Encyclopedia of Continuum Mechanics

Living Edition
| Editors: Holm Altenbach, Andreas Öchsner

A Modeling Framework for Computational Physiology

  • Peter HunterEmail author
Living reference work entry
DOI: https://doi.org/10.1007/978-3-662-53605-6_29-1

Definitions

Physics based – the use of physical principles such as the laws of conservation of mass and conservation of energy.

Computational physiology – the use of computer models containing equations that represent physiological processes and the solution of these equations with numerical methods designed for digital computers (such as the finite element methods discussed in this entry).

Multiscale modeling – the use of mathematical models that incorporate physical processes operating at more than one spatial scale (e.g., at the level of cells as well as a whole organ).

Standards-based computational frameworks – this refers to the use of community-agreed standards for the encoding of models to help ensure that they are reproducible and reusable.

Introduction

Anatomy and physiology are the disciplines that underpin the practice of medicine. Discoveries from molecular biology, including the sequencing of the human genome in 2000 (https://en.wikipedia.org/wiki/Human_genome), are...

This is a preview of subscription content, log in to check access.

References

  1. Breedveld PC (1984) Physical systems theory in terms of bond graphs. PhD thesis University of TwenteGoogle Scholar
  2. Chen Z, Niederer SA, Shanmugam N, Sermesant M, Rinaldi CA (2017) Cardiac computational modeling of ventricular tachycardia and cardiac resynchronization therapy: a clinical perspective. Minerva Cardioangiol 65(4):380–397Google Scholar
  3. Du P, Paskaranandavadivel N, Angeli TR, Cheng LK, O’Grady G (2016) The virtual intestine: in silico modeling of small intestinal electrophysiology and motility and the applications. Wiley Interdiscip Rev Syst Biol Med 8(1):69–85CrossRefGoogle Scholar
  4. Du P, O’Grady G, Cheng LK (2017) A theoretical analysis of anatomical and functional intestinal slow wave re-entry. J Theor Biol 21(425):72–79CrossRefGoogle Scholar
  5. Fernandez JW, Pandy MG (2006) Integrating modelling and experiments to assess dynamic musculoskeletal function in humans. Exp Physiol 91(2):371–382CrossRefGoogle Scholar
  6. Fernandez JW, Mithraratne P, Thrupp SF, Tawhai MH, Hunter PJ (2004) Anatomically based geometric modelling of the musculo-skeletal system and other organs. Biomech Model Mechanobiol 2(3):139–155CrossRefGoogle Scholar
  7. Gawthrop PJ, Crampin EJ (2014) Energy based analysis of biochemical cycles using bond graphs. Proc R Soc A 470(2171):20140459. https://doi.org/10.1098/rspa.2014.0459CrossRefGoogle Scholar
  8. Gawthrop PJ, Crampin EJ (2016) Modular bond-graph modelling and analysis of biomolecular systems. IET Syst Biol. https://doi.org/10.1049/iet-syb.2015.0083CrossRefGoogle Scholar
  9. Gawthrop PJ, Cursons J, Crampin EJ (2015) Hierarchical bond graph modelling of biochemical networks. Proc R Soc A 471(2184):20150642. https://doi.org/10.1098/rspa.2015.0642MathSciNetCrossRefzbMATHGoogle Scholar
  10. Hooks DA, Tomlinson KA, Marsden SG, Le Grice IJ, Smaill BH, Pullan AJ, Hunter PJ (2002) Cardiac microstructure: implications for electrical propagation and defibrillation in the heart. Circ Res 91(4):331–338CrossRefGoogle Scholar
  11. Hunter PJ, Borg TK (2003) Integration from proteins to organs: the Physiome project. Nat Rev Mol Cell Biol 4(3):237–243CrossRefGoogle Scholar
  12. Hunter PJ, Smaill BH (1989) The analysis of cardiac function: a continuum approach. Prog Biophys Mol Biol 52:101–164CrossRefGoogle Scholar
  13. Hunter PJ, Pullan AJ, Smaill BH (2003) Modeling total heart function. Annu Rev Biomed Eng 5:147–177CrossRefGoogle Scholar
  14. Karnopp DC, Margolis DL, Rosenberg RC (2012) System dynamics, 5th edn. WileyGoogle Scholar
  15. Lee J, Cookson A, Roy I, Kerfoot E, Asner L, Vigueras G, Sochi T, Michler C, Smith N, Nordsletten D (2016) CHeart: Multiphysics computational modelling in CHeart. SIAM J Sci Comput 38:C150–C178CrossRefGoogle Scholar
  16. LeGrice IJ, Smaill BH, Chai LZ, Edgar SG, Gavin JB, Hunter PJ (1995) Laminar structure of the heart: ventricular myocyte arrangement and connective tissue architecture in the dog. Am J Phys 269:H571–H582Google Scholar
  17. LeGrice IJ, Hunter PJ, Smaill BH (1997) Laminar structure of the heart: a mathematical model. Am J Phys 272:H2466–H2476Google Scholar
  18. Lin CL, Tawhai MH, Hoffman EA (2013) Multiscale image-based modeling and simulation of gas flow and particle transport in the human lungs. WIREs Syst Biol Med 5(5):643–655CrossRefGoogle Scholar
  19. Nash MP, Hunter PJ (2001) Computational mechanics of the heart. J Elast 61(1–3):113–141zbMATHGoogle Scholar
  20. Neic A, Campos FO, Prassl AJ, Niederer SA, Bishop MJ, Vigmond EJ, Plank G (2017) Efficient computation of electrograms and ECGs in human whole heart simulations using a reaction-eikonal model. J Comp Phy 346:191–211MathSciNetCrossRefGoogle Scholar
  21. Nickerson DP, Hunter PJ (2006) The Noble cardiac ventricular electrophysiology models in CellML. Prog Biophys Molec Biol 90:346–359CrossRefGoogle Scholar
  22. Nielsen PMF, Hunter PJ, Smaill BH (1991) Biaxial testing of membrane biomaterials: testing equipment and procedures. ASME J Biomech Eng 113(3):295–300CrossRefGoogle Scholar
  23. Oster G, Perelson A, Katchalsky A (1971) Network thermodynamics. Nature (Lond) 234:393CrossRefGoogle Scholar
  24. Paynter H (1961) Analysis and Design of Engineering Systems. MIT, CambridgeGoogle Scholar
  25. Tawhai MH, Bates JH (2011) Multi-scale lung modeling. J Appl Physiol 110(5):1466–1472CrossRefGoogle Scholar
  26. Wang VY, Hussan JR, Yousefi H, Bradley CP, Hunter PJ, Nash MP (2017) Modelling cardiac tissue growth and remodelling. J Elast 129(1–2):283–305MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Auckland Bioengineering InstituteUniversity of AucklandAucklandNew Zealand

Section editors and affiliations

  • Daniel Balzani
    • 1
  1. 1.Ruhr-Universität BochumBochumGermany