Skip to main content

Graphitic Carbon Powders for Polymer Applications

Encyclopedia of Polymers and Composites

Definition

Graphite is the most common allotrope of carbon and is characterized by good electrical, thermal, and lubricating properties. Graphite powders are suitable fillers to improve the conductivity and tribological properties of polymer composites.

Introduction

There is growing interest in polymer compounds for several applications in the frame of metal replacement in automotive and other industries. The advantages of plastic parts versus metal parts are reduced weight, lower cost, design flexibility, durability (low corrosion), and shorter production times. Depending on the final application, there are different requirements in terms of mechanical properties, thermal stability, and electrical and thermal conductivity. Such requirements can be fulfilled by appropriate choice of polymer and filler types.

Carbon-based fillers are promising candidates for multifunctional polymer compounds. Carbon is present in nature or can be synthetized in different forms. Well-known allotropes...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Acheson EG (1893). Production of artificial crystalline carbonaceous materials. The Carborundum Company. Monongehela. US492767

    Google Scholar 

  • Aldissi M (ed) (1993) Intrinsically conducting polymers: an emerging technology, vol 246, NATO ASI series. Springer, Dordrecht

    Google Scholar 

  • Al-Jabareen A, Al-Bustami H, Harel H, Marom G (2013) Improving the oxygen barrier properties of polyethylene terephthalate by graphite nanoplatelets. J Appl Polym Sci 128(3):1534–1539

    CAS  Google Scholar 

  • Cevallos JG, Bergles AE, Bar-Cohen A, Rodgers P, Gupta SK (2012) Polymer heat exchangers-history, opportunities, and challenges. Heat Transfer Eng 33(13):1075–1093

    Article  CAS  Google Scholar 

  • Choi S, Kim K, Nam J, Shim SE (2013) Synthesis of silica-coated graphite by enolization of polyvinylpyrrolidone and its thermal and electrical conductivity in polymer composites. Carbon 60:254–265

    Article  CAS  Google Scholar 

  • Debelak B, Lafdi K (2007) Use of exfoliated graphite filler to enhance polymer physical properties. Carbon 45(9):1727–1734

    Article  CAS  Google Scholar 

  • Ebadi-Dehaghani H, Nazempour M (2012) Chapter 23. Thermal conductivity of nanoparticles filled polymers. In: Hashim A (ed) Smart nanoparticles technology. InTech, pp 519–540

    Google Scholar 

  • Feret FR (1998) Determination of the crystallinity of calcined and graphitic cokes by X-ray diffraction. Analyst 123(4):595–600

    Article  CAS  Google Scholar 

  • Ferrari AC (2007) Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun 143(1–2):47–57

    Article  CAS  Google Scholar 

  • Franklin RE (1951) Crystallite growth in graphitizing and nongraphitizing carbons. Proc R Soc London Ser A 209:196–218

    Article  CAS  Google Scholar 

  • Fukushima H, Drzal LT, Rook BP, Rich MJ (2006) Thermal conductivity of exfoliated graphite nanocomposites. J Therm Anal Calorim 85(1):235–238

    Article  CAS  Google Scholar 

  • Gilardi R, Bonacchi D (2011) Improved carbon-based thermally conductive additive for polymers. High Perform. Plast. 2011, Int. Conf., 2nd: 10/11-10/18

    Google Scholar 

  • Gilardi R, Bonacchi D (2012) Thermally conductive compounds for geothermal pipes. Comp World:15–20

    Google Scholar 

  • Glenz W (2010) Rigid polystyrene foam (EPS, XPS). Kunststoffe International 10(2010):73–77

    Google Scholar 

  • Haddadi-Asl V, Mohammadi T (1996) Effect of processing methods and conditions on properties of conductive carbon-polyolefins composite. Iran Polym J 5(3):153–164

    CAS  Google Scholar 

  • Hana Z, Fina A (2011) Progr Polymer Sci 36:914–944

    Google Scholar 

  • Hauser RA, King JA, Pagel RM, Keith JM (2008) Effects of carbon fillers on the thermal conductivity of highly filled liquid-crystal polymer based resins. J Appl Polym Sci 109(4):2145–2155

    Article  CAS  Google Scholar 

  • Herold A, Petitjean D, Furdin G, Klatt M (1994) Exfoliation of graphite intercalation compounds: classification and discussion of the processes from new experimental data relative to graphite-acid compounds. Mater. Sci. Forum 152-153(Soft Chemistry Routes to New Materials):281–287

    Google Scholar 

  • Hess WM, Herd CR (1993) Chapter 3. Microstructure, morphology and general physical properties. In: Donnet J-B, Bansal RC, Wang M-J (eds) Carbon black – science and technology, 2nd edn. CRC Taylor & Fancis, Boca Raton/London/New York, pp 89–173

    Google Scholar 

  • Kandanur SS, Rafiee MA, Yavari F, Schrameyer M, Yu Z-Z, Blanchet TA, Koratkar N (2012) Suppression of wear in graphene polymer composites. Carbon 50(9):3178–3183

    Article  CAS  Google Scholar 

  • Lee JH, Jang YK, Hong CE, Kim NH, Li P, Lee HK (2009) Effect of carbon fillers on properties of polymer composite bipolar plates of fuel cells. J Power Sources 193(2):523–529

    Article  CAS  Google Scholar 

  • Li B, Zhong W-H (2011) Review on polymer/graphite nanoplatelet nanocomposites. J Mater Sci 46(17):5595–5614

    Article  CAS  Google Scholar 

  • Spahr ME (2010) Carbon conductive additives for lithium-ion batteries. In: Masaki Yoshio M, Brodd RJ, Kozawa A (eds) Lithium-ion batteries: science and technologies. Springer, New York, pp 117–154

    Google Scholar 

  • Tekce HS, Kumlutas D, Tavman IH (2007) Effect of particle shape on thermal conductivity of copper reinforced polymer composites. J Reinf Plast Compos 26(1):113–121

    Article  CAS  Google Scholar 

  • Thompson MS, Agarwal S, Mukhopadhyay P, Gupta RK (2013) Diffusion through polymers containing platelike nanomaterials. In: Graphite, graphene, their polym. Nanocompos. CRC Press, Boca Raton, pp 467–494

    Google Scholar 

  • Tuinstra F, Koenig JL (1970) Raman spectrum of graphite. J Chem Phys 53(3):1126–1130

    Article  CAS  Google Scholar 

  • Wang Q, Gao J, Wang R, Hua Z (2001) Mechanical and rheological properties of HDPE/graphite composite with enhanced thermal conductivity. Polym Compos 22(1):97–103

    Article  Google Scholar 

  • Wypych G (2009) Handbook of fillers. ChemTec Publishing, Toronto

    Google Scholar 

  • Xian G, Zhang Z (2005) Sliding wear of polyetherimide matrix composites. Part 2. Influence of graphite flakes. Wear 258(5–6):783–788

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raffaele Gilardi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Gilardi, R., Bonacchi, D., Spahr, M.E. (2015). Graphitic Carbon Powders for Polymer Applications. In: Palsule, S. (eds) Encyclopedia of Polymers and Composites. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37179-0_33-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37179-0_33-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-37179-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Graphitic Carbon Powders for Polymer Applications
    Published:
    22 April 2016

    DOI: https://doi.org/10.1007/978-3-642-37179-0_33-3

  2. Graphitic Carbon Powders for Polymer Applications
    Published:
    20 June 2015

    DOI: https://doi.org/10.1007/978-3-642-37179-0_33-2

  3. Original

    Graphitic Carbon Powders for Polymer Applications
    Published:
    30 April 2015

    DOI: https://doi.org/10.1007/978-3-642-37179-0_33-1