heidelberg

    Google Scholar 

  • Lide DR (2005) Section 14, geophysics, astronomy, and acoustics; abundance of elements in the Earth’s crust and in the sea. In: CRC Handbook of Chemistry and Physics, 85. Aufl. CRC Press, Boca Raton

    Google Scholar 

  • Liebig J von et al (1851) Handwörterbuch der reinen und angewandten Chemie, Bd 5. Vieweg, Braunschweig, S 594–595

    Google Scholar 

  • Lu et al (2018) Preparation and magnetic properties of manganese silicide nanorods by a solid-state reaction route. Micro Nano Lett 13(3):341–343

    Article  CAS  Google Scholar 

  • Lyutaya MD, Goncharuk AB (1977) Manganese nitrides. Sov Powder Metall Met Ceram 16(3):208–212

    Article  Google Scholar 

  • MacIntyre JE (1992) Dictionary of inorganic compounds. CRC Press, Boca Raton, S 2923/3583. ISBN 978041230120-9

    Google Scholar 

  • Madigan MT, Martinko JM (2009) Brock Mikrobiologie, 11. Aufl. Pearson Studium, Hallbergmoos, S 644. ISBN 978-3-8273-7358-8

    Google Scholar 

  • Malmbeck R et al (2000) Procedure proposed for studies of bohrium. J Radioanal Nucl Chem 246(2):349

    Article  CAS  Google Scholar 

  • Mathur S et al (2019) Volatile rhenium(I) compounds with Re-N bonds and their conversion into oriented rhenium nitride films by magnetic field-assisted vapor phase deposition. Inorg Chem 58(15):10408–10416. https://doi.org/10.1021/acs.inorgchem.9b01656

    Article  CAS  Google Scholar 

  • Mattauch J (1934) Zur Systematik der Isotope. Z Phys 91(5-6):361–371

    Article  CAS  Google Scholar 

  • McCarroll WH (1994) Oxides solid state chemistry. In: King RB (Hrsg) Encyclopedia of inorganic chemistry. Wiley, New York. ISBN 0-471-93620-0

    Google Scholar 

  • McCray WP (1998) Glassmaking in renaissance Italy: the innovation of venetian cristallo. J Mater 50:14–19

    CAS  Google Scholar 

  • Milke B (2012) Synthese von Metallnitrid- und Metalloxinitridnanopartikeln für energierelevante Anwendungen. Dissertation, Mathematisch-Naturwissenschaftliche Fakultät der Universität Potsdam, Deutschland

    Google Scholar 

  • Moody K (2014) Synthesis of superheavy elements. In: Schädel M, Shaughnessy D (Hrsg) The chemistry of superheavy elements, 2. Aufl. Springer Science & Business Media, Dordrecht, S 24–28. ISBN 9783642374661

    Google Scholar 

  • Moore CE (1951) Technetium in the Sun. Sci 114(2951):59–61

    Article  CAS  Google Scholar 

  • Moore JE et al (1985) Structure of manganese(II) iodide tetrahydrate, MnI2 ∙ 4 H2O. Acta Cryst C 41:1284–1286

    Article  Google Scholar 

  • Munekata HH et al (1989) Diluted magnetic III–V semiconductors. Phys Rev Lett 63(17):1849–1852. https://doi.org/10.1103/PhysRevLett.63.1849

    Article  CAS  Google Scholar 

  • Münzenberg G (1971) Stigmatisch fokussierendes Teilchenspektrometer mit Massen- und Energiedispersion. Dissertation, Justus-von Liebig-Universität Gießen, Deutschland

    Google Scholar 

  • Münzenberg G, Schädel M (1996) Moderne Alchemie: die Jagd nach den schwersten Elementen. Vieweg, Wiesbaden. ISBN 3-528-06474-9

    Google Scholar 

  • Münzenberg G et al (1989) Element 107. Z Phys A 333(2):163

    Google Scholar 

  • Myers WR, Fishel WP (1945) The preparation and hydrolysis of manganese carbide (Mn3C). J Am Chem Soc 67:1962–1964

    Article  CAS  Google Scholar 

  • Nelson S et al (2008) Lightest isotope of Bh produced via the Bi209(Cr52,n)Bh260 reaction. Phys Rev Lett 100(2):22501

    Article  CAS  Google Scholar 

  • Noddack I, Noddack W (1929) Die Herstellung von einem Gramm Rhenium. Z Anorg Allg Chem 183(1):353–375

    Article  CAS  Google Scholar 

  • Nyholm RS, Woolliams PR (1968) Manganates(VI). Inorg Synth 11:56–61. https://doi.org/10.1002/9780470132425.ch11

    Article  CAS  Google Scholar 

  • Oberteuffer JA, Ibers JA (1970) A refinement of the atomic and thermal parameters of α-manganese from a single crystal. Acta Cryst B 26:1499–1504

    Article  CAS  Google Scholar 

  • Oganessian YT et al (1976) On spontaneous fission of neutron-deficient isotopes of elements 103, 105 and 107. Nucl Phys A 273(2):505–522

    Article  Google Scholar 

  • Ohno H (1998) Making nonmagnetic semiconductors ferromagnetic. Sci 281(5379):951–956. https://doi.org/10.1126/science.281.5379.951

    Article  CAS  Google Scholar 

  • Ohno H et al (1992) Magnetotransport properties of p-type (In,Mn)As diluted magnetic III–V semiconductors. Phys Rev Lett 68(17):2664–2667. https://doi.org/10.1103/PhysRevLett.68.2664

    Article  CAS  Google Scholar 

  • Ohno H et al (1996) (Ga,Mn)As: a new diluted magnetic semiconductor based on GaAs. Appl Phys Lett 69(3):363–365. https://doi.org/10.1063/1.118061

    Article  CAS  Google Scholar 

  • Onaka M, Oikawa T (2002) Olefin metathesis over mesoporous alumina-supported rhenium oxide catalyst. Chem Lett 2002:850–851

    Article  Google Scholar 

  • Osborne DW et al (1978) Heat capacity, entropy, and Gibbs energy of technetium hexafluoride between 2.23 and 350 K; magnetic anomaly at 3.12 K; mean β energy of 99Tc. J Chem Phys 68(3):1108–1118

    Article  CAS  Google Scholar 

  • Östlin A, Vitos L (2011) First-principles calculation of the structural stability of 6d transition metals. Phys Rev B 84(11):239905

    Article  Google Scholar 

  • Ovsyannikov SV et al (2013) A path to new manganites with perovskite structure, Perovskite-like Mn2O3: a path to new manganites. Angew Chem Int Ed 52:1494–1498

    Article  CAS  Google Scholar 

  • Palenik GJ (1967) Crystal structure of potassium manganate. Inorg Chem 6(3):507–511. https://doi.org/10.1021/ic50049a015

    Article  CAS  Google Scholar 

  • Paul S, Merrill W (1952) Spectroscopic observations of stars of class S. Astrophys J 116:21–26

    Article  Google Scholar 

  • Perrier C, Segrè E (1947) Technetium: the element of atomic number 43. Nat 159:24

    Article  CAS  Google Scholar 

  • Pinto NL et al (2005) Magnetic and electronic transport percolation in epitaxial Ge1−xMnx films. Phys Rev B 72(16):165203. https://doi.org/10.1103/PhysRevB.72.165203

    Article  CAS  Google Scholar 

  • Poineau F et al (2009) Preparation of the binary technetium bromides: TcBr3 and TcBr4. J Am Chem Soc 131(3):910–911. https://doi.org/10.1021/ja808597r

    Article  CAS  Google Scholar 

  • Poineau F et al (2010) Synthesis and structure of technetium trichloride. J Am Chem Soc 132(45):15864–15865

    Article  CAS  Google Scholar 

  • Polyak D (2015) Rhenium. In: Mineral commodity summaries, United States Geological Survey. U.S. Department of the Interior, Washington, DC

    Google Scholar 

  • Ponti A et al (2017) Manganese sulfide (MnS) nanocrystals: synthesis, properties, and applications. Intech open science. In: Rahman MM, Asiri AM (2016) Advances in colloid science. IntechOpen, S 121–153. https://doi.org/10.5772/65092

  • Portnoi KI, Romashov VM (1968) Phase diagram of the system rhenium-boron. Powder Metall Met Ceram 7(2):112–114. https://doi.org/10.1007/BF00774302

    Article  Google Scholar 

  • Pötsch WR et al (1989) Lexikon bedeutender Chemiker. Harri Deutsch, Frankfurt am Main, S 161

    Google Scholar 

  • Rancke-Madsen E (1975) The discovery of an element. Centaurus 19:299–313

    Article  CAS  Google Scholar 

  • Reidies AH (2002) Manganese compounds. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH, Weinheim

    Google Scholar 

  • Remy H (1961) Lehrbuch der Anorganischen Chemie, Bd II. Akademische Verlagsgesellschaft Geest & Portig, Leipzig, S 258

    Google Scholar 

  • Riedel E, Janiak C (2011) Anorganische Chemie. de Gruyter, Berlin, S 831–836. ISBN 978-3-11-022566-2

    Google Scholar 

  • Riedel E et al (2007) Moderne Anorganische Chemie, 4. Aufl. De Gruyter, Berlin, S 707. ISBN 978-3-11-019060-1

    Book  Google Scholar 

  • Riedel, Janiak (2007) Anorganische Chemie, 2. Aufl. De Gruyter, Berlin, S 809. ISBN 978-3-11-018168-5

    Book  Google Scholar 

  • Rimshaw, Hampel (1968) The encyclopedia of the chemical elements. Reinhold Book Corporation, New York, S 689–693

    Google Scholar 

  • Rumpf K (1980) Die Entdeckung des Manganmetalls durch Ignatius Gottfried Kaim. In: Gmelins Handbuch der Anorganischen Chemie: Mangan, System-Nr. 56, Bd 1, 8. Aufl. Springer, Berlin/Heidelberg, S 36–42. ISBN 3-540-93401-4

    Google Scholar 

  • Saleemi M et al (2015) Thermoelectric performance of higher manganese silicide nanocomposites. J Alloys Compd 619:31–37. https://doi.org/10.1016/j.jallcom.2014.09.016

    Article  CAS  Google Scholar 

  • Santamaria AB, Sulsky S (2010) Risk assessment of an essential element: manganese. J Toxicol Environ Health Part A 73:128–155

    Article  CAS  Google Scholar 

  • Sayre EV, Smith RW (1961) Compositional categories of ancient glass. Sci 133:1824–1826

    Article  CAS  Google Scholar 

  • Schlesinger ME (1998) The Mn-Te (manganese-tellurium) system. J Phase Equilib 19:591. https://doi.org/10.1361/105497198770341806

    Article  CAS  Google Scholar 

  • Schubert K (1974) Ein Modell für die Kristallstrukturen der chemischen Elemente. Acta Cryst B 30:193–204

    Article  CAS  Google Scholar 

  • Schuman RP (2007) Moderne Anorganische Chemie. de Gruyter, Berlin, S 352. ISBN 3110190605

    Google Scholar 

  • Schwochau K (1994) Technetium radiopharmaceuticals: fundamentals, synthesis, structure and development. Angew Chem Int Ed 33(22):2258–2267

    Article  Google Scholar 

  • Schwochau K (2000) Technetium: chemistry and radiopharmaceutical applications. Wiley-VCH, Weinheim. ISBN 978-3-527-61337-3

    Book  Google Scholar 

  • Segrè CG (1995) Atoms, bombs and eskimo kisses: a memoir of father and son. Viking Press, New York. ISBN-13: 978-0670863075

    Google Scholar 

  • Selig H, Malm JG (1962) The vapour-pressure and transition points of TcF6. J Inorg Nucl Chem 24(6):641–644

    Article  Google Scholar 

  • Selig H et al (1961) The preparation and properties of TcF6. J Inorg Nucl Chem 19(3–4):377–381

    Article  CAS  Google Scholar 

  • Shimizu S et al (2005) Pyridine and pyridine derivatives. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH, Weinheim

    Google Scholar 

  • Shionoya S et al (2006) Phosphor handbook, 2. Aufl. CRC Press, Boca Raton, S 153. ISBN 978-0-849-33564-8

    Google Scholar 

  • Shoemaker CB et al (1978) Refinement of the structure of β-manganese and of a related phase in the Mn-Ni-Si system. Acta Cryst B 34:3573–3576

    Article  Google Scholar 

  • Sidorenko GV (2010) Volatile technetium carbonyl compounds: vaporization and thermal decomposition. Radiochemistry 52(6):638–652

    Article  CAS  Google Scholar 

  • Siegel S, Northrop DA (1966) X-ray diffraction studies of some transition metal hexafluorides. Inorg Chem 5(12):2187–2188

    Article  CAS  Google Scholar 

  • Soto G et al (2007) Characterization of rhenium nitride films produced by reactive pulsed laser deposition. Mater Charact 58(6):519–526. https://doi.org/10.1016/j.matchar.2006.06.025

    Article  CAS  Google Scholar 

  • Steigman J et al (1992) The chemistry of technetium in medicine. National Research Council, Committee on Nuclear and Radiochemistry, National Academies, Washington, DC, S 57

    Google Scholar 

  • Strähle J, Schweda E (1995) Jander Blasius – Einführung in das anorganisch-chemische Praktikum, 14. Aufl. Hirzel-Verlag, Stuttgart. ISBN 978-3-7776-0672-9

    Google Scholar 

  • Strukowa GK et al (2001) Superconductivity in the Re-B system. ARXIV, eprint arXiv:cond-mat/0105293, 2001cond.mat..5293S

    Google Scholar 

  • Tacke I (1925) Zur Auffindung der Ekamangane. Z Angew Chem 51:1157–1180

    Article  Google Scholar 

  • Tagami K (2003) Technetium-99 behaviour in the terrestrial environment – field observations and radiotracer experiments. J Nucl Radiochem Sci 4:A1–A8

    Article  Google Scholar 

  • Takeda A (2003) Manganese action in brain function. Brain Res Rev 41:79–87

    Article  CAS  Google Scholar 

  • Tatematsu K et al (1989) Keramisches Heizelement. DE 3918964. NGK Spark Plug Co, Japan, veröffentlicht 9. Juni 1989

    Google Scholar 

  • Tilgner HG (2000) Forschen. Suche und Sucht; Eine Biografie von Walter Noddack und Ida Noddack-Tacke. Libri Books on Demand, Norderstedt. ISBN 9783898112727

    Google Scholar 

  • Tonkov EY (1992) High pressure phase transformations, a handbook. CRC Press, Boca Raton, S 555. ISBN 978-2-88124-759-0

    Google Scholar 

  • Torisu J et al (2009) Verfahren zur Herstellung von Mangantetrafluorid. DE 602005006312 T2, Showa Denko K.K., veröffentlicht 25. Juni 2009

    Google Scholar 

  • Tressaud A et al (2000) Advanced inorganic fluorides: synthesis, characterization, and applications. Elsevier, Amsterdam, S 111. ISBN 0-444-72002-2

    Google Scholar 

  • Vinogradov IV et al (1978) Technetium nitrides (Nitridy tekhnetsiya). Zh Neorg Khim 23(5):1158–1160

    CAS  Google Scholar 

  • Vogt T et al (1994) Crystal and molecular structures of rhenium heptafluoride. Sci 263(5151):1265

    Article  CAS  Google Scholar 

  • Wallach D (1962) Unit cell and space group of technetium carbonyl, Tc2(CO)10. Acta Cryst 15:1058

    Article  CAS  Google Scholar 

  • Wang Q et al (2016) Explaining stability of transition metal carbides – and why TcC does not exist. RSC Adv 6(20):16197. https://doi.org/10.1039/c5ra24656c

    Article  CAS  Google Scholar 

  • Weeks M (1956) Discovery of the elements, 6. Aufl. Journal of Chemical Education, Easton, S 169

    Google Scholar 

  • Weeks ME (1933) The discovery of the elements, XX: recently discovered elements. J Chem Educ 10:161–170

    Article  CAS  Google Scholar 

  • Wellbeloved DB et al (2005) Manganese and manganese alloys. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH, Weinheim

    Google Scholar 

  • Wildervanck JC, Jellinek F (1971) The dichalcogenides of technetium and rhenium. J Less Common Met 24:73. https://doi.org/10.1016/0022-5088(71)90168-8

    Article  CAS  Google Scholar 

  • Wilk PA et al (2000) Evidence for new isotopes of element 107: 266Bh and 267Bh. Phys Rev Lett 85(13):2697–2700

    Article  CAS  Google Scholar 

  • Wilkinson DH et al (1993) Discovery of the transfermium elements. Part II: introduction to discovery profiles. Part III: discovery profiles of the transfermium elements. Pure Appl Chem 65(8):1757

    Article  Google Scholar 

  • Wolverson D, Hart LS (2016) Lattice dynamics of the rhenium and technetium dichalcogenides. Nanoscale Res Lett 11:250. https://doi.org/10.1186/s11671-016-1459-9

    Article  CAS  Google Scholar 

  • Yamani Z et al (2010) Neutron scattering study of the classical antiferromagnet MnF2: a perfect hands-on neutron scattering teaching course. Special issue on neutron scattering in Canada. Can J Phys 88:771–797

    Article  CAS  Google Scholar 

  • Yang JH (2014) Phase stability and physical properties of technetium borides: a first-principles study. Comput Mater Sci 82:86–91. https://doi.org/10.1016/j.commatsci.2013.09.016

    Article  CAS  Google Scholar 

  • Yano J et al (2006) Where water is oxidized to dioxygen: structure of the photosynthetic Mn4Ca cluster. Sci 314:821–825

    Article  CAS  Google Scholar 

  • Yasui N et al (2015) High-pressure and high-temperature synthesis of rhenium carbide using rhenium and nanoscale amorphous two-dimensional carbon nitride. Cog Phys 2:1076702. https://doi.org/10.1080/23311940.2015.107670

    Article  Google Scholar 

  • Yoshihara K (1996) Technetium in the environment. In: Omori T, Yoshihara K (Hrsg) Technetium and rhenium – their chemistry and its applications, topics in current chemistry, Bd 176. Springer, Berlin. ISBN 3-540-59469-8

    Google Scholar 

  • Yoshihara K (2004) Discovery of a new element ‚nipponium‘: re-evaluation of pioneering works of Masataka Ogawa and his son Eijiro Ogawa, Spectrochim. Acta Part B 59(8):1305–1310

    Article  Google Scholar 

  • Zhang J et al (2013) Highly crystalline manganese selenide nanorods: synthesis, characterization, and microwave absorption properties. J Alloys Compd 548:13–17. https://doi.org/10.1016/j.jallcom.2012.09.025

    Article  CAS  Google Scholar 

  • Zhang Y, Schleich DM (1994) Preparation and characterization of iron manganese carbide by reaction of the oxides and carbon in nitrogen. J Solid State Chem 110(2):270–273. https://doi.org/10.1006/jssc.1994.1169

    Article  CAS  Google Scholar 

  • Zhou W et al (2007) Electronic, dynamical, and thermal properties of ultra-incompressible superhard rhenium diboride: a combined first-principles and neutron scattering study. Phys Rev B 76(18):184113–184119. https://doi.org/10.1103/PhysRevB.76.184113

    Article  CAS  Google Scholar 

  • Zingales R (2005) From Masurium to Trinacrium: the troubled story of element 43. J Chem Educ 82:221–227

    Article  CAS  Google Scholar 

  • Zuckerman JJ (2009) Inorganic reactions and methods, the formation of bonds to halogens. Wiley, New York, S 187. ISBN 047014539-0

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Sicius, H. (2022). Mangangruppe: Elemente der siebten Nebengruppe. In: Handbuch der chemischen Elemente. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-55944-4_12-3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-55944-4_12-3

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer Spektrum, Berlin, Heidelberg

  • Print ISBN: 978-3-662-55944-4

  • Online ISBN: 978-3-662-55944-4

  • eBook Packages: Springer Referenz Naturwissenschaften

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Mangangruppe: Elemente der siebten Nebengruppe
    Published:
    08 December 2022

    DOI: https://doi.org/10.1007/978-3-662-55944-4_12-3

  2. Original

    Mangangruppe: Elemente der siebten Nebengruppe
    Published:
    24 April 2019

    DOI: https://doi.org/10.1007/978-3-662-55944-4_12-2