Skip to main content

Rayleigh and Mie Scattering

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Encyclopedia of Color Science and Technology

Synonyms

Elastic light scattering; Elastic scattering; Lorenz-Mie theory; Lorenz-Mie-Debye theory; Mie solution; Mie theory

Definitions

Rayleigh scattering refers primarily to the elastic scattering of light from atomic and molecular particles whose diameter is less than about one-tenth the wavelength of the incident light.

Rayleigh line refers to the unshifted central peak observed in the spectroscopic analysis of scattered light.

Mie scattering refers primarily to the elastic scattering of light from atomic and molecular particles whose diameter is larger than about the wavelength of the incident light.

Thomson scattering is elastic scattering of light from free electrons.

Raman scattering is inelastic scattering of light from objects whereby the scattered photon has a lower (Raman Stokes scattering) or higher (Raman anti-Stokes scattering) energy than the incident photon.

Introduction

From ancient times, people have gazed up at the sky in daylight and asked the perennial question...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Lilienfeld, P.: A blue sky history. Opt. Photon. News. 15(6), 32–39 (2004). https://doi.org/10.1364/OPN.15.6.000032

    Article  Google Scholar 

  2. Strutt, J.W.: On the light from the sky, its polarization and colour. Philos. Mag. Ser. 4(41), 107–120 (1871a)

    Article  Google Scholar 

  3. Strutt, J.W.: On the light from the sky, its polarization and colour. Philos. Mag. Ser. 4(41), 274–279 (1871b)

    Article  Google Scholar 

  4. Strutt, J.W.: On the scattering of light by small particles. Philos Mag. Ser. 4(41), 447–454 (1871c)

    Article  Google Scholar 

  5. Strutt, J.W.: On the transmission of light through an atmosphere containing small particles in suspension, and on the origin of the blue of the sky. Philos. Mag. Ser. 5(47), 375–384 (1899)

    Google Scholar 

  6. Mie, G.: Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann. Phys. 330(3), 377–445 (1908)

    Article  Google Scholar 

  7. Young, A.T.: Rayleigh scattering. Phys. Today. 35(1), 42–48 (1982)

    Article  ADS  Google Scholar 

  8. Twersky, V.: Rayleigh scattering. Appl. Opt. 3, 1150–1162 (1964)

    Article  ADS  Google Scholar 

  9. Hergert, W., Wriedt, T.: The Mie Theory. Springer, Berlin (2012). https://doi.org/10.1007/978-3-642-28738-1_2

    Book  MATH  Google Scholar 

  10. Cox, A.J., DeWeerd, A.J., Linden, J.: An experiment to measure Mie and Rayleigh total scattering cross sections. Am. J. Phys. 70, 620–625 (2002)

    Article  ADS  Google Scholar 

  11. Hayes, W., Loudon, R.: Scattering of Light by Crystals, p. 2. Wiley-Interscience, New York (1978)

    Google Scholar 

  12. Bohren, C.F., Huffman, D.R.: Absorption and Scattering of Light by Small Particles. Wiley-Interscience, New York (1983)

    Google Scholar 

  13. Wallace, J.M., Hobbs, P.V.: Atmospheric Science: An Introductory Survey. Academic, Orlando (1977)

    Google Scholar 

  14. Placzek, G.: The Rayleigh and Raman scattering. In: Marx, E. (ed.) Handbuch der Radiologie Part 2, vol. 6, pp. 209–374. Akademische Verlagsgesellschaft, Leipzig (1934)

    Google Scholar 

  15. Loudon, R.: The Quantum Theory of Light. Oxford University Press, London (1973). Chapt. 11

    MATH  Google Scholar 

  16. Gavrila, M.: Elastic scattering of photons by a hydrogen atom. Phys. Rev. 163, 147–155 (1967)

    Article  ADS  Google Scholar 

  17. Cabannes, J.: Sur la diffusion de la lumière par l’air. C. R. Acad. Sci. 160, 62–63 (1915)

    Google Scholar 

  18. Stone, J.: Measurement of Rayleigh scattering in liquids using optical fibers. Appl. Opt. 12, 1824–1827 (1973). https://doi.org/10.1364/AO.12.001824

    Article  ADS  Google Scholar 

  19. Miles, R.B., Lempert, W.R., Forkey, J.N.: Laser Rayleigh scattering. Meas. Sci. Technol. 12, R33–R51 (2001)

    Article  ADS  Google Scholar 

  20. Lines, M.E.: Scattering losses in optic fiber materials. I. A new parameterization. J. Appl. Phys. 55, 4052–4057 (1984). https://doi.org/10.1063/1.332994

    Article  ADS  Google Scholar 

  21. Gorodetsky, M.L., Pryamikov, A.D., Ilchenko, V.S.: Rayleigh scattering in high-Q microspheres. J. Opt. Soc. B. 17, 1051–1057 (2000)

    Article  ADS  Google Scholar 

  22. Tzara, C., Barloutaud, R.: Recoilless Rayleigh scattering in solids. Phys. Rev. Lett. 4, 405–406 (1960) and “Erratum” 539

    Article  ADS  Google Scholar 

  23. Svensson, T., Shen, Z.: Laser spectroscopy of gas confined in nanoporous materials. Appl. Phys. Lett. 96, 021107 (2010)

    Article  ADS  Google Scholar 

  24. Hoffman, K.R., Yen, W.M., Lockwood, D.J., Sulewski, P.E.: Birefringence-induced vibrational Raman and Rayleigh optical activity in uniaxial crystals. Phys. Rev. B. 49, 182 (1994)

    Article  ADS  Google Scholar 

  25. Tsai, M.C., Tsai, T.L., Shieh, D.B., Chiu, H.T., Lee, C.Y.: Detecting HER2 on cancer cells by TiO2 spheres Mie scattering. Anal. Chem. 81(18), 7590–7596 (2009). https://doi.org/10.1021/ac900916s

    Article  Google Scholar 

  26. Wang, M., Cao, M., Guo, Z.R., Gu, N.: Generalized multiparticle Mie modeling of light scattering by cells. Chin. Sci. Bull. 58(21), 2663–2666 (2013)

    Article  Google Scholar 

  27. Gompf, B., Pecha, R.: Mie scattering from a sonoluminescing bubble with high spatial and temporal resolution. Phys. Rev. E. 61(5), 5253–5256 (2000)

    Article  ADS  Google Scholar 

  28. Lechner, M.D.: Influence of Mie scattering on nanoparticles with different particle sizes and shapes: photometry and analytical ultracentrifugation with absorption optics. J. Serb. Chem. Soc. 70(3), 361–369 (2005)

    Article  Google Scholar 

  29. Brar, S.K., Verma, M.: Measurement of nanoparticles by light-scattering techniques. Trends Anal. Chem. 30(1), 4–17 (2011)

    Article  Google Scholar 

  30. Lindner, H., Fritz, G., Glatter, O.: Measurements on concentrated oil in water emulsions using static light scattering. J. Colloid Interface Sci. 242, 239–246 (2001)

    Article  ADS  Google Scholar 

  31. Serebrennikova, Y.M., Patel, J., Garcia-Rubio, L.H.: Interpretation of the ultraviolet–visible spectra of malaria parasite Plasmodium falciparum. Appl. Optics. 49(2), 180–188 (2010)

    Article  ADS  Google Scholar 

  32. Zhao, Q., Zhou, J., Zhang, F.L., Lippens, D.: Mie resonance-based dielectric metamaterials. Mater. Today. 12(12), 60–69 (2009). https://doi.org/10.1016/S1369-7021(09)70318-9

    Article  Google Scholar 

  33. Fano, U.: Effects of configuration interaction on intensities and phase shifts. Phys. Rev. 124, 1866–1878 (1961)

    Article  ADS  Google Scholar 

  34. Limonov, M.F., Rybin, M.V., Poddubny, A.N., Kivshar, Y.S.: Fano resonances in photonics. Nat. Photonics. 11, 543–554 (2017). https://doi.org/10.1038/NPHOTON.2017.142

    Article  Google Scholar 

  35. Kruk, S., Kivshar, Y.: Functional meta-optics and nanophotonics governed by Mie resonances. ACS Photon. 4, 2638–2649 (2017)

    Article  Google Scholar 

  36. Papasimakis, N., Fedotov, V.A., Savinov, V., Raybould, T.A., Zheludev, N.I.: Electromagnetic toroidal excitations in matter and free space. Nat. Mater. 15, 263–271 (2016)

    Article  ADS  Google Scholar 

  37. Miroshnichenko, A.E., Evlyukhin, A.B.., Yu, Y.F., Bakker, R.M., Chipouline, A., Kuznetsov, A.I., Luk’yanchuk, B., Chichkov, B.N., Kivshar, Y.S.: Nonradiating anapole modes in dielectric nanoparticles. Nat. Commun. 6, 8069 (2015)

    Article  ADS  Google Scholar 

  38. Zhang, D., Liu, Q.: Biosensors and bioelectronics on smartphone for portable biochemical detection. Biosens. Bioelectron. 75, 273–284 (2016)

    Article  Google Scholar 

  39. Zhu, J., Őzdemir, Ş.K., Yilmaz, H., Peng, B., Dong, M., Tomes, M., Carmon, T., Yang, L.: Interfacing whispering-gallery microresonators and free space light with cavity enhanced Rayleigh scattering. Sci. Rep. 4, 6396 (2014)

    Article  ADS  Google Scholar 

  40. Truong, P.L., Ma, X., Sim, S.J.: Resonant Rayleigh light scattering of single Au nanoparticles with different sizes and shapes. Nanoscale. 6, 2307–2315 (2014)

    Article  ADS  Google Scholar 

  41. Devi, R.V., Doble, M., Verma, R.S.: Nanomaterials for early detection of cancer biomarker with special emphasis on gold nanoparticles in immunoassays/sensors. Biosens. Bioelectron. 68, 688–698 (2015)

    Article  Google Scholar 

  42. Cai, H.-H., Pi, J., Lin, X., Li, B., Li, A., Yang, P.-H., Cai, J.: Gold nanoprobes-based resonance Rayleigh scattering assay platform: sensitive cytosensing of breast cancer cells and facile monitoring of folate receptor expression. Biosens. Bioelectron. 74, 165–169 (2015)

    Article  Google Scholar 

  43. Sharma, R., Ragavan, K.V., Thakur, M.S., Raghavarao, K.S.M.S.: Recent advances in nanoparticle based aptasensors for food contaminants. Biosens. Bioelectron. 74, 612–627 (2015)

    Article  Google Scholar 

  44. Gao, Z.F., Song, W.W., Luo, H.Q., Li, N.B.: Detection of mercury ions (II) based on non-cross-linking aggregation of double-stranded DNA modified gold nanoparticles by resonance Rayleigh scattering method. Biosens. Bioelectron. 65, 360–365 (2015)

    Article  Google Scholar 

  45. Chen, M., Cai, H.-H., Yang, F., Lin, D., Yang, P.-H., Cai, J.: Highly sensitive detection of chromium (III) ions by resonance Rayleigh scattering enhanced by gold nanoparticles. Spectrochim. Acta A Mol. Biomol. Spectrosc. 118, 776–781 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Lockwood .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Crown

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Lockwood, D.J. (2019). Rayleigh and Mie Scattering. In: Shamey, R. (eds) Encyclopedia of Color Science and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27851-8_218-3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27851-8_218-3

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27851-8

  • Online ISBN: 978-3-642-27851-8

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Rayleigh and Mie Scattering
    Published:
    13 August 2019

    DOI: https://doi.org/10.1007/978-3-642-27851-8_218-3

  2. Rayleigh and Mie Scattering
    Published:
    04 February 2016

    DOI: https://doi.org/10.1007/978-3-642-27851-8_218-2

  3. Original

    Rayleigh and Mie Scattering
    Published:
    18 April 2015

    DOI: https://doi.org/10.1007/978-3-642-27851-8_218-1