Skip to main content

Remote Sensing Precipitation: Sensors, Retrievals, Validations, and Applications

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Observation and Measurement of Ecohydrological Processes

Part of the book series: Ecohydrology ((ECOH))

  • 700 Accesses

Abstract

Precipitation is one of the most important water cycle components. The chapter reviews modern instruments and techniques for global precipitation retrieval, including weather radars and satellites. Some of the most popular global multi-satellite precipitation products are introduced, including PERSIANN-CCS, TMPA, and IMERG. In addition, we extend to the typical regional and global studies about the assessment of various products and their application in flood detection and prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • R.F. Adler, A.J. Negri, A satellite infrared technique to estimate tropical convective and stratiform rainfall. J. Appl. Meteorol. 27, 30–51 (1988)

    Article  Google Scholar 

  • P.A. Arkin, The relationship between fractional coverage of high cloud and rainfall accumulations during GATE over the B-scale array. Mon. Weather Rev. 107(10), 1382–1387 (1979)

    Article  Google Scholar 

  • P.A. Arkin, B.N. Meisner, The relationship between large-scale convective rainfall and cold cloud over the western hemisphere during 1982–84. Mon. Weather Rev. 115, 51–74 (1987)

    Article  Google Scholar 

  • H. Ashouri, K.L. Hsu, S. Sorooshian, et al., PERSIANN-CDR: Daily precipitation climate data record from multisatellite observations for hydrological and climate studies. J. Bull. Am. Meteorol. Soc. 96(1), 69–83 (2015)

    Article  Google Scholar 

  • D. Atlas, Radar calibration: Some simple approaches. Bull. Am. Meteorol. Soc. 83(9), 1313 (2002)

    Article  Google Scholar 

  • D. Atlas, D. Rosenfeld, D.B. Wolff, Climatologically tuned reflectivity-rain rate relations and links to area-time integrals. J. Appl. Meteorol. 29, 1120–1135 (1990)

    Article  Google Scholar 

  • M. Ba, A. Gruber, GOES multispectral rainfall algorithm (GMSRA). J. Appl. Meteorol. 40, 1500–1514 (2001)

    Article  Google Scholar 

  • W.G.M. Bastiaanssen, H. Pelgrum, J. Wang, et al., A remote sensing surface energy balance algorithm for land (SEBAL): Part 2: Validation. J. Hydrol. 212, 213–229 (1998)

    Article  Google Scholar 

  • H.E. Beck et al., Global-scale evaluation of 23 precipitation datasets using gauge observations and hydrological modeling. Hydrol. Earth Syst. Sci. Discuss., 1–23 (2017)

    Google Scholar 

  • A. Behrangi et al., What does CloudSat reveal about global land precipitation detection by other spaceborne sensors? Water Resour. Res. 50(6), 4893–4905 (2014)

    Article  Google Scholar 

  • A. Berne, G. Delrieu, J.D. Creutin, C. Obled, et al., Temporal and spatial resolution of rainfall measurements required for urban hydrology. J. Hydrol. 299(3–4), 166–179 (2004)

    Article  Google Scholar 

  • L. Brown, A radar history of World War II. J. Am. Hist. Res. (1999)

    Google Scholar 

  • R. Buderi, The Invention that Changed the World: How a Small Group of Radar Pioneers Won the Second World War and Launched a Technological Revolution (Simon and Schuster, New York, 1996)

    Google Scholar 

  • R.S. Davis, Flash flood forecast and detection methods, in Severe Convective Storms, (American Meteorological Society, Boston, 2001), pp. 481–525

    Chapter  Google Scholar 

  • G. Delrieu, J. Nicol, E. Yates, et al., The catastrophic flash-flood event of 8–9 September 2002 in the Gard region, France: A first case study for the Cévennes–Vivarais Mediterranean Hydrometeorological Observatory. J. Hydrometeorol. 6(1), 34–52 (2005)

    Article  Google Scholar 

  • C.A. Doswell, H.E. Brooks, R.A. Maddox, Flash flood forecasting: An ingredients-based methodology. J. Weather Forecast. 11(4), 560–581 (1996)

    Article  Google Scholar 

  • R.J. Doviak, Doppler Radar and Weather Observations (Courier Corporation, Chelmsford, 1993)

    Google Scholar 

  • L.H.Z.P.N. Fang, H.S.Z.X.G. Runsheng, X. Bao, China operational weather radar data processing system. J. Appl. Meteorlol. 6, 014 (2002)

    Google Scholar 

  • F. Farbry, A. Bellon, M.R. Duncan, G.L. Austin, et al., High resolution rainfall measurements by radar for very small basins: The sampling problem reexamined. J. Hydrol. 161(1–4), 415–428 (1994)

    Article  Google Scholar 

  • R. Ferraro, G. Marks, The development of SSM/I rain-rate retrieval algorithms using ground-based radar measurements. J. Atmos. Ocean Technol. 12(4), 755–770 (1995)

    Article  Google Scholar 

  • R.L. Geiger, Research and Relevant Knowledge: American Research Universities Since World War II (Transaction Publishers, New Brunswick, 2008)

    Google Scholar 

  • K.P. Georgakakos, Real-time flash flood prediction. J. Geophys. Res. Atmos. 92(D8), 9615–9629 (1987)

    Article  Google Scholar 

  • C.G. Griffith, W.L. Woodley, P.G. Grube, D.W. Martin, J. Stout, D.N. Sikdar, Rain estimation from geosynchronous satellite imagery-visible and infrared studies. Mon.Weather Rev. 106, 1153–1171 (1978)

    Article  Google Scholar 

  • D. Harris, E. Foufoula-Georgiou, K. Droegemeier, et al., Multiscale statistical properties of a high-resolution precipitation forecast. J. Hydrometeorol. 2(4), 406–418 (2001)

    Article  Google Scholar 

  • W.H. Heiss, D.L. McGrew, D. Sirmans, et al., NEXRAD: Next generation weather radar (WSR-88D). J. Microwave 33(1), 79–89 (1990)

    Google Scholar 

  • Y. Hong, K.L. Hsu, S. Sorooshian, et al., Precipitation estimation from remotely sensed imagery using an artificial neural network cloud classification system. J. Appl. Meteorol. 43, 1834–1853 (2004)

    Article  Google Scholar 

  • Y. Hong, K. Hsu, S. Sorooshian, et al., Self-organizing nonlinear output (SONO): A neural network suitable for cloud patch–based rainfall estimation at small scales. Water Resour. Res. 41, 477–490 (2005)

    Google Scholar 

  • Y. Hong, D. Gochis, J. Cheng, et al., Evaluation of PERSIANN-CCS rainfall measurement using the NAME event rain gauge network. J. Hydrometeorol. 8, 469–482 (2007)

    Article  Google Scholar 

  • Y. Hong, S. Chen, X. Xue, G. Hodges, Global precipitation estimation and applications, in Multiscale Hydrologic Remote Sensing: Perspectives and Applications, (CRC Press, Boca Raton, 2012), pp. 371–386

    Chapter  Google Scholar 

  • Y. Hong, Y. Zhang, S. Khan, Hydrologic Remote Sensing: Capacity Building for Sustainability and Resilience CRC Press, (2016)

    Google Scholar 

  • A.Y. Hou, R.K. Kakar, S. Neeck, A.A. Azarbarzin, C.D. Kummerow, M. Kojima, … T. Iguchi, The global precipitation measurement mission. J. Am. Meteorol. Soc. 95(5), 701–722 (2014)

    Google Scholar 

  • K. Hsu, X. Gao, S. Sorooshian, H.V. Gupta, Precipitation estimation from remotely sensed information using artificial neural networks. J. Appl. Meteorol. 36, 1176–1190 (1997)

    Article  Google Scholar 

  • G.J. Huffman, D.T. Bolvin, E.J. Nelkin, D.B. Wolff, R.F. Adler, G. Gu, … E.F. Stocker, The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeorol. 8, 38–55 (2007)

    Google Scholar 

  • G.J. Huffman, R.F. Adler, D.T. Bolvin, E.J. Nelkin, The TRMM multi-satellite precipitation analysis (TMPA), in Satellite Rainfall Applications for Surface Hydrology, (Springer Netherlands, Dordrecht, 2010), pp. 3–22

    Chapter  Google Scholar 

  • G.J. Huffman, D.T. Bolvin, E.J. Nelkin, Integrated Multi-satellitE Retrievals for GPM (IMERG) Technical Documentation. NASA/GSFC Code 612, 47 pp. http://pmm.nasa.gov/sites/default/files/document_files/IMERG_doc.pdf (2015)

  • R.J. Joyce, J.E. Janowiak, P.A. Arkin, P. Xie, CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeorol. 5(3), 487–503 (2004)

    Article  Google Scholar 

  • G. Kan, G. Tang, Y. Yang, Y. Hong, J. Li, L. Ding, et al., An improved coupled routing and excess storage (CREST) distributed hydrological model and its verification in Ganjiang River basin, China. Water 9(11), 904 (2017)

    Article  Google Scholar 

  • I.S. Khan et al., Satellite remote sensing and hydrologic modeling for flood inundation mapping in Lake Victoria basin: Implications for hydrologic prediction in ungauged basins. IEEE Trans. Geosci. Remote Sens. 49, 85–95 (2011)

    Article  Google Scholar 

  • C. Kidd, G. Huffman, Global precipitation measurement. Meteorol. Appl. 18, 334–353 (2011)

    Article  Google Scholar 

  • D.B. Kirschbaum, G.J. Huffman, R.F. Adler, S. Braun, K. Garrett, E. Jones, et al., NASA’s remotely sensed precipitation: A reservoir for applications users. Bull. Am. Meteorol. Soc. 98(6), 1169–1184 (2017)

    Article  Google Scholar 

  • G.E. Klazura, D.A. Imy, A description of the initial set of analysis products available from the NEXRAD WSR-88D system. J. Am. Meteorol. Soc. 74(7), 1293–1311 (1993)

    Article  Google Scholar 

  • W.F. Krajewski, J.A. Smith, Radar hydrology: Rainfall estimation. J. Adv. Water Resour. 25(8–12), 1387–1394 (2002)

    Article  Google Scholar 

  • T. Kubota, S. Shige, H. Hashizume, K. Aonashi, N. Takahashi, S. Seto, … K. Iwanami. Global precipitation map using satellite-borne microwave radiometers by the GSMaP project: Production and validation. IEEE T. Geosci. Remote. 45(7), 2259–2275 (2007)

    Google Scholar 

  • C. Kummerow, W. Barnes, T. Kozu, et al., The tropical rainfall measuring mission (TRMM) sensor package. J. Atmos. Ocean. Technol. 15(3), 809–817 (1998)

    Article  Google Scholar 

  • C. Kummerow, Y. Hong, W. Olson, et al., The evolution of the Goddard Profiling Algorithm (GPROF) for rainfall estimation from passive microwave sensors. J. Appl. Meteorol. 40(11), 1801–1820 (2001)

    Article  Google Scholar 

  • L. Li, Y. Hong, J. Wang, et al., Evaluation of the real-time TRMM-based multi-satellite precipitation analysis for an operational flood prediction system in Nzoia Basin, Lake Victoria, Africa. J. Nat. Hazards 50(1), 109–123 (2009)

    Article  Google Scholar 

  • N. Li, G. Tang, P. Zhao, Y. Hong, Y. Gou, K. Yang, Statistical assessment and hydrological utility of the latest multi-satellite precipitation analysis IMERG in Ganjiang River basin. Atmos. Res. 183, 212–223 (2017)

    Article  Google Scholar 

  • L. Liang, C. Liu, Y.Q. Xu, et al., Real-time texture synthesis by patch-based sampling. J. ACM Trans. Graphics (ToG) 20(3), 127–150 (2001)

    Article  Google Scholar 

  • Y. Ma, G. Tang, D. Long, B. Yong, L. Zhong, W. Wan, Y. Hong, Similarity and error intercomparison of the GPM and its predecessor-TRMM multisatellite precipitation analysis using the best available hourly gauge network over the Tibetan plateau. Remote Sens. 8(7), 569 (2016)

    Article  Google Scholar 

  • J.S. Marshall, W.M.K. Palmer, The distribution of raindrops with size. J. Meteor. 5(4), 165–166 (1948)

    Article  Google Scholar 

  • C. Massari et al., An assessment of the performance of global rainfall estimates without ground-based observations. Hydrol. Earth Syst. Sci. 21(9), 4347–4361 (2017)

    Article  Google Scholar 

  • J. Morin, D. Rosenfeld, E. Amitai, et al., Radar rain field evaluation and possible use of its high temporal and spatial resolution for hydrological purposes. J. Hydrol. 172(1–4), 275–292 (1995)

    Article  Google Scholar 

  • E. Peral, S. Tanelli, Z. Haddad, et al., Raincube: A proposed constellation of precipitation profiling radars in CubeSat, in C. Geoscience and Remote Sensing Symposium (IGARSS), 2015 I.E. International, (IEEE, 2015), Milan, Italy, pp. 1261–1264

    Google Scholar 

  • R.E. Rinehart, Radar for Meteorologists (University of North Dakota, Office of the President, 1991). Grand Forks, North Dakota

    Google Scholar 

  • R.A. Scofield, R.J. Kuligowski, Status and outlook of operational satellite precipitation algorithms for extreme-precipitation events. Mon. Weather Rev. 18, 1037–1051 (2003)

    Google Scholar 

  • Y. Shen, A. Xiong, Validation and comparison of a new gauge-based precipitation analysis over mainland China. Int. J. Climatol. 36(1), 252–265 (2016)

    Article  CAS  Google Scholar 

  • X. Shen, Y. Hong, K. Zhang, Z. Hao, Refining a distributed linear reservoir routing method to improve performance of the CREST model. J. Hydrol. Eng. 22, 04016061 (2016)

    Article  Google Scholar 

  • A.I. Shiklomanov, R.B. Lammers, C.J. Vörösmarty, Widespread decline in hydrological monitoring threatens pan-arctic research. Eos, Trans. Am. Geophys. 83(2), 13–17 (2002)

    Article  Google Scholar 

  • J. Simpson, R.F. Adler, G.R. North, A proposed tropical rainfall measuring mission (TRMM) satellite. J. Am. Meteorol. Soc. 69(3), 278–295 (1988)

    Article  Google Scholar 

  • J.A. Smith, M.L. Baeck, K.L. Meierdiercks, et al., Radar rainfall estimation for flash flood forecasting in small urban watersheds. J. Adv. Water Resour. 30(10), 2087–2097 (2007)

    Article  Google Scholar 

  • T.M. Smith, V. Lakshmanan, G.J. Stumpf, et al., Multi-radar multi-sensor (MRMS) severe weather and aviation products: Initial operating capabilities. J. Am. Meteorol. Soc. 97(9), 1617–1630 (2016)

    Article  Google Scholar 

  • S. Sorooshian, K.L. Hsu, X. Gao, H.V. Gupta, B. Imam, D. Braithwaite, Evaluation of PERSIANN system satellite-based estimates of tropical rainfall. Bull. Am. Meteor. Soc. 81(9), 2035–2046 (2000)

    Article  Google Scholar 

  • E. Stokstad, Scarcity of rain, stream gages threatens forecasts. Science 285(5431), 1199–1200 (1999)

    Article  CAS  Google Scholar 

  • G. Tang, Y. Ma, D. Long, L. Zhong, Y. Hong, Evaluation of GPM Day-1 IMERG and TMPA Version-7 legacy products over mainland China at multiple spatiotemporal scales. J. Hydrol. 533, 152–167 (2016a)

    Article  Google Scholar 

  • G. Tang, D. Long, Y. Hong, Systematic anomalies over inland water bodies of High Mountain Asia in TRMM precipitation estimates: No longer a problem for the GPM era? IEEE Geosci. Remote Sens. 13, 1762 (2016b)

    Article  Google Scholar 

  • G. Tang, Z. Zeng, D. Long, X. Guo, B. Yong, W. Zhang, Y. Hong, Statistical and hydrological comparisons between TRMM and GPM Level-3 products over a Midlatitude Basin: Is Day-1 IMERG a good successor for TMPA 3B42V7? J. Hydrometeorol. 17(1), 121–137 (2016c)

    Article  Google Scholar 

  • G. Tang et al., Similarities and differences between three coexisting spaceborne radars in global rainfall and snowfall estimation. Water Resour. Res. 53(5), 3835–3853 (2017)

    Article  Google Scholar 

  • J. Vivekanandan, S.M. Ellis, R. Oye, et al., Cloud microphysics retrieval using S-band dual-polarization radar measurements. J. Am. Meteorol. Soc. 80(3), 381–388 (1990)

    Article  Google Scholar 

  • N. Wanders, M. Pan, E.F. Wood, Correction of real-time satellite precipitation with multi-sensor satellite observations of land surface variables. J. Remote Sens. Environ. 160, 206–221 (2015)

    Article  Google Scholar 

  • X. Wang, Incorporating ensemble covariance in the gridpoint statistical interpolation variational minimization: A mathematical framework. Mon. Weather Rev. 138(7), 2990–2995 (2010)

    Article  Google Scholar 

  • J. Wang, Y. Hong, L. Li, et al., The coupled routing and excess storage (CREST) distributed hydrological model. Hydrol. Sci. J. 56(1), 84–98 (2011)

    Article  Google Scholar 

  • X. Wang, D. Parrish, D. Kleist, et al., GSI 3DVar-based ensemble–variational hybrid data assimilation for NCEP global forecast system: Single-resolution experiment. Mon. Weather Rev. 141(11), 4098–4117 (2013)

    Article  Google Scholar 

  • F. Weng, L. Zhao, R. Ferraro, et al., Advanced microwave sounding unit cloud and precipitation algorithms. Radio Sci. 38(4), 8068 (2003)

    Article  Google Scholar 

  • T. Wilheit, A. Chang, L. Chiu, Retrieval of monthly rainfall indices from microwave radiometric measurements using probability distribution functions. J. Atmos. Ocean Technol. 8(1), 118–136 (1991)

    Article  Google Scholar 

  • H. Wu, R.F. Adler, Y. Tian, G.J. Huffman, et al., Real-time global flood estimation using satellite-based precipitation and a coupled land surface and routing model. Water Resour. Res. 50(3), 2693–2717 (2014)

    Article  Google Scholar 

  • L. Xu, X. Gao, S. Sorooshian, P.A. Arkin, A microwave infrared threshold technique to improve the GOES precipitation index. J. Appl. Meteorol. 38, 569–579 (1999)

    Article  Google Scholar 

  • B. Yong, L. Ren, Y. Hong, et al., First evaluation of the climatological calibration algorithm in the real-time TMPA precipitation estimates over two basins at high and low latitudes. J. Water Resour. Res. 49(5), 2461–2472 (2013)

    Article  Google Scholar 

  • B. Yong, B. Chen, J.J. Gourley, et al., Intercomparison of the Version-6 and Version-7 TMPA precipitation products over high and low latitudes basins with independent gauge networks: Is the newer version better in both real-time and post-real-time analysis for water resources and hydrologic extremes? J. Hydrol. 508, 77–87 (2014)

    Article  Google Scholar 

  • Z. Zeng, G. Tang, D. Long, et al., A cascading flash flood guidance system: development and application in Yunnan Province, China. Natural Hazards, 84(3), 2071–2093

    Google Scholar 

  • Y. Zhang, Y. Hong, X. Wang, et al., Hydrometeorological analysis and remote sensing of extremes: Was the July 2012 Beijing flood event detectable and predictable by global satellite observing and global weather modeling systems? J. Hydrol. 16(1), 381–395 (2015)

    Google Scholar 

Download references

Acknowledgment

This study was financially supported by the National Natural Science Foundation of China (Grant No. 71461010701), National Key Research and Development Program of China (2016YFE0102400), and National Natural Science Foundation of China (Grant No. 91437214).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Hong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Germany, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Hong, Y. et al. (2018). Remote Sensing Precipitation: Sensors, Retrievals, Validations, and Applications. In: Li, X., Vereecken, H. (eds) Observation and Measurement of Ecohydrological Processes. Ecohydrology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47871-4_4-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-47871-4_4-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-47871-4

  • Online ISBN: 978-3-662-47871-4

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Remote Sensing Precipitation: Sensors, Retrievals, Validations, and Applications
    Published:
    13 August 2018

    DOI: https://doi.org/10.1007/978-3-662-47871-4_4-2

  2. Original

    Remote Sensing Precipitation: Sensors, Retrievals, Validations, and Applications
    Published:
    06 April 2018

    DOI: https://doi.org/10.1007/978-3-662-47871-4_4-1