Energy Storage by Adsorption Technology for Building

Living reference work entry

Latest version View entry history

Abstract

On one hand, physical adsorption, also named physisorption, is a process that can be used to storage thermal energy with an energy density higher than sensible or latent storages. On the other hand, in Europe, 26% of the final energy consumption is related to the energy systems of households [1,2], and 80% of this energy is needed for heating purposes [1,2]. The consequence is the development of thermal energy storage systems, based on physisorption, for building application. The objective of this chapter is first to present the basics concerning physisorption heat storage. Then, three scales are developed from an experimental point of view: the material scale, the reactor scale, and the system scale.

Keywords

Physisorption Physical adsorption Heat storage Numerical modeling Multiscale analysis Review of experiments Building application Energy management Zeolite Reactor 

References

  1. 1.
    EU energy in figures–statistical pocketbook, Tech. rep., European Com-missions (2012)Google Scholar
  2. 2.
    Household energy consumption by end–use in the EU–27, Tech. rep., European Environment Agency (2012)Google Scholar
  3. 3.
    N’Tsoukpoe KE, Liu H, Pierres NL, Luo L (2009) A review on long-term sorption solar energy storage. Renew Sust Energ Rev 13(9):2385–2396CrossRefGoogle Scholar
  4. 4.
    Sole A, Martorell I, Cabeza LF (2015) State of the art on gas–solid thermochemical energy storage systems and reactors for building applications. Renew Sust Energ Rev 47:386–398CrossRefGoogle Scholar
  5. 5.
    Aydin D, Casey SP, Riffat S (2015) The latest advancements on thermochemical heat storage systems. Renew Sust Energ Rev 41:356–367CrossRefGoogle Scholar
  6. 6.
    Andre L, Abanades S, Flamant G (2016) Screening of thermochemical systems based on solid-gas reversible reactions for high temperature solar thermal energy storage. Renew Sust Energ Rev 64:703–715CrossRefGoogle Scholar
  7. 7.
    Nagel T, Beckert S, Lehmann C, Glaser R, Kolditz O (2016) Multi-physical continuum models of thermochemical heat storage and transformation in porous media and powder beds – a review. Appl Energy 178:323–345CrossRefGoogle Scholar
  8. 8.
    Cabeza LF, Sole A, Barreneche C (2017) Review on sorption materials and technologies for heat pumps and thermal energy storage. Renewable Energy 10:3–39Google Scholar
  9. 9.
    Lefebvre D, Tezel FH (2017) A review of energy storage technologies with a focus on adsorption thermal energy storage processes for heating applications. Renew Sust Energ Rev 67:116–125CrossRefGoogle Scholar
  10. 10.
    IEA, Technology roadmap – energy storage, Tech. rep., IEA (2014)Google Scholar
  11. 11.
    RHC, Solar heating and cooling – technology roadmap, Tech. rep., Renewable Heating and Cooling – European Technology Platform (2014)Google Scholar
  12. 12.
    Mcnaught AD, Wilkinson A (1987) IUPAC compendium of chemical terminology (The “Gold Book”), 2nd edn. Wiley Blackwell; 2nd rev edn, Oxford/London/Edinburgh/Boston/Palo Alto/Melbourne: Blackwell Scientific PublicationsGoogle Scholar
  13. 13.
    Bent BE Adsorption. Access Science.  https://doi.org/10.1036/1097-8542.012100
  14. 14.
    Bolis V (2013) Ch. Fundamentals in adsorption at the solid-gas interface. Concepts and thermodynamics. In: Calorimetry and thermal methods in catalysis. Springer, Berlin, pp 3–50CrossRefGoogle Scholar
  15. 15.
    Gottfried JM (2003) CO oxidation over gold, PhD thesis. Freien Universitat BerlinGoogle Scholar
  16. 16.
    Makni F (2012) Développement d’un outil de simulation 2d – 3d pour l’amélioration de la conception des adsorbeurs dédiés aux systèmes de climatisation, PhD thesis. Conservatoire National des Arts et Métiers, ParisGoogle Scholar
  17. 17.
    Guilleminot J, Choisier A, Chalfen J, Nicolas S, Reymoney J (1993) Heat transfer intensification in fixed bed adsorbers. Heat Recover Syst CHP 13(4):297–300CrossRefGoogle Scholar
  18. 18.
    Seo Y, Jo S-H, Ryu CK, Yi C-K (2007) Effects of water vapor pretreatment time and reaction temperature on co2 capture characteristics of a sodium-based solid sorbent in a bubbling fluidized-bed reactor. Chemosphere 69(5):712–718CrossRefGoogle Scholar
  19. 19.
    Mette B, Kerskes H, Drück H (2014) Experimental and numerical investigations of different reactor concepts for thermochemical energy storage. Energy Procedia 57:2380–2389CrossRefGoogle Scholar
  20. 20.
    Belz K, Kuznik F, Werner K, Schmidt T, Ruck W (2015) 17 – Thermal energy storage systems for heating and hot water in residential buildings. In: Cabeza LF (ed) Advances in thermal energy storage systems, Woodhead Publishing Series in Energy. Woodhead Publishing, UK ed., pp 441–465Google Scholar
  21. 21.
    Kuznik F, Johannes K, Obrecht C (2015) Chemisorption heat storage in buildings: state–of–the–art and outlook. Energ Buildings 106:183–191. sI: IEA-ECES Annex 31 Special Issue on Thermal Energy StorageCrossRefGoogle Scholar
  22. 22.
    Brick V, Kuznik F, Johannes K, Virgone J (2011) Evaluation of thermal energy storage potential in low–energy buildings in France. In: ISES solar world congress 2011, Kassel, 28 Aug–2 Sept 2011Google Scholar
  23. 23.
    Gondre D, Johannes K, Kuznik F (2014) Specification requirements for inter-seasonal heat storage systems in a low energy residential house. Energy Convers Manag 77:628–636CrossRefGoogle Scholar
  24. 24.
    Advanced storage concepts for solar and low energy buildings, Tech. rep., IEA Solar Heating and Cooling Programme – Task 32 (2007)Google Scholar
  25. 25.
    Jordan U, Vajen K (2001) Realistic domestic hot-water profiles in different time scales, Tech. rep., IEA SHC, Task 26: solar combisystemsGoogle Scholar
  26. 26.
    Guo S, Zhao J, Wang J, Yan J, Jin G, Wang G (2016) Techno-economic assessment of mobilized thermal energy storage for distributed users: a case study in china. Appl Energy 194:481–486Google Scholar
  27. 27.
    Guo S, Zhao J, Wang W, Yan J, Jin G, Zhang Z, Gu J, Niu Y (2016) Numerical study of the improvement of an indirect contact mobilized thermal energy storage container. Appl Energy 161:476–486CrossRefGoogle Scholar
  28. 28.
    Gondre D (2016) Numerical modeling and analysis of heat and mass transfers in an adsorption heat storage tank, PhD thesis, INSA of LyonGoogle Scholar
  29. 29.
    Henninger S, Schmidt F, Henning H-M (2010) Water adsorption characteristics of novel materials for heat transformation applications. Appl Therm Eng 30(13):1692–1702CrossRefGoogle Scholar
  30. 30.
    Aristov YI (2011) Challenging offers of material science for adsorptive storage of thermal energy. In: Eurotherm seminar proceedingsGoogle Scholar
  31. 31.
    Aristov YI (2012) Adsorptive transformation of heat: principles of construction of adsorbents database. Appl Therm Eng 42:18CrossRefGoogle Scholar
  32. 32.
    Aristov YI (2013) Challenging offers of material science for adsorption heat transformation: a review. Appl Therm Eng 50(2):1610–1618CrossRefGoogle Scholar
  33. 33.
    Sun L-M, Meunier F (n.d.) Adsorption: aspects théoriques, techniques de l’ingénieurGoogle Scholar
  34. 34.
    Druske M-M, Fopah-Lele A, Korhammer K, Rammelberg HU, Wegscheider N, Ruck W, Schmidt T (2014) Developed materials for thermal energy storage: synthesis and characterization. Energy Procedia 61:96–99CrossRefGoogle Scholar
  35. 35.
    Hongois S (2011) Stockage de chaleur inter–saisonnier par voie thermochimique pour le chauffage solaire de la maison individuelle, PhD thesis, INSA LyonGoogle Scholar
  36. 36.
    Close D, Dunkle R (1977) Use of adsorbent beds for energy storage in drying of heating systems. Sol Energy 19(3):233–238CrossRefGoogle Scholar
  37. 37.
    Gopal R, Hollebone B, Langford C, Shigeishi R (1982) The rates of solar energy storage and retrieval in a zeolite-water system. Sol Energy 28(5):421–424CrossRefGoogle Scholar
  38. 38.
    Shigeishi RA, Langford CH, Hollebone BR (1979) Solar energy storage using chemical potential changes associated with drying of zeolites. Sol Energy 23(6):489–495CrossRefGoogle Scholar
  39. 39.
    Auerbach S, Carrado K, Dutta P (2003) Handbook of zeolite science and technology. CRC Press, New York, BaselGoogle Scholar
  40. 40.
    Ruthven D (1984) Principles of adsorption and adsorption processes. A Wiley-Interscience publication, Wiley, New YorkGoogle Scholar
  41. 41.
    Mette B, Kerskes H, Drck H, Muller-Steinhagen H (2014) Experimental and numerical investigations on the water vapor adsorption isotherms and kinetics of binderless zeolite 13x. Int J Heat Mass Transf 71:555–561CrossRefGoogle Scholar
  42. 42.
    Janchen J, Ackermann D, Stach H, Brosicke W (2004) Studies of the water adsorption on zeolites and modified mesoporous materials for seasonal storage of solar heat. Sol Energy 76(13):339–344, solar World Congress 2001CrossRefGoogle Scholar
  43. 43.
    Janchen J, Stach H (2014) Shaping adsorption properties of nano-porous molecular sieves for solar thermal energy storage and heat pump applications. Sol Energy 104:16–18, solar heating and coolingCrossRefGoogle Scholar
  44. 44.
    Prieto C, Cooper P, Fernndez AI, Cabeza LF (2016) Review of technology: thermochemical energy storage for concentrated solar power plants. Renew Sust Energ Rev 60:909–929CrossRefGoogle Scholar
  45. 45.
    Cot-Gores J, Castell A, Cabeza LF (2012) Thermochemical energy storage and conversion: a–state–of–the–art review of the experimental research under practical conditions. Renew Sust Energ Rev 16(7):5207–5224CrossRefGoogle Scholar
  46. 46.
    Kuznik F (2016) 17 – chemisorption heat storage for solar low-energy buildings. In: Advances in solar heating and cooling. Woodhead Publishing, UK ed., pp 467–489Google Scholar
  47. 47.
    Zondag H, Kikkert B, Smeding S, de Boer R, Bakker M (2013) Prototype thermochemical heat storage with open reactor system. Appl Energy 109:360–365CrossRefGoogle Scholar
  48. 48.
    Fopah-Lele A, Rohde C, Neumann K, Tietjen T, Ronnebeck T, N’Tsoukpoe KE, Osterland T, Opel O, Ruck WK (2016) Lab-scale experiment of a closed thermochemical heat storage system including honeycomb heat exchanger. Energy 114:225–238CrossRefGoogle Scholar
  49. 49.
    Mauran S, Lahmidi H, Goetz V (2008) Solar heating and cooling by a thermochemical process. First experiments of a prototype storing 60 kw h by a solid/gas reaction. Sol Energy 82(7):623–636CrossRefGoogle Scholar
  50. 50.
    de Jong A-J, van Vliet L, Hoegaerts C, Roelands M, Cuypers R (2016) Thermochemical heat storage – from reaction storage density to system storage density. Energy Procedia 91:128–137, Proceedings of the 4th international conference on solar heating and cooling for buildings and industry (SHC 2015)CrossRefGoogle Scholar
  51. 51.
    Michel B, Mazet N, Neveu P (2016) Experimental investigation of an open thermochemical process operating with a hydrate salt for thermal storage of solar energy: Local reactive bed evolution. Appl Energy 180:234–244CrossRefGoogle Scholar
  52. 52.
    Michel B, Mazet N, Neveu P (2014) Experimental investigation of an innovative thermochemical process operating with a hydrate salt and moist air for thermal storage of solar energy: global performance. Appl Energy 129:177–186CrossRefGoogle Scholar
  53. 53.
    Richter M, Bouche M, Linder M (2016) Heat transformation based on CaCl2/H2O - part a: closed operation principle. Appl Therm Eng 102:615–621CrossRefGoogle Scholar
  54. 54.
    Bouche M, Richter M, Linder M (2016) Heat transformation based on CaCl2/H2O - part b: open operation principle. Appl Therm Eng 102:641–647CrossRefGoogle Scholar
  55. 55.
    Gordeeva L, Grekova A, Krieger T, Aristov Y (2013) Composites “binary salts in porous matrix” for adsorption heat transformation. Appl Therm Eng 50(2):1633–1638CrossRefGoogle Scholar
  56. 56.
    Tanashev YY, Krainov AV, Aristov YI (2013) Thermal conductivity of composite sorbents “salt in porous matrix” for heat storage and transformation. Appl Therm Eng 61(2):401–407CrossRefGoogle Scholar
  57. 57.
    Aristov Y, Restuccia G, Cacciola G, Tokarev M (1998) Selective water sorbents for multiple applications, 7. Heat conductivity of CaCl2-SiO2 composites. React Kinet Catal Lett 65:277–284CrossRefGoogle Scholar
  58. 58.
    Aristov Y, Restuccia G, Cacciola G, Parmon V (2002) A family of new working materials for solid sorption air conditioning systems. Appl Therm Eng 22(2):191–204CrossRefGoogle Scholar
  59. 59.
    Aristov Y, Restuccia G, Tokarev M, Buerger H-D, Freni A (2000) Selective water sorbents for multiple applications. 11. CaCl2 confined to expanded vermiculite. React Kinet Catal Lett 71:377–384CrossRefGoogle Scholar
  60. 60.
    Aristov Y, Restuccia G, Tokarev M, Cacciola G (2000) Selective water sorbents for multiple applications, 10. Energy storage ability. React Kinet Catal Lett 69:345–353CrossRefGoogle Scholar
  61. 61.
    Aristov Y, Tokarev M, Restuccia G, Cacciola G (1996) Selective water sorbents for multiple applications, 2. CaCl2 confined in micropores of silica gel: sorption properties. React Kinet Catal Lett 59:335–342CrossRefGoogle Scholar
  62. 62.
    Dawoud B, Aristov Y (2003) Experimental study on the kinetics of water vapor sorption on selective water sorbents, silica gel and alumina under typical operating conditions of sorption heat pumps. Int J Heat Mass Transf 46(2):273–281CrossRefGoogle Scholar
  63. 63.
    Freni A, Russo F, Vasta S, Tokarev M, Aristov Y, Restuccia G (2007) An advanced solid sorption chiller using SWS-1L. Appl Therm Eng 27(13):2200–2204CrossRefGoogle Scholar
  64. 64.
    Gordeeva L, Restuccia G, Freni A, Aristov Y (2002) Water sorption on composites “LiBr in a porous carbon”. Fuel Process Technol 79:225–231CrossRefGoogle Scholar
  65. 65.
    Levitskij E, Aristov Y, Tokarev M, Parmon V (1996) Chemical heat accumulator’: a new approach to accumulating low potential heat. Sol Energy Mater Sol Cells 44(3):219–235CrossRefGoogle Scholar
  66. 66.
    Zhu D, Wu H, Wang S (2006) Experimental study on composite silica gel supported cacl2 sorbent for low grade heat storage. Int J Therm Sci 45(8):804–813CrossRefGoogle Scholar
  67. 67.
    Wu H, Wang S, Zhu D (2007) Effects of impregnating variables on dynamic sorption characteristics and storage properties of composite sorbent for solar heat storage. Sol Energy 81(7):864–871CrossRefGoogle Scholar
  68. 68.
    Wu H, Wang S, Zhu D, Ding Y (2009) Numerical analysis and evaluation of an open-type thermal storage system using composite sorbents. Int J Heat Mass Transf 52(2122):5262–5265CrossRefMATHGoogle Scholar
  69. 69.
    Hongois S, Kuznik F, Stevens P, Roux J-J (2011) Development and characterization of a new MgSO4-zeolite composite for long-term thermal energy storage. Sol Energy Mater Sol Cells 95(7):1831–1837CrossRefGoogle Scholar
  70. 70.
    Whiting G, Grondin D, Bennici S, Auroux A (2013) Heats of water sorption studies on zeolite–MgSO4 composites as potential thermochemical heat storage materials. Sol Energy Mater Sol Cells 112(0):112–119CrossRefGoogle Scholar
  71. 71.
    Whiting GT, Grondin D, Stosic D, Bennici S, Auroux A (2014) Zeolite–MgCl2 composites as potential long–term heat storage materials: influence of zeolite properties on heats of water sorption. Sol Energy Mater Sol Cells 128(0):289–295CrossRefGoogle Scholar
  72. 72.
    Brouwer E, Rindt C, van Essen M, van Helden W, van Steenhoven A (2009) Hydration and dehydration of sorption materials: experiments in a small scale reactor. In: International symposium on convective heat and mass transfer in sustainable energyGoogle Scholar
  73. 73.
    Janchen J, Ackermann D, Weiler E, Stach H, Brosicke W (2004) Thermochemical storage of low temperature heat by zeolite; Sapo’s and impregnated active carbon. In: 7th workshop of IEA/ECES annex 17Google Scholar
  74. 74.
    Janchen J, Ackermann D, Weiler E, Stach H, Brosicke W (2005) Calorimetric investigation on zeolites, AIPO4’s and CaCl2/H2O impregnated attapulgite for thermochemical storage of heat. Thermochim Acta 434(12):37–41CrossRefGoogle Scholar
  75. 75.
    Posern K, Kaps C (2010) Calorimetric studies of thermochemical heat storage materials based on mixtures of mgso4 and mgcl2. Thermochim Acta 502(12):73–76CrossRefGoogle Scholar
  76. 76.
    Jabbari-Hichri A, Bennici S, Auroux A (2015) Enhancing the heat storage density of silica-alumina by addition of hygroscopic salts (CaCl2/H2O, Ba(OH)2, and LiNO3). Sol Energy Mater Sol Cells 140:351–360CrossRefGoogle Scholar
  77. 77.
    Casey SP, Aydin D, Riffat S, Elvins J (2015) Salt impregnated desiccant matrices for ‘open’ thermochemical energy storage–hygrothermal cyclic behaviour and energetic analysis by physical experimentation. Energ Buildings 92(0):128–139CrossRefGoogle Scholar
  78. 78.
    Casey SP, Elvins J, Riffat S, Robinson A (2014) Salt impregnated desiccant matrices for ‘open’ thermochemical energy storage–selection, synthesis and characterisation of candidate materials. Energ Buildings 84(0):412–425CrossRefGoogle Scholar
  79. 79.
    I. T. 32, Thermal energy storage for solar and low energy buildings –State of the art by IEA Solar Heating and Cooling Task 32, −, 2005Google Scholar
  80. 80.
    Stach H, Mugele J, Jnchen J, Weiler E (2005) Influence of cycle temperatures on the thermochemical heat storage densities in the systems water/microporous and water/mesoporous adsorbents. Adsorption 11(3–4):393–404CrossRefGoogle Scholar
  81. 81.
    Hauer A (2007) Adsorption systems for TES – design and demonstration projects. In: Paksoy HÖ (ed) Thermal energy storage for sustainable energy consumption, vol 234. Springer, Dordrecht, pp 409–427CrossRefGoogle Scholar
  82. 82.
    Mette B, Kerskes H, Drück H (2012) Concepts of long–term thermochemical energy storage for solar thermal applications – selected examples. Energy Procedia 30:321–330CrossRefGoogle Scholar
  83. 83.
    Bales C, Gantenbein P, Jaenig D, Kerskes H, Summer K, van Essen M, others (2008) Laboratory tests of chemical reactions and prototype sorption storage units, A report of IEA solar heating and cooling programme-Task 32Google Scholar
  84. 84.
    Zettl B, Englmair G, Steinmaurer G (2014) Development of a revolving drum reactor for open-sorption heat storage processes. Appl Therm Eng 70(1):42–49CrossRefGoogle Scholar
  85. 85.
    Finck C, Henquet E, van Soest C, Oversloot H, de Jong A-J, Cuypers R, Spijker H (2014) Experimental results of a 3 kwh thermochemical heat storage module for space heating application. Energy Procedia 48:320–326CrossRefGoogle Scholar
  86. 86.
    Johannes K, Kuznik F, Hubert J-L, Durier F, Obrecht C (2015) Design and characterisation of a high powered energy dense zeolite thermal energy storage system for buildings. Appl Energy 159:80–86CrossRefGoogle Scholar
  87. 87.
    Tatsidjodoung P, Pierres NL, Heintz J, Lagre D, Luo L, Durier F (2016) Experimental and numerical investigations of a zeolite 13X/water reactor for solar heat storage in buildings. Energy Convers Manag 108:488–500CrossRefGoogle Scholar
  88. 88.
    Yu N, Wang R, Wang L (2013) Sorption thermal storage for solar energy. Prog Energy Combust Sci 39(5):489–514CrossRefGoogle Scholar
  89. 89.
    Lass-Seyoum A, Borozdenko D, Friedrich T, Langhof T, Mack S (2016) Practical test on a closed sorption thermochemical storage system with solar thermal energy. Energy Procedia 91:182–189. Proceedings of the 4th international conference on solar heating and cooling for buildings and industry (SHC 2015)CrossRefGoogle Scholar
  90. 90.
    Schreiber H, Lanzerath F, Reinert C, Gruntgens C, Bardow A (2016) Heat lost or stored: experimental analysis of adsorption thermal energy storage. Appl Therm Eng 106:981–991CrossRefGoogle Scholar
  91. 91.
    Nunez T, Henning H-M, Mittelbach W (2003) High energy density heat storage system achievements and future work. In: Proceedings of the 9th international conference on thermal energy storage, Futurestock 2003, Warsaw, Poland, September 14, p unknownGoogle Scholar
  92. 92.
    Thullner K (2010) Low–energy buildings in Europe – standards, criteria and consequences, Tech. rep., University of LundsGoogle Scholar
  93. 93.
    The university of York, Chemical reactors (Mar. 2013)Google Scholar
  94. 94.
    Ng E-P, Mintova S (2008) Nanoporous materials with enhanced hydrophilicity and high water sorption capacity. Microporous Mesoporous Mater 114(13):1–26CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2018

Authors and Affiliations

  1. 1.Université de Lyon, INSA–Lyon, CETHIL UMR5008LyonFrance

Section editors and affiliations

  • Lingai Luo
    • 1
  1. 1.French National Center for Scientific ResearchLaboratoire de Thermocinétique de Nantes (LTN)Nantes Cedex,France

Personalised recommendations