Skip to main content

Vanadiumgruppe: Elemente der fünften Nebengruppe

Handbuch der chemischen Elemente
  • 387 Accesses

Zusammenfassung

Dieses Kapitel beschreibt die chemischen und physikalischen Eigenschaften, Vorkommen, Herstellverfahren, Anwendungen und Patente der Elemente der fünften Nebengruppe des Periodensystems der Elemente mit ihren wichtigsten Verbindungen. Vanadium ist Bestandteil einer Reihe widerstandsfähiger und harter Stähle, wogegen man aus den harten und chemisch relativ inerten Metallen Niob und Tantal hochschmelzende Legierungen für besondere Anwendungen herstellt. Isotope des Dubniums kommen in der Natur nicht vor und können ausschließlich auf künstlichem Weg erzeugt werden.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Literatur

  • Agulyansky A (2004) Chemistry of tantalum and niobium fluoride compounds. Elsevier, Amsterdam, S 24–64. ISBN 0-08-052902-X

    Google Scholar 

  • Alsfasser R et al (2007a) Moderne Anorganische Chemie. De Gruyter-Verlag, Berlin, S 104. ISBN 3-11-019060-5

    Google Scholar 

  • Alsfasser R et al (2007b) Moderne Anorganische Chemie. De Gruyter-Verlag, Berlin, S 349. ISBN 3-11-019060-5

    Google Scholar 

  • Alvarez-Builla J et al (2011) Modern heterocyclic chemistry. 4 Volumes. Wiley, New York, S 1542. ISBN 978-3-527-33201-4

    Book  Google Scholar 

  • Andersson K et al (2000) Tantalum and tantalum compounds. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH, Weinheim

    Google Scholar 

  • Andrade CKZ et al (2004) Intramolecular Ene Reactions Catalyzed by NbCl5, TaCl5 and InCl3. J Braz Chem Soc 15(6):813–817

    Google Scholar 

  • Andre’ev AN et al (1992) Investigation of the fusion reaction 27Al +236U → 263 105 at excitation energies of 57 MeV and 65 MeV. Z Phys A 344(2):225–226

    Article  Google Scholar 

  • Arakcheeva A et al (2002) The self-hosting structure of β-Ta. Acta Cryst Sect B, Struct Sci 58:1–7

    Article  CAS  Google Scholar 

  • Audi G et al (2012) The NUBASE2012 evaluation of nuclear properties. Chin Phys C 36(12):1157–1286. https://doi.org/10.1088/1674-1137/36/12/001

    Article  CAS  Google Scholar 

  • Banerjee S, Tyagi AK (2000) Frontiers of thin film technology. Academic/Elsevier, Amsterdam, S 291. ISBN 0080542948

    Google Scholar 

  • Barber RC et al (1993) Discovery of the transfermium elements. Part II: introduction to discovery profiles. Part III: discovery profiles of the transfermium elements. Pure Appl Chem 65(8):1757

    Article  Google Scholar 

  • Bauer G (2000) Vanadium and vanadium compounds. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH, Weinheim. https://doi.org/10.1002/14356007.a27_367

    Chapter  Google Scholar 

  • Baumann W, Herberg-Liedtke B (2013) Chemikalien in der Metallbearbeitung Daten und Fakten zum Umweltschutz. Springer, Berlin/Heidelberg, S 1451. ISBN 978-3-642-61004-2

    Google Scholar 

  • Bayard M et al (1976) Synthesis and structural aspects of the vanadium-substituted niobium diselenides. Inorg Chem 15(8):1763–1767. https://doi.org/10.1021/ic50162a005

    Article  CAS  Google Scholar 

  • Becker S, Müller BG (1990) Vanadiumtetrafluorid. Angew Chem 102:427–428

    Article  Google Scholar 

  • Berzelius JJ (1825) Flussspatsäure Tantalsäure und Flusspatsäure Tantalsalze, Tantalum und verschiedene seiner Verbindungen. Ann Phys Chem 4:6–22

    Google Scholar 

  • Birks AR et al (1976) Band structure changes in interealates of Niobium Diselenide. Phys Stat Sol B 76(2):599–604. https://doi.org/10.1002/pssb.2220760219

    Article  CAS  Google Scholar 

  • Blachnik R et al (1998) Taschenbuch für Chemiker und Physiker. Band III: Elemente, anorganische Verbindungen und Materialien, Minerale, 4. Aufl. Springer, Berlin/Heidelberg. ISBN 3-540-60035-3

    Google Scholar 

  • Blackman CS et al (2003) Chemical vapour deposition of crystalline thin films of tantalum phosphide. Mater Lett 57(10):2634–2636. https://doi.org/10.1016/S0167-577X(02)01341-1

    Article  CAS  Google Scholar 

  • Blackman CS et al (2004) Atmospheric-pressure chemical vapor deposition of vanadium phosphide thin films from reaction of Tetrakisdimethyl-amidovanadium and Cyclohexylphosphine. Chem Vap Depos 10(5):253–255. https://doi.org/10.1002/cvde.200304174

    Article  CAS  Google Scholar 

  • Bolton W von (1905) Das Tantal, seine Darstellung und seine Eigenschaften. Angew Chem 18:1451–1466. https://doi.org/10.1002/ange.19050183603

  • Bolton W von, Feuerlein O (1905) Die Tantallampe, eine neue Glühlampe der Firma Siemens & Halske A.-G. Elektrotech Z 26(4):105

    Google Scholar 

  • Bourdillon AJ et al (1979) EXAFS in niobium diselenide intercalated with rubidium. J Phys C Solid State Phys 12(19):3889–3897. https://doi.org/10.1088/0022-3719/12/19/007

    Article  CAS  Google Scholar 

  • Brauer G (1963) Handbook of preparative inorganic chemistry, Bd 1, 2. Aufl. Academic, Waltham, S 253–254

    Google Scholar 

  • Brauer G (1975) Handbuch der Präparativen Anorganischen Chemie, Bd I, 3. Aufl. Enke-Verlag, Stuttgart, S 262–263. ISBN 3-432-02328-6

    Google Scholar 

  • Brauer G (1978) Handbuch der Präparativen Anorganischen Chemie, Bd II, 3. Aufl. Enke-Verlag, Stuttgart. ISBN 3-432-87813-3

    Google Scholar 

  • Brauer G (1981) Handbuch der präparativen anorganischen Chemie, Bd III, 3. Aufl. Enke-Verlag, Stuttgart. ISBN 3-432-87823-0

    Google Scholar 

  • Brown BE, Beernsten DJ (1965) Layer structure polytypism among niobium and tantalum selenides. Acta Cryst 18:31–38. https://doi.org/10.1107/S0365110X65000063

    Article  CAS  Google Scholar 

  • Brown GM, Walker LA (1966) Refinement of the structure of potassium heptafluoroniobate, K2NbF7, from neutron-diffraction data. Acta Cryst 20:220–229. https://doi.org/10.1107/S0365110X66000458

    Article  CAS  Google Scholar 

  • Brunhuber E, Hasse S (2001) Giesserei-Lexikon. Fachverlag Schiele & Schoen, Berlin, S 909. ISBN 3-79490655-1

    Google Scholar 

  • Burghard Ž (2013) Keramik zum Falten, Forschung/Materialwissenschaften (Max-Planck-Gesellschaft, München, veröffentlicht 14. März 2013). Abgerufen am 30. November 2015

    Google Scholar 

  • Cabrera JM et al (2004) Temperature effects in proton exchanged LiNbO3 waveguides. Appl Phys B Lasers Opt 79(7):845–849

    Article  CAS  Google Scholar 

  • Calderazzo F et al (1999) Oxidation products of Vanadocene and of its Permethylated analogue, including the isolation and the reactivity of the unsolvated [VCp]Cation. Organometallics 18(13):2452–2458. https://doi.org/10.1021/om9809320

    Article  CAS  Google Scholar 

  • Çamurlu HE, Maglia F (2009) Preparation of nano-size ZrB2 powder by self-propagating high-temperature synthesis. J Eur Ceram Soc 29:1501–1506. https://doi.org/10.1016/j.jeurceramsoc.2008.09.006

    Article  CAS  Google Scholar 

  • Caswell LR (2003) Andres del Rio, Alexander von Humboldt, and the twice-discovered element. Bull Hist Chem 28(1):35–41

    CAS  Google Scholar 

  • Chen X et al (2008) Electronic and structural origin of ultraincompressibility of 5d transition-metal diborides. Phys Rev Lett 100:196403

    Article  PubMed  CAS  Google Scholar 

  • Chockalingam SP et al (2009) Superconducting properties and Hall effect in epitaxial NbN thin films. Phys Rev B 77:214503. https://doi.org/10.1103/PhysRevB.77.214503

    Article  CAS  Google Scholar 

  • Clark RJH, Brown D (2013) The chemistry of vanadium, niobium, and tantalum – pergamon texts in inorganic chemistry. Elsevier, Amsterdam, S 600. ISBN 978-1-4831-8170-7

    Google Scholar 

  • Corigliano F et al Verfahren zur hochergiebigen Gewinnung von Vanadium aus Rückständen der Erdölgewinnung (DE3723780A1, Ente Minerario Siciliano, veröffentlicht 21 Januar 1988)

    Google Scholar 

  • Cotton FA et al (1997) Structure of the second polymorph of niobium pentachloride. Acta Cryst C 47:2435–2437

    Article  Google Scholar 

  • Daniel P et al (1992) Structural and vibrational study of VF3. Mater Res Bull 38:127–220

    Google Scholar 

  • Deshmane CA et al (2010) Synthesis and catalytic properties of mesoporous, bifunctional, gallium-niobium mixed oxides. Chem Commun 46(34):6347–6349

    Article  CAS  Google Scholar 

  • Doren JB van (1967) Vanadium. In: Gmelins Handbuch der anorganischen Chemie, System-Nr. 48, Teil B, l. Verlag Chemie, Weinheim, S 267 ff

    Google Scholar 

  • Eckert J (2000) Niobium and niobium compounds. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH, New York

    Google Scholar 

  • Ekeberg AG (1803) Ueber ein neues Metall, Tantalum, welches zugleich mit der Yttererde in einigen schwedischen Fossilien entdeckt worden ist; nebst einigen Anmerkungen über die Eigenschaften der Yttererde, in Vergleichung mit der Beryllerde. Crells Annalen der Chemie 1:1–21

    Google Scholar 

  • Ercit TS et al (1995) Compositional and structural systematics of the columbite group. Am Mineral 80:613–619

    Article  CAS  Google Scholar 

  • Fieldsend J (2012) Adopts rule for disclosing use of conflict minerals. Securities and Exchange Commission, Division of Corporation Finance, Washington, DC, www.sec.gov/News/PressRelease/…/1365171484002

  • Fowles GWA et al (1967) Ether complexes of tervalent titanium and vanadium. J Inorg Nucl Chem 29:2365–2370

    Article  CAS  Google Scholar 

  • Fricke B (1975) Superheavy elements: a prediction of their chemical and physical properties. Rec Imp Phys Inorg Chem 21:89–144

    Article  CAS  Google Scholar 

  • Ghiorso A et al (1970) New element Hahnium, atomic number 105. Phys Rev Lett 24(26):1498–1503

    Article  CAS  Google Scholar 

  • Ghiorso A et al (1971) Two new alpha-particle emitting isotopes of element 105, 261Ha and 262Ha. Phys Rev C 4(5):1850–1855

    Article  Google Scholar 

  • Gidikova N (2000) Vanadium boride coatings on steel. Mat Sci Eng A 278(1–2):181–186. https://doi.org/10.1016/S0921-5093(99)00596-1

    Article  Google Scholar 

  • Greenwood NN, Earnshaw A (1988) Chemie der Elemente, 1. Aufl. Wiley-VCH, Weinheim, S 1265. ISBN 3-527-26169-9

    Google Scholar 

  • Griffith WP, Morris PJT, Hatchett C (2003) Fellow of the Royal Society (FRS, 1765–1847), chemist and discoverer of niobium. The Royal Society Publishing, London

    Google Scholar 

  • Gupta CK et al (1994) Extractive Metallurgy of Niobium. CRC Press, Boca Raton. ISBN 0849360714

    Google Scholar 

  • Gutmann V (1967) Halogen Chemistry. Elsevier, Amsterdam, S 153. ISBN 0-32314847-6

    Google Scholar 

  • Habermehl K (2010) Neue Untersuchungen an Halogeniden des Niobs und Tantals. Dissertation, Universität Köln, Deutschland

    Google Scholar 

  • Hajenius M et al (2004) Low noise NbN superconducting hot electron bolometer mixers at 1.9 and 2.5 THz. Supercond Sci Technol 17:S224. https://doi.org/10.1088/0953-2048/17/5/026

    Article  CAS  Google Scholar 

  • Haley TJ et al (1962) Pharmacology and toxicology of niobium chloride. Tox Appl Pharm 4(3):385–392

    Article  CAS  Google Scholar 

  • Hartwig A (2003) Vanadium, in Römpp Online (Georg Thieme Verlag, Stuttgart, Deutschland, letzte Aktualisierung Februar 2003). Abgerufen am 1 Dezember 2015

    Google Scholar 

  • Hatchett C (1802a) An analysis of a mineral substance from North America, containing a metal hitherto unknown. Philos Trans R Soc Lond 92:49–66. https://doi.org/10.1098/rstl.18020005

    Article  Google Scholar 

  • Hatchett C (1802b) Eigenschaften und chemisches Verhalten des von Charles Hatchett entdeckten neuen Metalls, Columbium. Ann Phys 11(5):120–122. https://doi.org/10.1002/andp.18020110507

    Article  Google Scholar 

  • Hensley DC (1977) Production, L x-ray identification, and decay of the nuclide 260105. Phys Rev C 16(3):1146–1158

    Google Scholar 

  • Heßberger FP et al (1985) The new isotopes 258105, 257105, 254Lr and 253Lr. Z Phys A 322(4):557–566

    Article  Google Scholar 

  • Heßberger FP et al (2001) Decay properties of neutron-deficient isotopes 256, 257Db, 255Rf, 252, 253Lr. Eur Phys J A 12(1):57–67

    Article  Google Scholar 

  • Heßberger FP et al (2005) Energy systematics of low-lying Nilsson levels in odd-mass einsteinium isotopes. Eur Phys J A 26(2):233–239

    Article  CAS  Google Scholar 

  • Hey MH (1966) Twenty-fourth list of new mineral names. Mineral Magaz 36:1126–1164

    Google Scholar 

  • Heyn B (2007) Anorganische Synthesechemie: Ein integriertes Praktikum. De Gruyter-Verlag, Berlin, S 18–20. ISBN 3540529071

    Google Scholar 

  • Hirschberg HG (1999) Handbuch der Verfahrenstechnik und Anlagenbau: Chemie, Technik, Wirtschaftlichkeit. Springer, Berlin/Heidelberg, S 284. ISBN 3-642-58357-1

    Book  Google Scholar 

  • Hoenle W, von Schnering HG (1990) Crystal structure of niobium pentachloride. Z Krist 191:139–140

    Google Scholar 

  • Hofberg H et al (1906a) Anders Gustaf Ekeberg, in: Svenskt biografiskt handlexikon, Bd 1, 2. Aufl. A–K Albert Bonniers.Verlag, Stockholm, S 284

    Google Scholar 

  • Hofberg H et al (1906b) Christian Wilhelm Blomstrand. In: Svenskt biografiskt handlexikon, Bd 1, 2. Aufl. A–K Albert Bonniers-Verlag, Stockholm, S 109

    Google Scholar 

  • Hoffman DC et al (2006) Transactinides and the future elements. In: Fuger J (Hrsg) The Chemistry of the Actinide and Transactinide Elements, 3. Aufl. Springer Science and Business Media, Dordrecht. ISBN 1-4020-3555-1

    Google Scholar 

  • Holleman AF, Wiberg E, Wiberg N (2007) Lehrbuch der Anorganischen Chemie, 102. Aufl. De Gruyter-Verlag, Berlin, S 1553. ISBN 978-3-11-017770-1

    Book  Google Scholar 

  • Horn G, Saur E (1968) Präparation und Supraleitungseigenschaften von Niobnitrid sowie Niobnitrid mit Titan-, Zirkon- und Tantalzusatz. Z Phys 210:70–79

    Article  CAS  Google Scholar 

  • Housecroft CE, Sharpe AG (2005) Inorganic chemistry. Pearson Education, Upper Saddle River, S 605. ISBN 0-13039913-2

    Google Scholar 

  • Hsu R et al (1997) Synchrotron X-ray Studies of LiNbO3 and LiTaO3. Acta Cryst Sect B, Struct Sci 53(3):420–428

    Article  Google Scholar 

  • Huheey JE et al (2003) Anorganische Chemie: Prinzipien von Struktur und Reaktivität. De Gruyter-Verlag, Berlin, S 797. ISBN 3-11-017903-2

    Google Scholar 

  • Ibrahem MA et al (2014) Controlled mechanical cleavage of bulk niobium diselenide to nanoscaled sheet, rod, and particle structures for Pt-free dye-sensitized solar cells. J Mat Chem A 2(29):11382. https://doi.org/10.1039/c4ta01881h

    Article  CAS  Google Scholar 

  • IUPAC (1994) Names and symbols of transfermium elements (IUPAC Recommendations 1994. Pure Appl Chem 66(12):2419

    Article  Google Scholar 

  • IUPAC (1997) Names and symbols of transfermium elements (IUPAC Recommendations 1997). Pure Appl Chem 69(12):2471

    Article  Google Scholar 

  • Jander G, Blasius E, Strähle J (1995) Einführung in das anorganisch-chemische Praktikum, 14. Aufl. S. Hirzel-Verlag, Stuttgart, S 218. ISBN 978-3-7776-0672-9

    Google Scholar 

  • Jansen T et al (2017) Red emitting K2NbF7:Mn4+ and K2TaF7:Mn4+ for warm-white LED applications. J Lumin 192:644–652. https://doi.org/10.1016/j.jlumin.2017.07.061

    Article  CAS  Google Scholar 

  • Jellinek F (1959) Die Struktur des Osmocens. Z Naturf B 14:737–738

    Article  Google Scholar 

  • Jha M et al (2011) Novel borothermal process for the synthesis of nanocrystalline oxides and borides of niobium. Dalt Trans 40(31):7879–7888. https://doi.org/10.1039/c1dt10468c

    Article  CAS  Google Scholar 

  • Jordan M (2009) Azine in der Koordinationssphäre von Vanadocenderivaten unterschiedlicher Oxidationsstufen. Dissertation Universität Oldenburg, Deutschland, DNB 996730079, urn:nbn:de:gbv:715-oops-8831

    Google Scholar 

  • Jungen O, Krieg in Kongo: Auf der dunklen Seite der digitalen Welt, Frankfurter Allgemeine Zeitung, veröffentlicht 23. August 2010

    Google Scholar 

  • Kaim W, Schwederski B (2005) Bioanorganische Chemie, 4. Aufl. Teubner-Verlag, Wiesbaden, S 241. ISBN 3-519-33505-0

    Book  Google Scholar 

  • Kammler E, Ulmer WT (1971) Ein neuer Weg in der Bronchographie – Über die Darstellung des Trascheobronchialbaumes beim Tier durch Inhalation von Tantalstaub. Pneumologie 144(4):344–351

    CAS  Google Scholar 

  • Kanno R et al (1980) High-pressure synthesis and structure of the new Niobium Phosphide Nb2P5. Acta Cryst 836:2206–2210

    Article  Google Scholar 

  • Karpov VA et al (2013) Superheavy Nuclei: Decay and Stability. In: Greiner W (Hrsg) Exciting interdisciplinary physics, FIAS interdisciplinary science series. Springer International Publishing, New York, S 69–79. https://doi.org/10.1007/978-3-319-00047-3_6. ISBN 978-3-319-00046-6

    Chapter  Google Scholar 

  • Khuyagbaatar J et al (2014) 48Ca + 249Bk fusion reaction leading to element Z = 117: long-lived α-decaying 270Db and discovery of 266Lr. Phys Rev Lett 112(17):172501. https://doi.org/10.1103/PhysRevLett.112.172501

    Article  CAS  PubMed  Google Scholar 

  • Kooi JW et al (2007) IF impedance and mixer gain of NbN hot electron bolometers. J Appl Phys 101:044511. https://doi.org/10.1063/1.2400086

    Article  CAS  Google Scholar 

  • Kovenskaya B (1970) Physical properties of niobium boride phase. Sov Powd Metall Met Ceram 9:415–441. https://doi.org/10.1007/bf00796512

    Article  Google Scholar 

  • Krahnke H (2001) Die Mitglieder der Akademie der Wissenschaften zu Göttingen 1751–2001. Vandenhoeck & Ruprecht-Verlag, Göttingen, S 205. ISBN 3-525-82516-1

    Google Scholar 

  • Krebs B, Sinram D (1980) Darstellung, Struktur und Eigenschaften einer neuen Modifikation von NbI5, Z. Naturf., Teil B. Anorg. Chem, Org Chem 35:12–16

    Google Scholar 

  • Krome T, Metalle auf Abwegen. Über das ungewöhnliche Tieftemperaturverhalten winziger Metallklumpen, Spektrumdirekt.de (Spektrum der Wissenschaft Verlagsgesellschaft mbH, Heidelberg, Deutschland, veröffentlicht 22 Mai 2003)

    Google Scholar 

  • Kumashiro Y (2000) Electric refractory materials. CRC Press, Boca Raton, S 303. ISBN 020390818X

    Book  Google Scholar 

  • Kupfer T (2007) Darstellung und Charakterisierung von gespannten [n]Metalloarenophanen und Borolen. Dissertation Universität Würzburg, Deutschland, DNB 986490075, urn:nbn:de:bvb:20-opus-24999

    Google Scholar 

  • Laeter J, Bukilic N (2005) Isotope abundance of 180Tam and p-process nucleosynthesis. Phys Rev C 72:25801

    Article  CAS  Google Scholar 

  • Laohavanich S et al (1981) Structure refinement of niobium arsenide Nb5As3. Acta Cryst Sect B, Struct Sci, Cryst Eng and Mat 37(1):227–228. https://doi.org/10.1107/S0567740881002586

    Article  Google Scholar 

  • Lee PA (2012) Optical and electrical properties. Springer Science & Business Media, New York City, S 115. ISBN 978-94-010-1478-6

    Google Scholar 

  • Lehnert H et al (1997) A neutron powder investigation of the high-temperature structure and phase transition in stoichiometric LiNbO3. Z Kristallogr 212(10):712–719

    CAS  Google Scholar 

  • Lévy F (2012) Crystallography and crystal chemistry of materials with layered structures. Springer Science & Business Media, Heidelberg, S 9–12. ISBN 9789401014335

    Google Scholar 

  • Lide DR (2005) CRC handbook of chemistry and physics, section 14, geophysics, astronomy, and acoustics; abundance of elements in the earth’s crust and in the sea, 85. Aufl. CRC Press, Boca Raton

    Google Scholar 

  • Lieth RMA (2013) Preparation and crystal growth of materials with layered structures. Springer Science & Business Media, Heidelberg, S 188–189. ISBN 978-90-277-0638-6

    Google Scholar 

  • Littke W, Brauer G (1963) Darstellung und Kristallstruktur von Niobpentajodid. Z Anorg Allg Chem 325:122–129

    Article  CAS  Google Scholar 

  • Malter L, Langmuir D (1939) Resistance, emissivities and melting point of tantalum. Phys Rev 55:743–747

    Article  CAS  Google Scholar 

  • Manning TD, Parkin IP (2004) Atmospheric pressure chemical vapour deposition of tungsten doped vanadium(IV) oxide from VOCl3, water and WCl6. J Mater Chem 14:2554–2559

    Article  CAS  Google Scholar 

  • Marignac JCG de (1866) Recherches sur les combinaisons du niobium. Ann Chim Phys 4:5–75

    Google Scholar 

  • Martienssen W, Warlimont H (2005) Springer handbook of condensed matter and materials data. Springer, Heidelberg, S 468. ISBN 354030437-1

    Book  Google Scholar 

  • Milne GWA (2005) Gardner’s commercially important chemicals: synonyms, trade names, and properties. Wiley, New York, S 663. ISBN 0-47173661-9

    Book  Google Scholar 

  • Moissan H (1902) Sur la préparation du tantale au four electrique et sur ses propriétés. Comptes Rendus 134:211–215

    Google Scholar 

  • Moore J (2001) Nb capacitors compared to Ta capacitors a less costly alternative, Bd 11(1). Kemet Corp, Greenville

    Google Scholar 

  • Moro R et al (2003) Ferroelectricity in free Niobium clusters. Sci 300(5623):1265–1269

    Article  CAS  Google Scholar 

  • Morosin B (1974) Structure refinement on NbS2. Acta Cryst Sect B, Struct Crystall Crystal Chem 30:551

    Article  CAS  Google Scholar 

  • Motchenbacher CA Production of high-purity niobium monoxide and capacitor production therefrom (US 7157073, veröffentlicht 2 Januar 2007)

    Google Scholar 

  • Motojima S et al (1982) Low-temperature deposition of TaB and TaB2 by chemical vapor deposition. J Nucl Mater 105:262

    Article  CAS  Google Scholar 

  • Münzenberg G et al (1981) Identification of element 107 by α correlation chains. Z Phys A 300(1):107–108

    Article  Google Scholar 

  • Murarka SP et al (2003) Interlayer dielectrics for semiconductor technologies. Academic/Elsevier, Amsterdam, S 339. ISBN 0-12-511221-1

    Google Scholar 

  • Nagame Y (2002) Production cross sections of 261Rf and 262Db in bombardments of 248Cm with 18O and 19F Ions. J Nucl Radiochem Sci 3:85–88

    Article  Google Scholar 

  • Nagame Y et al (2016) Chemical properties of rutherfordium (Rf) and dubnium (Db) in the aqueous phase. EPJ Web Conf 131:07007. https://doi.org/10.1051/epjconf/201613107007

    Article  CAS  Google Scholar 

  • Oganessian YTs et al (2010) Synthesis of a new element with atomic number Z=117. Phys Rev Lett 104(14):142502. https://doi.org/10.1103/PhysRevLett.104.142502

  • Oganessian Y et al (2017) Superheavy nuclei: from prediction to discovery. Phys Scr 92(2):1–21. https://doi.org/10.1088/1402-4896/aa53c1

    Article  CAS  Google Scholar 

  • Okada S et al (1993) Single crystals of TaB, Ta5B6, Ta3B4 and TaB2, as obtained from high-temperature metal solutions, and their properties. J Cryst Growth 128:1120

    Article  CAS  Google Scholar 

  • Olah GA et al (2009) Superacid chemistry. Wiley, New York, S 60. ISBN 047042154-1

    Book  Google Scholar 

  • Östlin A, Vitos L (2011) First-principles calculation of the structural stability of 6d transition metals. Phys Rev B 84(11):239905

    Google Scholar 

  • Otani S et al (1998) Floating zone growth and high-temperature hardness of NbB2 and TaB2 single crystals. J Cryst Growth 194:430

    Article  CAS  Google Scholar 

  • Overbay M et al (1996) The low temperature synthesis of vanadium selenides using superlattice reactants. J Solid State Chem 123(2):337–343. https://doi.org/10.1006/jssc.1996.0189

    Article  CAS  Google Scholar 

  • Papp JF (2015a) Niobium, commodity mineral summaries. United States Geological Service, U. S. Department of the Interior, Washington, DC

    Google Scholar 

  • Papp JF (2015b) Tantalum, commodity mineral summaries. United States Geological Service, U. S. Department of the Interior, Washington, DC

    Google Scholar 

  • Park JH et al (2013) Measurement of a solid-state triple point at the metal-insulator transition in VO2. Nature 500:431–434

    Article  CAS  PubMed  Google Scholar 

  • Patnaik P (2002) Handbook of inorganic chemicals. McGraw-Hill Professional, New York City. ISBN 0070494398

    Google Scholar 

  • Perry DL (2011) Handbook of inorganic compounds, 2. Aufl. CRC Press, Boca Raton. ISBN 978-1-4398-1462-8

    Google Scholar 

  • Perry DL (2016) Handbook of inorganic compounds, 3. Aufl. CRC Press, Boca Raton, S 412. ISBN 978-1-4398-1462-8

    Google Scholar 

  • Pierson HO (1999) Handbook of chemical vapor deposition, 2nd Edition: principles, technology. William Andrew Publishing, Norwich, S 241. ISBN 0-08094668-2

    Google Scholar 

  • Polyak DE (2015) Vanadium, mineral commodity summaries, United States Geological Survey (U. S. Department of the Interior, Washington, DC)

    Google Scholar 

  • Prasad C et al (1980) Magnetic and electrical transport properties of vanadium telluride. Z Naturf 35(7):701–703. https://doi.org/10.1515/zna-1980-0708

    Article  Google Scholar 

  • Prokhorov AM, Kuz’minov YS (1999) Physics and chemistry of crystalline lithium niobate. Institute of Physics Publishing, London. ISBN 0-85274-002-6

    Google Scholar 

  • Rabe S, Müller U (2000) Crystal structure of tantalum pentachloride, (TaCl5)2. Z Krist New Cryst Struct 1–2:215

    Google Scholar 

  • Raj G (2008) Advanced inorganic chemistry, Bd 1, 31. Aufl. Krishna Prakashan Media, Meerut, S 1204. ISBN 81-8722403-7

    Google Scholar 

  • Ran S et al (2014) Low-temperature synthesis of Nanocrystalline NbB2 powders by borothermal reduction in molten salt. J Am Ceram Soc 97(11):3384–3387. https://doi.org/10.1111/jace.13298

    Article  CAS  Google Scholar 

  • Räuber A (1978) Chemistry and physics of lithium niobate, in: Current Topics in Materials Science, Bd 1. Elsevier Science, Amsterdam, S 481–601. ISBN 0-7204-0708-7

    Google Scholar 

  • Rehder D (1991) Bioanorganische Chemie des Vanadiums. Angew Chem 103:152–172

    Article  CAS  Google Scholar 

  • Remy H (1973) Lehrbuch der Anorganischen Chemie, Band I + II. Geest und Portig-Verlag, Leipzig, DDR

    Google Scholar 

  • Riccó B (1977) Fermi surface and charge density waves in niobium diselenide. Sol State Comm 22(5):331–333. https://doi.org/10.1016/0038-1098(77)91442-9

    Article  Google Scholar 

  • Riedel E (2003) Moderne anorganische Chemie. De Gruyter-Verlag, Berlin, S 498. ISBN 978-3-11-017838-6

    Google Scholar 

  • Riedel E, Janiak C (2011) Anorganische Chemie. De Gruyter-Verlag, Berlin, S 798. ISBN 3-11-022567-0

    Google Scholar 

  • Rodríguez-Mercado JJ et al (2001) DNA damage induction in human cells exposed to vanadium oxides in vitro. Toxicol in Vitro 25(8):1996–2002

    Article  CAS  Google Scholar 

  • Rogers RD et al (1981) Crystal structure of vanadocene. J Cryst Mol Struct 11(5–6):183–188. https://doi.org/10.1007/BF01210393

    Article  CAS  Google Scholar 

  • Rose H (1844) Ueber die Zusammensetzung der Tantalite und ein im Tantalite von Baiern enthaltenes neues Metall. Ann Phys 139(10):317–341

    Article  Google Scholar 

  • Rowcliffe DJ, Warren WJ (1970) Structure and properties of tantalum carbide crystals. J Mat Sci 5:345–350

    Article  CAS  Google Scholar 

  • Ruff O, Lickfett H (1911) Vanadinfluoride. Ber Dt Chem Ges 44:2539–2549

    Article  Google Scholar 

  • Sairam K et al (2013) Reaction spark plasma sintering of niobium diboride. Int J Refr Met Hard Mat 43:259–262. https://doi.org/10.1016/j.ijrmhm.2013.12011

    Article  Google Scholar 

  • Schlicht A (1999) Normalleitende und supraleitende Eigenschaften von Farbstoff-Einlagerungsverbindungen des Wirtsgitters 2H-TaS2. Herbert Utz Verlag, München, S 11. ISBN 978-3-89675-473-8

    Google Scholar 

  • Schroeder HA et al (1970) Zirconium, niobium, antimony, vanadium and lead in rats: life term studies. J Nutr 100(1):59–68

    Article  CAS  PubMed  Google Scholar 

  • Schubert K (1974) Ein Modell für die Kristallstrukturen der chemischen Elemente. Acta Cryst 30:193–204

    Article  CAS  Google Scholar 

  • Schutz RJ, Testardi LR (1979) The formation of vanadium silicides at thin-film interfaces. J Appl Phys 50:5773. https://doi.org/10.1063/1326718

    Article  CAS  Google Scholar 

  • Sefstöm NG (1831) Über das Vanadin, ein neues Metall, gefunden im Stangeneisen von Eckersholm, einer Eisenhütte, die ihr Erz von Taberg in Småland bezieht. Ann Phys 97(1):1–4

    Article  Google Scholar 

  • Shy YM et al (1973) Superconducting properties, electrical resistivities, and structure of NbN thin films. J Appl Phys 44:5539. https://doi.org/10.1063/1.1662193

    Article  CAS  Google Scholar 

  • Smith DM et al (2008) A systematic review of vanadium oral supplements for glycaemic control in type 2 diabetes mellitus, QJM. Intl J Med 101(5):351–358

    CAS  Google Scholar 

  • Stoyer NJ et al (2007) Chemical identification of a long-lived isotope of dubnium, a descendant of element 115. Nucl Phys A 787(1):388–395. https://doi.org/10.1016/j.nuclphysa.2006.12.060

    Article  CAS  Google Scholar 

  • Strunz H, Nickel EH (2001) Strunz mineralogical tables. Chemical-structural mineral classification system, 9. Aufl. E. Schweizerbart‘sche Verlagsbuchhandlung (Nägele und Obermiller, Stuttgart, S 47. ISBN 3-510-65188-X

    Google Scholar 

  • Sturm BJ, Sheridan CW (1963) Vanadium-III-fluoride. Inorg Synth 7:52–54

    Google Scholar 

  • Thieme MB, Gemming S (2009) Elastic properties and electronic structure of vanadium silicides-a density functional investigation. Acta Mat 57(1):50–55. https://doi.org/10.1016/j.actamat.2008.08.034

    Article  CAS  Google Scholar 

  • Thomas T (2011) Chemical vapour deposition of titanium and vanadium arsenide thin films. Doctoral thesis, University College London, Vereinigtes Königreich

    Google Scholar 

  • Torardi CC et al (1987) Structure and luminescence of K2TaF7 and K2NbF7. J Sol State Chem 67:21–25. https://doi.org/10.1016/0022-4596(87)90333-1

    Article  CAS  Google Scholar 

  • Tu KN et al (1973) Formation of vanadium silicides by the interactions of V with bare and oxidized Si wafers. Appl Phys Lett 23:493. https://doi.org/10.1063/11654972

    Article  CAS  Google Scholar 

  • Vanasse B, O'Brien MK (2009) Vanadyl trifluoride, E-EROS-encyclopedia of reagents for organic synthesis. Wiley, New York

    Google Scholar 

  • Vernes A et al (1998) Crystal structure, electrical properties and electronic band structure of tantalum ditelluride. J Phys: Cond Matt 10(4):761–774

    CAS  Google Scholar 

  • Wang H et al (2017) High-quality monolayer superconductor NbSe2 grown by chemical vapour deposition. Nature Comm 8(1):394. https://doi.org/10.1038/s41467-017-00427-5

    Article  CAS  Google Scholar 

  • Wang P et al (2018) Vanadium diboride (VB2) synthesized at high pressure: elastic, mechanical, electronic, and magnetic properties and thermal stability. Inorg Chem 57(3):1096–1105. https://doi.org/10.1021/acs.inorgchem.7b02550

    Article  CAS  PubMed  Google Scholar 

  • Waxler A, Corack WS (1952) Superconductivity of vanadium. Phys Rev 85(1):85–90

    Article  Google Scholar 

  • Weiher S von, Bolton W (1955) Neue Deutsche Biographie, Bd 2. Duncker & Humblot-Verlag, Berlin, S 435. ISBN 3-428-00183-4

    Google Scholar 

  • Weis RS, Gaylord TK (1985) Lithium niobate: summary of physical properties and crystal structure. Appl Phys A, Mat Sci & Proc 37(4):191–203

    Article  Google Scholar 

  • Weiß S (2014) Das große Lapis Mineralienverzeichnis. Alle Mineralien von A – Z und ihre Eigenschaften, 6. Aufl. Weise-Verlag, München. ISBN 978-3-921656-80-8

    Google Scholar 

  • Wollaston WH (1809) On the identity of columbium and tantalum. Philos Trans R Soc Lond 99:246–252. https://doi.org/10.1098/rstl.1809.0017

    Article  Google Scholar 

  • Wong KK (2002) Properties of lithium niobate, Emis. Datareviews series, No. 28. Vereinigtes Königreich, London. ISBN 0-85296-799-3

    Google Scholar 

  • Xu J et al (1996) Crystal structure, electrical transport, and magnetic properties of niobium monophosphide. Inorg Chem 35(4):845–849. https://doi.org/10.1021/ic950826f

    Article  CAS  PubMed  Google Scholar 

  • Yamada T et al (2012) Preparation of niobium disilicide coating by heating niobium in a sodium-silicon melt. Mat Trans 53(12):2141–2144. https://doi.org/10.2320/matertrans.MAW201213

    Article  CAS  Google Scholar 

  • Zoli L et al (2018) Synthesis of group IV and V metal diboride nanocrystals via borothermal reduction with sodium borohydride. J Am Ceram Soc 101(6):2627–2637. https://doi.org/10.1111/jace.15401

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hermann Sicius .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Sicius, H. (2019). Vanadiumgruppe: Elemente der fünften Nebengruppe. In: Handbuch der chemischen Elemente. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-55944-4_10-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-55944-4_10-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer Spektrum, Berlin, Heidelberg

  • Print ISBN: 978-3-662-55944-4

  • Online ISBN: 978-3-662-55944-4

  • eBook Packages: Springer Referenz Naturwissenschaften

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Vanadiumgruppe: Elemente der fünften Nebengruppe
    Published:
    12 March 2023

    DOI: https://doi.org/10.1007/978-3-662-55944-4_10-3

  2. Original

    Vanadiumgruppe: Elemente der fünften Nebengruppe
    Published:
    02 May 2019

    DOI: https://doi.org/10.1007/978-3-662-55944-4_10-2