Skip to main content

Principles of Analytical Chemistry for Toxicology

  • Reference work entry
  • First Online:
Regulatory Toxicology

Abstract

In the first section, an historical summary of analytical chemistry is presented. In ancient history, one function of an analytical chemist was to confirm the identity of noble metals, especially gold. In later times, important inventions and their discoverer were named. Now, in the twenty-first century, analytical chemistry is an interdisciplinary scientific field.

Next, the aim and means of analytical chemistry are discussed. For analytical tasks, the chemist has over 6,000 experimental procedures (including subspecifications) available. The most important procedures are summarized. Moreover analytical problems, such as analyte(s) from complex matrixes, and the necessary purification as well as determination steps are discussed. Quantification measures, such as parts per trillion, are considered. The three analytical phases (pre-analysis, analysis, post-analysis) are presented, and recently developed analytical procedures such as “Lab on a chip” and the “omics” sciences are introduced.

In the section “Pre-analysis” different techniques of sample preparation prior to analytical measurement are described. Apart from classic methods, such as crushing and homogenization, extraction techniques such as solid-phase extraction, liquid-liquid extraction, and solid-phase microextraction are reviewed.

The analytical section is divided into three parts, plus subparts: (i) separation techniques are presented followed by (ii) atomic spectroscopy and (iii) selective analytical chemistry. Each (sub)part begins with a short historical overview. For separation techniques, first the principles of chromatography are described followed by the principles of electrophoresis and capillary electrophoresis. The chromatographic and atomic spectroscopy classifications and techniques are not presented in isolation, as in many analytical textbooks. They are described along with associated coupled techniques.

Such coupled techniques are liquid chromatography (LC), gas chromatography (GC), thin-layer chromatography, and ion-exchange chromatography (IEC). LC is often coupled with mass spectrometry (MS, including different ionization techniques such as Thermospray, Fast Atom Bombardment, Particle Beam) or matrix-assisted laser desorption/ionization time-of flight-mass spectrometry (MALDI-TOF-MS). GC is also often coupled with MS. Moreover, derivatization techniques and Headspace GC are presented.

In the case of atomic spectroscopy, atomic absorption spectroscopy (AAS) and inductively coupled plasma mass spectrometry (ICP-MS) are presented in more detail. In the section “selective analytical chemistry,” sensor techniques with ion-selective electrodes and the principles of immunoassays are described. These techniques are primarily for routine and fast analysis of known components in a sample. In most cases the sample preparation steps are easy and rapid compared to, say, the sample preparation steps for gas chromatography.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aggarwal SK (2010) Inductively coupled plasma mass spectrometry for trace analysis. In: Lahiri S (ed) Advanced trace analysis, 1st edn. Alpha Science International, Oxford, pp 71–92

    Google Scholar 

  • Ataman OY (2008) Vapor generation and atom traps: atomic absorption spectrometry at the ng/L level. Spectrochim Acta, Part B 63B(8):825–834

    Article  CAS  Google Scholar 

  • Bele AA, Khale A (2011) An overview on thin layer chromatography. Int J Pharm Sci Res 2(2):256–267

    CAS  Google Scholar 

  • Bings NH, Bogaerts A, Broekaert JAC (2010) Atomic spectroscopy: a review. Anal Chem (Washington, DC, United States) 82(12):4653–4681

    Article  CAS  Google Scholar 

  • Bobleter O (1990) Professor Erika Cremer – a pioneer in gas chromatography. Chromatographia 30(9):471–476

    Article  Google Scholar 

  • Botitsi HV, Garbis SD, Economou A, Tsipi DF (2011) Current mass spectrometry strategies for the analysis of pesticides and their metabolites in food and water matrices. Mass Spectrom Rev 30(5):907–939

    CAS  Google Scholar 

  • Burns DT (1975) One hundred years of atomic spectroscopy, 1874–1974. Proc Anal Div Chem Soc 12(5):155–158

    Article  CAS  Google Scholar 

  • Butler OT, Cairns WRL, Cook JM, Davidson CM (2010) Atomic spectrometry update. Environmental analysis. J Anal At Spectrom 25(2):103–141

    Article  CAS  Google Scholar 

  • Camel V (2003) Solid-phase extraction. Compr Anal Chem 41:393–457

    Article  CAS  Google Scholar 

  • Chan CPY, Cheung YC, Renneberg R, Seydack M (2008) New trends in immunoassays. Adv Biochem Eng Biotechnol 109:123–154 (Biosensing for the 21st Century)

    CAS  PubMed  Google Scholar 

  • Chen Y, Pawliszyn J (2007) Theory of solid phase microextraction and its application in passive sampling. Compre Anal Chem 48:3–32

    Article  CAS  Google Scholar 

  • Christopher P, Robinson N, Shaw MK (2005) Antibody-label conjugates in lateral-flow assays. In: Wong RC (ed) Drugs of abuse, 1st edn. Springer, Heidelberg, pp 87–98

    Chapter  Google Scholar 

  • Deisingh AK, Thompson M (2004) Biosensors for the detection of bacteria. Can J Microbiol 50(2):69–77

    Article  CAS  PubMed  Google Scholar 

  • Duan C, Shen Z, Wu D, Guan Y (2011) Recent developments in solid-phase microextraction for on-site sampling and sample preparation. Trends Anal Chem 30(10):1568–1574

    Article  CAS  Google Scholar 

  • Durner J (2010) Clinical chemistry: challenges for analytical chemistry and the nanosciences from medicine. Angew Chem Int Ed Engl 49(6):1026–1051

    Article  CAS  PubMed  Google Scholar 

  • Farré M, Barceló D (2009) Biosensors for aquatic toxicology evaluation biosensors for environmental monitoring of aquatic systems. In: Barceló D, Hansen P-D (eds) Biosensors for environmental monitoring of aquatic systems: bioanalytical and chemical methods for endocrine disruptors. Springer, Berlin/Heidelberg, pp 115–160.

    Chapter  Google Scholar 

  • Fresenius CR (1866) Anleitung zur qualitativen chemischen analyse, 12th edn. Vieweg u. Sohn, Braunschweig

    Google Scholar 

  • Furr HC (2004) Analysis of retinoids and carotenoids: problems resolved and unsolved. J Nutr 134(1):281S–285S

    CAS  PubMed  Google Scholar 

  • Gergov M (2008) Forensic screening with liquid chromatography-mass spectrometry. In: Roger S, Bogusz MJ (eds) Forensic science. Elsevier, Amsterdam, pp 491–511

    Chapter  Google Scholar 

  • Gey MH (2008) Instrumentelle analytik und bioanalytik, 2nd edn. Springer, Berlin/Heidelberg

    Google Scholar 

  • Gianotti V, Polati S, Gosetti F, Gennaro MC (2011) HPLC in environmental analysis. Chromatogr Sci Ser 101:535–559 (Handbook of HPLC)

    Article  CAS  Google Scholar 

  • Gross J (2011) Mass spectrometry: a textbook, 2nd edn. Springer, Heidelberg

    Book  Google Scholar 

  • Gruendler P (2007) Chemical sensors: an introductrion for scientists and engineers, 1st edn. Springer, Heidelberg

    Google Scholar 

  • Guiochon G, Trapp O (2000) Basic principles of chromatography. In: Wiley-VCH (ed) Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  • Halket JM, Zaikin VG (2006) Derivatization in mass spectrometry-7. On-line derivatization/degradation. Eur J Mass Spectrom 12(1):1–13

    Article  CAS  Google Scholar 

  • Harrington CF, Vidler DS, Jenkins RO (2010) Analysis of organometal(loid) compounds in environmental and biological samples. Met Ions Life Sci 7:33–69

    Article  CAS  PubMed  Google Scholar 

  • Hennion MC (2000) Sample handling strategies for the analysis of organic compounds in environmental water samples. Tech Instrum Anal Chem (Sample Handl Trace Anal Pollut) 21:3–71

    Article  CAS  Google Scholar 

  • Hii TM, Lee HK (2010) Liquid-liquid extraction in environmental analysis. In: Pawliszyn J, Heather L (eds) Handbook of sample preparation, 1st edn. Wiley, Hoboken, pp 39–51

    Google Scholar 

  • Hywel Evans E, Palmer CD, Smith CMM (2012) Atomic spectrometry update. Advances in atomic spectrometry and related techniques. J Anal At Spectrom 27(6):909–927

    Article  CAS  Google Scholar 

  • Inamuddin M, Luqman M (2012a) Ion exchange technology I, 1st edn. Springer, Heidelberg

    Book  Google Scholar 

  • Inamuddin M, Luqman M (2012b) Ion exchange technology II, 1st edn. Springer, Heidelberg

    Book  Google Scholar 

  • Kafka AP, Kleffmann T, Rades T, McDowell A (2011) The application of MALDI TOF MS in biopharmaceutical research. Int J Pharm 417(1–2):70–82

    Article  CAS  PubMed  Google Scholar 

  • Karabegov MA (2011) New developments in atomic absorption spectrometry. Meas Tech 53(10):1174–1181

    Article  CAS  Google Scholar 

  • Karas M, Hillenkamp F (1988) Laser desorption ionization of proteins with molecular masses exceeding 10,000 Daltons. Anal Chem 60(20):2299–2301

    Article  CAS  PubMed  Google Scholar 

  • Karlsson E, Hirsh I (2011) Ion exchange chromatography. Methods Biochem Anal (Protein Purif) 54:93–133

    Article  CAS  Google Scholar 

  • Kaushal R, Kaur N, Upadhyay A, Suri OP, Thakkar A (2011) High performance liquid chromatography detectors – a review. Int Res J Pharm 2(5):1–7

    CAS  Google Scholar 

  • Kumar SA, Udas A, Ramanamurthy M (2009) Atomic absorption, emission and mass quantification in the elemental characterization of materials. Mater Sci Found 49–51:301–338

    Google Scholar 

  • Li L, Mu Q, Zhang B, Yan B (2010) Analytical strategies for detecting nanoparticle-protein interactions. Analyst (Cambridge, United Kingdom) 135(7):1519–1530

    Article  CAS  Google Scholar 

  • Liska I (2000) Fifty years of solid-phase extraction in water analysis–historical development and overview. J Chromatogr A 885(1–2):3–16

    Article  CAS  PubMed  Google Scholar 

  • Majors RE (2010) Solid-phase extraction. In: Pawliszyn J, Heather L (eds) Handbook of sample preparation. 1st edn. Wiley, Hoboken, Ltd, pp 53–79

    Google Scholar 

  • Mamyrin BA (1994) Laser assisted reflectron time-of-flight mass spectrometry. Int J Mass Spectrom Ion Process 131:1–19

    Article  CAS  Google Scholar 

  • Maurer HH (2010) Analytical toxicology. EXS 100:317–337

    CAS  PubMed  Google Scholar 

  • McConvey IF, Nancarrow P (2011) Liquid-liquid extraction for process development in the pharmaceutical industry. RSC Drug Discov Ser (Pharm Process Dev) 9:209–237

    Article  CAS  Google Scholar 

  • Meyer V (2010) Practical high-performance liquid chromatography, 5th edn. Wiley, Hoboken

    Book  Google Scholar 

  • Miller JM (2009) Chromatography. In: Andrews DL (ed) Encyclopedia of applied spectroscopy. 1st edn. Wiley, Hoboken, pp 1055–1102

    Google Scholar 

  • Milroy CS, Stevenson PG, Mnatasakyan M, Shalliker RA (2012) Multidimensional high-performance liquid chromatography. Chromatogr Sci Ser (Hyphenated Altern Methods Detect Chromatogr) 104:251–285

    CAS  Google Scholar 

  • Moody DE (2006) Immunoassays in forensic toxicology. In: Mayers RA (ed) Encyclopedia of analytical chemistry. Wiley, Hoboken

    Google Scholar 

  • Nelms S (2005) Inductively coupled plasma mass spectrometry handbook, 1st edn. Wiley-VCH, Weinheim

    Book  Google Scholar 

  • Oeth P, del Mistro G, Marnellos G, Shi T, van den Boom D (2009) Qualitative and quantitative genotyping using single base primer extension coupled with matrix-assisted laser desorption/ionization time-of-fight mass spectrometry (MassARRAY). Methods Mol Biol (Totowa, NJ, United States) (Single Nucleotide Polymorph) 578:307–343

    CAS  Google Scholar 

  • O’Kane MJ, Lynch PLM, McGowan N (2008) The development of a system for the reporting, classification and grading of quality failures in the clinical biochemistry laboratory. Ann Clin Biochem 45(2):129–134

    Article  PubMed  Google Scholar 

  • Ostwald W (1894) Die wissenschaftlichen Grundlagen der analytischen Chemie. Verlag Wilhelm Engelmann, Leipzig

    Google Scholar 

  • Palchetti I, Mascini M (2008) Electroanalytical biosensors and their potential for food pathogen and toxin detection. Anal Bioanal Chem 391(2):455–471

    Article  CAS  PubMed  Google Scholar 

  • Parmar KD, Patel NM, Patel PM (2011) A review: impurity profile study. J Pharm Res 4(8):2566–2569

    CAS  Google Scholar 

  • Pascali JP, Bortolotti F, Tagliaro F (2012) Recent advances in the application of CE to forensic sciences, an update over years 2009–2011. Electrophoresis 33(1):117–126

    Article  CAS  PubMed  Google Scholar 

  • Pawliszyn J (1997) Solid phase microextraction theory and practice, 1st edn. Wiley, Weinheim

    Google Scholar 

  • Persoon TJ, Zaleski S, Frerichs J (2006) Improving preanalytic processes using the principles of lean production (Toyota production system). Am J Clin Pathol 125(1):16–25

    Article  PubMed  Google Scholar 

  • Peters FT, Remane D (2012) Aspects of matrix effects in applications of liquid chromatography-mass spectrometry to forensic and clinical toxicology – a review. Anal Bioanal Chem 403(8):2155–2172

    Article  CAS  PubMed  Google Scholar 

  • Pfaff CH (1821) Handbuch der analytischen chemie für chemiker, staatsärzte, apotheker, oekonomen und bergwerks kundige. J. F. Hammrich, Altona

    Google Scholar 

  • Pfaff CH (1822) Handbuch der analytischen chemie für chemiker, staatsärzte, apotheker, oekonomen und bergwerks kundige. J. F. Hammrich, Altona

    Google Scholar 

  • Polettini A (2011) HPLC in forensic sciences. Chromatogr Sci Ser 101:661–682 (Handbook of HPLC)

    Article  CAS  Google Scholar 

  • Posthuma-Trumpie GA, Korf J, van Amerongen A (2009) Lateral flow (immuno)assay: its strengths, weaknesses, opportunities and threats. A literature survey. Anal Bioanal Chem 393(2):569–582

    Article  CAS  PubMed  Google Scholar 

  • Reuss FF (1809) Charge induced flow. Proc Imp Soc Natural Moscow 3:327–344

    Google Scholar 

  • Risticevic S, Niri VH, Vuckovic D, Pawliszyn J (2009) Recent developments in solid-phase microextraction. Anal Bioanal Chem 393(3):781–795

    Article  CAS  PubMed  Google Scholar 

  • Risticevic S, Vuckovic D, Pawliszyn J (2010) Solid-phase microextraction. In: Pawliszyn J, Heather L (eds) Handbook of sample preparation. 1st edn. Wiley, Hoboken, pp 81–101

    Google Scholar 

  • Rosenfeld J (2010) Chemical derivatizations in analytical extractions. In: Pawliszyn J, Heather L (eds) Handbook of sample preparation. 1st edn. Hoboken: John Wiley & Sons, Ltd, pp 225–245

    Google Scholar 

  • Roux A, Lison D, Junot C, Heilier J-F (2011) Applications of liquid chromatography coupled to mass spectrometry-based metabolomics in clinical chemistry and toxicology: a review. Clin Biochem 44(1):119–135

    Article  CAS  PubMed  Google Scholar 

  • Saleem TSM, Reddy AE (2011) Omic technologies: an overview. BioChem: An Indian J 5(3):145–150

    CAS  Google Scholar 

  • Schneider MV, Orchard S (2011) Omics technologies, data and bioinformatics principles. Methods Mol Biol (New York, NY, United States) (Bioinforma Omics Data) 719:3–30

    CAS  Google Scholar 

  • Seng P, Rolain J-M, Fournier PE, La Scola B, Drancourt M, Raoult D (2010) MALDI-TOF-mass spectrometry applications in clinical microbiology. Future Microbiol 5(11):1733–1754

    Article  CAS  PubMed  Google Scholar 

  • Shephard GS, Berthiller F, Burdaspal P, Crews C, Jonker MA, Krska R et al (2011) Developments in mycotoxin analysis: an update for 2009–2010. World Mycotoxin J 4(1):3–28

    Article  CAS  Google Scholar 

  • Shewiyo DH, Kaale E, Risha PG, Dejaegher B, Smeyers-Verbeke J, Vander HY (2012) HPTLC methods to assay active ingredients in pharmaceutical formulations: a review of the method development and validation steps. J Pharm Biomed Anal 66:11–23

    Article  CAS  PubMed  Google Scholar 

  • Shi L, Wang X, Liu Y, Lu Y (2010) Research progress on immunoassays for food allergen. Fenxi Ceshi Xuebao 29(9):981–986

    CAS  Google Scholar 

  • Silvestre CIC, Santos JLM, Lima JLFC, Zagatto EAG (2009) Liquid-liquid extraction in flow analysis: a critical review. Anal Chim Acta 652(1–2):54–65

    Article  CAS  PubMed  Google Scholar 

  • Simpson SL Jr, Quirino JP, Terabe S (2008) On-line sample preconcentration in capillary electrophoresis. Fundamentals and applications. J Chromatogr A 1184(1–2):504–541

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Singhal Naveen K, Srivastava G, Singh MP (2010) Omics in mechanistic and predictive toxicology. Toxicol Mech Methods 20(7):355–362

    Article  CAS  PubMed  Google Scholar 

  • Skoog D, Holler F, Crouch S (2006) Principles of instrumental analysis, 6th edn. Brooks Cole, Canada

    Google Scholar 

  • Smith SA, Smith RW, Xia Y, Ouyang Z (2011) Introduction to mass spectrometry. In: Pramanik B, Lee MS, Chen G (eds) Characterization of impurities and degradants using mass spectrometry. 1st edn. Wiley, Hoboken, pp 3–57

    Google Scholar 

  • Soederholm SL, Damm M, Kappe CO (2010) Microwave-assisted derivatization procedures for gas chromatography/mass spectrometry analysis. Mol Divers 14(4):869–888

    Article  CAS  Google Scholar 

  • Song SM, Marriott PJ (2012) Analytical aspects of modern gas chromatography: mass spectrometry. Chromatogr Sci Ser (Hyphenated Altern Methods Detect Chromatogr) 104:31–59

    CAS  Google Scholar 

  • Spangenberg B, Poole CF, Weins C (2011) Quantitative thin-layer chromatography, 1st edn. Springer, Heidelberg

    Book  Google Scholar 

  • Suter-Dick L, Singer T (2008) Methods in toxicology: omics in toxicology. In: Greim H, Synder R (eds) Toxicology and risk assessment: a comprehensive introduction, 1st edn. Wiley, England, pp 437–449

    Google Scholar 

  • Szabadvary F (1966) Geschichte der analytischen chemie. Vieweg und Sohn, Braunschweig

    Google Scholar 

  • Tanaka K, Waki H, Ido Y, Akita S, Yoshida Y, Yoshida T et al (1988) Protein and polymer analyses up to m/z 100 000 by laser ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 2(8):151–153

    Article  CAS  Google Scholar 

  • Tayler RJ (1995) Helium in the universe. Contemp Phys 36(1):37–48

    Article  CAS  Google Scholar 

  • Tedder DW (2009) Liquid-liquid extraction. In: Albright LF (ed) Albright’s chemical engineering handbook. 1st edn. New York: CRC Press, pp 709–735

    Google Scholar 

  • Testard F, Zemb T, Bauduin P, Berthon L (2010) Third-phase formation in liquid/liquid extraction: a colloidal approach. Ion Exch Solvent Extract 19:381–428

    CAS  Google Scholar 

  • Thomsen V (2006) A timeline of atomic spectroscopy. Spectroscopy (Duluth, MN, United States) 21(10):32–42

    Google Scholar 

  • Tölg G, Günzler H, Williams A (2000) Analytical chemistry: purpose and procedures. In: Wiley-VCH (ed) Ullmann's encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  • Trietsch SJ, Hankemeier T, van der Linden HJ (2011) Lab-on-a-chip technologies for massive parallel data generation in the life sciences: a review. Chemom Intell Lab Syst 108(1):64–75

    Article  CAS  Google Scholar 

  • Turdean GL (2011) Design and development of biosensors for the detection of heavy metal toxicity. Int J Electrochem

    Google Scholar 

  • Tuzimski T (2011) Application of different modes of thin-layer chromatography and mass spectrometry for the separation and detection of large and small biomolecules. J Chromatogr A 1218(49):8799–8812

    Article  CAS  PubMed  Google Scholar 

  • Vestal ML (2009) Modern MALDI time-of-flight mass spectrometry. J Mass Spectrom 44(3):303–317

    Article  CAS  PubMed  Google Scholar 

  • Volke K (2004) Zu den anfängen der analytischen chemie: wider fälscher und betrüger. Chem unserer Zeit 38(4):268–275

    Article  CAS  Google Scholar 

  • Vuckovic D, Zhang X, Cudjoe E, Pawliszyn J (2010) Solid-phase microextraction in bioanalysis: New devices and directions. J Chromatogr A 1217(25):4041–4060

    Article  CAS  PubMed  Google Scholar 

  • Watson JT, Sparkman OD (2008) Gas chromatography/mass spectrometry. In: Watson JT, Sparkman OD (eds) introduction to mass spectrometry: instrumentation, applications and strategies for data interpretation, 4th edn. Wiley, Hoboken, pp 571–638

    Google Scholar 

  • Welz B, Sperling M (2007) Atomic absorption spectrometry. Wiley-VCH, Weinheim

    Google Scholar 

  • Welz B, Becker-Ross H, Florek S, Heitmann U (2005) High-resolution continuum source AAS, 1st edn. Wiley-VCH, Weinheim

    Book  Google Scholar 

  • Yehya HG, Wael B (2010) Lab-on-a-chip: techniques, circuits, and biomedical applications, 1st edn. Artech House, Bosten/London

    Google Scholar 

  • Zwir-Ferenc A, Biziuk M (2006) Solid phase extraction technique – trends, opportunities and applications. Pol J Environ Stud 15(5):677–690

    CAS  Google Scholar 

Download references

Acknowledgement

DCW gratefully acknowledges the support of the Alexander von Humboldt Foundation (Bonn, Germany) through provision of a Humboldt Research Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Durner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Durner, J., Watts, D.C. (2014). Principles of Analytical Chemistry for Toxicology. In: Reichl, FX., Schwenk, M. (eds) Regulatory Toxicology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35374-1_91

Download citation

Publish with us

Policies and ethics