Skip to main content

Titan

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Encyclopedia of Astrobiology

Synonyms

Titan as an Earth analog; Titan bioastronomy; Titan exobiology; Titan organic chemistry

Definition

Titan, Saturn’s moon, is the second largest and only satellite of the solar system having a dense atmosphere composed essentially of dinitrogen (~97%) and methane (~2%). These two molecules give rise to a host of organic compounds, rendering Titan one of the most astrobiologically interesting bodies. In addition, Titan is subject to the effects of seasons and meteorology, shaping the geomorphology of the surface, with unique hydrocarbon liquid bodies and other terrestrial-like features (dunes, channels, mountains). With these properties and the probable existence of an internal liquid water ocean, Titan is a very promising Earth analog which can inform us about the emergence and evolution of life.

Introduction

Astrobiology, the study of life in the universe, is not only the study of the origins, distribution, and evolution of life in the whole universe but also that of structures...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References and Further Reading

  • Atreya SK, Adams EY, Niemann HB et al (2006) Titan’s methane cycle. Planet Space Sci 54:1177–1187

    Article  ADS  Google Scholar 

  • Béghin C, Canu P, Karkoschka E et al (2009) New insights on Titan’s plasma-driven Schumann resonance inferred from Huygens and Cassini data. Planet Space Sci 57:1872–1888

    Article  ADS  Google Scholar 

  • Bird MK, Allison M, Asmar SW, Atkinson DH, Avruch IM, Dutta-Roy R, Dzierma Y, Edenhofer P, Folkner WM, Gurvits LI, Johnston DV, Plettemeier D, Pogrebenko SV, Preston RA, Tyler GL (2005) The vertical profile of winds on Titan. Nature 438:800–802

    Article  ADS  Google Scholar 

  • Brown RH, Soderblom LA, Soderblom JM et al (2008) The identification of liquid ethane in Titan’s Ontario Lacus. Nature 454:607–610

    Article  ADS  Google Scholar 

  • Brown R, Lebreton J-P, Waite H (eds) (2009) in “Titan from Cassini-Huygens”, Springer

    Google Scholar 

  • Brown R, Lebreton J-P, Waite H (eds) (2010) Titan from Cassini-Huygens. Springer-Verlag, New York. 535 pages. ISBN: 978-94-007-4452-3

    Google Scholar 

  • Burr DM et al (2013) Morphology of fluvial networks on Titan: evidence for structural control. Icarus 226:742–759. https://doi.org/10.1016/j.icarus.2013.06.016

    Article  ADS  Google Scholar 

  • Cable ML, Horst SM, Hodyss R, Beauchamp PM, Smith MA, Willis PA (2012) Titan Tholins: simulating Titan organic chemistry in the Cassini-Huygens Era. Chem Rev 112:1882–1909

    Article  Google Scholar 

  • Coll P, 9 co-authors (2013) Can laboratory tholins mimic the chemistry producing Titan’s aerosols? A review in light of ACP experimental results. Planet Space Sci 77:91–103. https://doi.org/10.1016/j.pss.2012.07.006

    Article  ADS  Google Scholar 

  • Coustenis A, 155 co-authors (2008) TandEM: Titan and Enceladus mission. Exp Astron. https://doi.org/10.1007/s10686-008-9103-z.

    Article  ADS  Google Scholar 

  • Coustenis A, Taylor F (2008) Titan: exploring an earth-like world. World Scientific Publishing, Singapore

    Book  Google Scholar 

  • Coustenis A et al (2010) Titan trace gaseous composition from CIRS at the end of the Cassini–Huygens prime mission. Icarus 207:461–476

    Article  ADS  Google Scholar 

  • Desai RT et al (2017) Carbon chain anions and the growth of complex organic molecules in Titan’s Ionosphere. Astroph J 844:L18, 6 pp. https://doi.org/10.3847/2041-8213/aa7851

    Article  ADS  Google Scholar 

  • Dougherty M, Esposito L, Krimigis T (eds) (2009) Saturn from Cassini-Huygens. Springer-Verlag, New York, 805 pages, ISBN-10: 1402092164

    Google Scholar 

  • Elachi C, 34 co-authors (2005) Cassini radar views the surface of Titan. Science 308:970–974

    Article  ADS  Google Scholar 

  • Fortes AD (2000) Exobiological implications of a possible ammonia–water ocean inside Titan. Icarus, 146: 444–452

    Article  ADS  Google Scholar 

  • Fulchignoni M, 42 co-authors (2005) Titan’s physical characteristics measured by the Huygens Atmospheric Instrument (HASI). Nature 438:785–791

    Google Scholar 

  • Grasset O, Sotin C, Deschamps F (2000) On the internal structure and dynamics of Titan. Planet Space Sci 48:617–636

    Article  ADS  Google Scholar 

  • Hayes AG et al (2017) Topographic Constraints on the Evolution and Connectivity of Titan’s Lacustrine Basins. Geophys Res Lett 44(11):745–11,753. https://doi.org/10.1002/2017GL075468

    Article  ADS  Google Scholar 

  • Hofgartner JD et al (2016) Titan’s “Magic Islands”: transient features in a hydrocarbon sea. Icarus 271:338–349. https://doi.org/10.1016/j.icarus.2016.02.022

    Article  ADS  Google Scholar 

  • http://saturn.jpl.nasa.gov/

  • http://www.esa.int/SPECIALS/Cassini-Huygens/index.html

  • http://www.nasa.gov/mission_pages/cassini/main/index.html

  • Iess L et al. (2012) The tides of Titan. Science 337: 457–459

    Article  ADS  Google Scholar 

  • Israël G et al (2005) Evidence for the presence of complex organic matter in Titan’s aerosols by in situ analysis. Nature 438:796–799

    Article  ADS  Google Scholar 

  • Jennings DE, Flasar FM, Kunde VG et al (2009) Titan’s surface brightness temperatures. Ap J L 691:L103–L105

    Article  ADS  Google Scholar 

  • Le Gall A et al (2016) Composition, seasonal change, and bathymetry of Ligeia Mare, Titan, derived from its microwave thermal emission. J Geophys Res Planets 121:233–251. https://doi.org/10.1002/2015JE004920

    Article  ADS  Google Scholar 

  • Lebreton J-P, Coustenis A, Lunine J, Raulin F, Owen T, Strobel D (2008) Results from the Huygens probe on Titan. Astron Astrophys Rev 17:149–179

    Article  ADS  Google Scholar 

  • Lopes RMC, 43 co-authors (2007) Cryovolcanic features on Titan’s surface as revealed by the Cassini Titan Radar Mapper. Icarus 186:395–412

    Article  ADS  Google Scholar 

  • Lopes RMC et al (2013) Cryovolcanism on Titan: New results from Cassini RADAR and VIMS. J Geophys Res Planets 118:416–435

    Article  ADS  Google Scholar 

  • Lorenz RD, 39 co-authors (2006) The sand seas of Titan: Cassini RADAR observations of longitudinal dunes. Science 312:724–727

    Article  ADS  Google Scholar 

  • Lorenz RD, Mitton J (2008) Titan unveiled. Cambridge University Press, Cambridge

    Google Scholar 

  • Lorenz RD et al (2008a) Titan’s rotation reveals an internal ocean and changing zonal winds. Science 319:1649–1651

    Article  ADS  Google Scholar 

  • Lorenz RD et al (2008b) Fluvial channels on Titan: initial Cassini RADAR observations. Planet Space Sci 56:1132–1144

    Article  ADS  Google Scholar 

  • Lunine JI, 43 co-authors (2008) Titan’s diverse landscapes as evidenced by Cassini RADAR’s third and fourth looks at Titan. Icarus 195:415–433

    Article  ADS  Google Scholar 

  • Mastrogiuseppe M et al (2018) Bathymetry and composition of Titan’s Ontario Lacus derived from Monte Carlo-based waveform inversion of Cassini RADAR altimetry data. Icarus 300:203–209. https://doi.org/10.1016/j.icarus.2017.09.009

    Article  ADS  Google Scholar 

  • McCord T B et al (2009) Titan’s surface: Search for spectral diversity and composition using the Cassini VIMS investigation. Icarus 194:212–242

    Article  ADS  Google Scholar 

  • McKay CP, Smith HD (2005) Possibilities for methanogenic life in liquid methane on the surface of Titan. Icarus 178:274–276

    Article  ADS  Google Scholar 

  • McKay CP, Anbar AD, Porco C, Tsou P (2014) Follow the plume: the habitability of Enceladus. Astrobiology 14:352–355. https://doi.org/10.1089/ast.2014.1158

    Article  ADS  Google Scholar 

  • Mitri G, Showman AP, Lunine JI, Lorenz RD (2007) Hydrocarbon lakes on Titan. Icarus 186:385–394

    Article  ADS  Google Scholar 

  • Nelson RM, Brown RH, Hapke BW, Smythe WD, Kamp L, Boryta MD et al (2006) Photometric properties of Titan’s surface from Cassini VIMS: relevance to Titan’s hemispherical albedo dichotomy and surface stability. Planet Space Sci 54:1540–1551

    Article  ADS  Google Scholar 

  • Niemann HB, 17 co-authors (2005) The abundances of constituents of Titan’s atmosphere from the GCMS instrument on the Huygens probe. Nature 438:779–784.

    Article  ADS  Google Scholar 

  • Niemann HB, 9 co-authors (2010) Composition of Titan’s lower atmosphere and simple surface volatiles as measured by the Cassini-Huygens probe gas chromatograph mass spectrometer experiment. J Geophys Res 115:E12006. https://doi.org/10.1029/2010JE003659.

  • Palmer MY et al (2017) ALMA detection and astrobiological potential of vinyl cyanide on Titan. Sci Adv 3:e1700022. https://doi.org/10.1126/sciadv.1700022

    Article  ADS  Google Scholar 

  • Porco CC, 35 co-authors (2005) Imaging of Titan from the Cassini spacecraft. Nature 434:159–168

    Article  ADS  Google Scholar 

  • Radebaugh J, Lorenz RD, Kirk RL, Lunine JI, Stofan ER, Lopes RMC, Wall SD, the Cassini Radar Team (2007) Mountains on Titan observed by Cassini Radar. Icarus 192:77–91

    Article  ADS  Google Scholar 

  • Radebaugh J, Lorenz RD, Lunine JI, Wall SD, Boubin G, Reffet E, Kirk RL, Lopes RM, Stofan ER et al (2008) Dunes on Titan observed by Cassini Radar. Icarus 194:690–703

    Article  ADS  Google Scholar 

  • Raulin F (2008) Planetary science: organic lakes on Titan. Nature 454:587–589

    Article  ADS  Google Scholar 

  • Raulin F, Gazeau M-C, Lebreton JP (2008) Latest news from Titan. Planet Space Sci 56(5): 571

    Article  ADS  Google Scholar 

  • Raulin F, Brassé C, Poch O, Coll P (2012) Prebiotic-like chemistry on Titan. Chem Soc Rev 41:5380–5393

    Article  Google Scholar 

  • Reh K, Erd C, Matson D, Coustenis A, Lunine J, Lebreton J-P, The TSSM Joint Definition Team (2009) TSSM NASA ESA Joint Summary Report, 15 November 2008, ESA-SRE (20083, JPLD-48442. NASA Task Order, NMO710851.

    Google Scholar 

  • Soderblom LA, Tomasko MG, Archinal BA, Becker TL et al (2007a) Topography and geomorphology of the Huygens landing site on Titan. Planet Space Sci 55:2015–2024

    Article  ADS  Google Scholar 

  • Soderblom LA, Kirk RL, Lunine JI et al (2007b) Correlations between Cassini VIMS spectra and RADAR SAR images: Implications for Titan’s surface composition and the character of the Huygens Probe Landing Site. Planet Space Sci 55:2025–2036

    Article  ADS  Google Scholar 

  • Solomonidou A et al (2016) Temporal variations of Titan’s surface with Cassini/VIMS. Icarus 270:85–99

    Article  ADS  Google Scholar 

  • Sotin C, 25 co-authors (2005) Release of volatiles from a possible cryovolcano from near-infrared imaging of Titan. Nature 435:786–789.

    Article  ADS  Google Scholar 

  • Stevenson J, Lunine J, Clancy P (2015) Membrane alternatives in worlds without oxygen: Creation of an azotosome. Sci Adv 1:e1400067

    Article  ADS  Google Scholar 

  • Stofan ER, Elachi C, Lunine JI et al (2007) The lakes of Titan. Nature 445:61–64

    Article  ADS  Google Scholar 

  • Strobel DF (2010) Molecular hydrogen in Titan’s atmosphere: implications of the measured tropospheric and thermospheric mole fractions. Icarus 208:878–886

    Article  ADS  Google Scholar 

  • The Huygens probe on Titan. Nature 438:756–802

    Google Scholar 

  • Tomasko MG, 38 co-authors (2005) Results from the descent imager/spectral radiometer (DISR) instrument on the Huygens Probe of Titan. Nature 438: 765–778

    Google Scholar 

  • Turtle EP, Perry JE, McEwen AS et al (2009) Cassini imaging of Titan’s high-latitude lakes, clouds, and south-polar surface changes. Geophys Res Lett 36:L02204

    Article  ADS  Google Scholar 

  • Waite JH, Young DT, Cravens TE, Coates AJ, Crary FJ, Magee B, Westlake J (2007) The Process of tholin formation in Titan’s upper atmosphere. Science 316:870–875

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Athena Coustenis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Coustenis, A., Raulin, F. (2019). Titan. In: Gargaud, M., et al. Encyclopedia of Astrobiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27833-4_1594-3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27833-4_1594-3

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27833-4

  • Online ISBN: 978-3-642-27833-4

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Titan
    Published:
    13 April 2019

    DOI: https://doi.org/10.1007/978-3-642-27833-4_1594-3

  2. Original

    Titan
    Published:
    28 April 2015

    DOI: https://doi.org/10.1007/978-3-642-27833-4_1594-2