Skip to main content

Swarm Intelligence

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Encyclopedia of Complexity and Systems Science

Glossary

Ant colony optimization:

Probabilistic optimization algorithm where a colony of artificial ants cooperate in finding solutions to optimization problems.

Cellular automaton:

A system evolving in discrete time steps, with four properties: a grid of cells, a set of possible states of the cells, a neighborhood, and a function which assigns a new state to a cell given the state of the cell and of its neighborhood.

Cellular-computing architecture:

Computer design that uses cellular automata and related machines, as processors and as storage of instruction and data.

Dynamic cellular-computing system:

Cellular-computing system whose cells are mobile. Elementary swarm

An ordered set of N units described by the N components vi (i = 1,2, … N) of a vector v; any unit i may update the vector at any time ti, using a function f of Ki vector components. ∀i ∈ N: vi(t + 1) = f (vk∈K(i) (t)).

Game of life:

A cellular automaton designed to simulate lifelike phenomena.

Intelligence (working...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Bibliography

Primary Literature

  • Abraham A, Grosan C, Ramos V (2006) Swarm intelligence in data mining. In: Studies in computational intelligence. Springer, Berlin/Heidelberg

    MATH  Google Scholar 

  • Adachi S, Peper F, Lee J (2004) Universality of hexagonal asynchronous totalistic cellular automata. In: 6th international conference on cellular automata for research and industry, ACRI 2004. Lect Notes Comput Sci 3305:91–100

    Article  MATH  Google Scholar 

  • Adami C, Bryson DM, Ofria C, Pennock RT (2012) Artificial life 13, Ebook ISBN 9780262310505

    Google Scholar 

  • Agapie A, Andreica A, Chira C, Giuclea M (2014) Predictability in cellular automata. PLoS One. https://doi.org/10.1371/Journal.pone.0108177

    Article  ADS  Google Scholar 

  • Aguilar W, Santamaria Bonfil G, Froese T, Gershenson C (2014) The past, present, and future of artificial life. Front Robot AI 1:8

    Article  Google Scholar 

  • Arvin F, Murray JC, Lichen S, Chun Z, Shigang Y (2014) Development of an autonomous micro robot for swarm robotics. 2014 IEEE Int Conf Mechatron Autom 635(640):3–6

    Google Scholar 

  • Beni G (1988) The concept of cellular robot. In: Proceedings of the 3rd IEEE symposium on intelligent control, Arlington, pp 57–61

    Google Scholar 

  • Beni G (1992) Distributed robotic systems and swarm intelligence. J Robot Soc Jpn 10:31–37

    Google Scholar 

  • Beni G (2004a) From swarm intelligence to swarm robotics: swarm robotics. In: Sahin E, Spear WM (eds) Revised selected papers, SAB 2004 international workshop, Santa Monica, 17 July 2004. Lecture notes in computer science, March, vol 3342. Springer, pp 1–9

    Google Scholar 

  • Beni G (2004b) Order by disordered action in swarms. In: Sahin E, Spear WM (eds) Revised selected papers, SAB 2004 international workshop, Santa Monica, 17 July 17. Lecture notes in computer science, March, vol 3342. Springer, pp 153–171

    Chapter  Google Scholar 

  • Beni G, Hackwood S (1992) Stationary waves in cyclic swarms. In: Proceedings of the IEEE international symposium on intelligent control, Glasgow, 10–13 Aug

    Google Scholar 

  • Beni G, Wang J (1989a) Swarm intelligence in cellular robotic systems. In: Proceedings of NATO advanced workshop on robots and biological systems, Tuscany, 26–30 June

    Google Scholar 

  • Beni G, Wang J (1989b) Swarm intelligence. In: Proceedings for the 7th annual meeting of the robotics society of Japan, pp 425–428 (in Japanese)

    Google Scholar 

  • Bersini H, Detour V (1994) Asynchrony induces stability in CA based models. In: Brooks RA, Maes P (eds) Artificial life, vol IV. MIT Press, Cambridge, pp 382–387

    Google Scholar 

  • Bonabeau E, Dorigo M, Theraulaz G (1999) Swarm intelligence: from natural to artificial systems. Oxford University Press, New York

    MATH  Google Scholar 

  • Brabham DC (2013) Crowdsourcing. MIT Press, Cambridge

    Book  Google Scholar 

  • Brambilla M, Ferrante E, Birattari M, Dorigo M (2013) Swarm robotics: a review from the swarm engineering perspective. Swarm Intell 7:1–41

    Article  Google Scholar 

  • Brooks R (1986) A robust layered control system for a mobile robot. IEEE J Robot Autom RA 2(1):14

    Article  Google Scholar 

  • Canizo JA, Carrillo JA, Rosado J (2011) A well-posedness theory in measures for some kinetic models of collective motion. Math Models Methods Appl Sci 21:515–539

    Article  MathSciNet  MATH  Google Scholar 

  • Clapham N (2002) Emergent synchrony: simple asynchronous update rules can produce synchronous behavior. In: Sarker M, Gen N (eds) Proceedings of the sixth Australia-Japan joint workshop on intelligent and evolutionary systems. Australian National University, pp 41–46

    Google Scholar 

  • Cooper SB (2003) Computability theory. Chapman Hall/CRC, Boca Raton

    MATH  Google Scholar 

  • Cornforth D, Green D, Newth D (2005) Ordered asynchronous processes in multi-agent systems. Phys D 204(1–2):70–82

    Article  MathSciNet  Google Scholar 

  • Curtis SA, Mica J, Nuth J, Marr G, Rilee ML, Bhat M (2000) Autonomous nano-technology Swarm. In: Proceedings of the 51st international aeronautical congress, IAF-00-Q.5.08

    Google Scholar 

  • Dennunzio A, Formenti E, Manzoni L (2012) Computing issues of asynchronous CA. Fundam Inform 120:165–180

    MathSciNet  MATH  Google Scholar 

  • Dorigo M (1992) Optimization, learning and natural algorithms. Ph.D thesis, Dipartimento di Elettronica, Politecnico di Milano, Milan (in Italian)

    Google Scholar 

  • Dorigo M, Stutzle T (2004) Ant colony optimization. MIT Press, Cambridge

    Book  MATH  Google Scholar 

  • Dorigo M, Tuci E, Groß R, Trianni V, Labella TH, Nouyan S, Ampatzis C, Deneubourg J-L, Baldassarre G, Nolfi S, Mondada F, Floreano D, Gambardella LM (2004) The SWARM-BOTS project. In: Sahin E, Spears WM (eds) Proceedings of the 1st international workshop on swarm robotics. Lecture notes in computer science, vol 3342. Springer, Berlin, pp 26–40

    Google Scholar 

  • Dorigo M, Gambardella LM, Birattari M, Martinoli A (eds) (2006) Ant colony optimization and swarm intelligence: 5th international workshop, ANTS 2006, Brussels, 4–7 sept 2006, proceedings. Lecture notes in computer science. Springer, Berlin

    Google Scholar 

  • Eftimie R, de Vries G, Lewis MA (2007) Complex spatial group patterns result from different animal communication mechanisms. In: Proceedings of the National Academy of Sciences, 24 Apr 2007, vol 104, no 17

    Google Scholar 

  • Elamvazhuthi K, Kuiper H, Berman S (2018) PDE-based optimization for stochastic mapping and coverage strategies using robotic ensembles. Automatica 95:356–367. Elsevier

    Article  MathSciNet  MATH  Google Scholar 

  • Engelbrecht AP (2006) Fundamentals of computational swarm intelligence. Wiley, New York

    Google Scholar 

  • Fatès N (2018) Asynchronous cellular automata: a volume in the encyclopedia of complexity and systems science, 2nd ed. https://doi.org/10.1007/978-1-4939-8700-9_671

    Chapter  Google Scholar 

  • Gardner M (1970) The fantastic combinations of John Conway’s new solitaire game ‘life’. Sci Am 223:120–123

    Article  Google Scholar 

  • Gazi V, Passino KM (2011) Swarm stability and optimization. Springer, New York

    Book  MATH  Google Scholar 

  • Goss S, Aron S, Deneubourg JL, Pasteel JM (1989) Self-organized shortcuts in the argentine ant. Naturwissenschaften 76:579–581

    Article  ADS  Google Scholar 

  • Gottfredson LS (1997) Mainstream science on intelligence: an editorial with 52 signatories, history, and bibliography. Intelligence 24(1):13–23

    Article  Google Scholar 

  • Hamann H (2010) Space-time continuous models of swarm robotic systems: supporting global-to-local programming. Springer, Berlin

    Book  Google Scholar 

  • Huberman BA, Glance NS (1993) Evolutionary games and computer simulations. Proc Natl Acad Sci U S A 90:7716–7718

    Article  ADS  MATH  Google Scholar 

  • IEEE swarm intelligence symposium. Honolulu, 1–5 Apr 2007. http://www.computelligence.org/sis/2007/?q=node/2

  • International Journal of Swarm Intelligence Research (IJSIR) Information Resources Management Association (2010) ISSN 1947–9263

    Google Scholar 

  • Johnson DS, McGeoch LA (1997) The traveling salesman problem: a case study in local optimization. In: Aarts EHL, Lenstra JK (eds) Local search in combinatorial optimization. Wiley, Chichester, pp 215–310

    Google Scholar 

  • Johnson N, Galata A, Hogg DB (1998) The acquisition and use of interaction behavior models. In: Proceedings. 1998 IEEE computer society conference on computer vision and pattern recognition (cat. No.98CB36231), Santa Barbara, pp 866–871

    Google Scholar 

  • Keller JM, Liu D, Fogel DB (2016) Fundamentals of computational Intelligence:neural networks, fuzzy systems, and evolutionary computation. IEEE press series on computational intelligence. Wiley/IEEE Press, Hoboken

    Google Scholar 

  • Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: Proceedings of IEEE international conference on neural networks, vol IV. IEEE Service Center, Piscataway, pp 1942–1948

    Google Scholar 

  • Kennedy J, Eberhart RC, Shi Y (2001) Swarm intelligence. Morgan Kauffman, San Mateo

    Google Scholar 

  • Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220(4598):671–680

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Langton CG (1984) Self-reproduction in cellular automata. Phys D 10:135–144

    Article  MATH  Google Scholar 

  • Lee J, Peper F, Adachi S, Morita K (2004) Universal delay-insensitive circuits with bi-directional and buffering lines. IEEE Trans Comput 53(8):1034–1046

    Article  Google Scholar 

  • Legg S, Hutter M (2007) Universal Intelligence: a definition of machine intelligence. Mind Mach 17(4):391–444

    Article  Google Scholar 

  • Liang P, Beni G (1995) Robotic morphogenesis. Proc Int Conf Robot Autom 2:2175–2180

    Google Scholar 

  • Mandal JK, Devadutta S (2019) Intelligent computing paradigm: recent trend. Springer, Singapore

    Google Scholar 

  • Moere AV (2004) Information flocking: time-varying data visualization using boid behaviors. In: Proceedings of the eighth international conference on information visualization, pp 409–414

    Google Scholar 

  • Mogilner A, Edelstein-Keshet L, Bent L, Spiros A (2003) Mutual interactions, potentials, and individual distance in a social aggregation. J Math Biol 47:353–389

    Article  MathSciNet  MATH  Google Scholar 

  • Mondada F, Pettinaro GC, Guignard A, Kwee IV, Floreano D, Deneubourg J-L, Nolfi S, Gambardella LM, Dorigo M (2004) SWARM-BOT: a new distributed robotic concept. Auton Robots 17(2–3):193–221

    Article  Google Scholar 

  • Mondada F, Gambardella LM, Floreano D, Nolfi S, Deneubourg J-L, Dorigo M (2005) The cooperation of swarm-bots: physical interactions in collective robotics. IEEE Robot Autom Mag 12(2):21–28

    Article  Google Scholar 

  • Monmarché N (2016) Artificial ants. In: Metaheuristics. Springer, New York

    Google Scholar 

  • Murray JD (2007) Mathematical biology I: an introduction, 3rd edn, interdisciplinary applied mathematics. Springer, New York

    Google Scholar 

  • Nakamura K (1974) Asynchronous cellular automata and their computational ability. Syst Comput Controls 5(5):58–66

    MathSciNet  Google Scholar 

  • Nehaniv CL (2002) Evolution in asynchronous cellular automata. In: Standish RK, Abbass HA, Bedau MA (eds) Proceedings of the eighth conference on artificial life. MIT Press, pp 65–74

    Google Scholar 

  • Nicolis G, Prigogine I (1977) Self-organization in non-equilibrium systems. Wiley, New York

    MATH  Google Scholar 

  • Nor Azlina AA, Mubin M, Mohamad MS, Kamarulzaman AA (2014) A synchronous-asynchronous particle swarm optimization algorithm. Sci World J 2014:123019. https://doi.org/10.1155/2014/123019

    Article  Google Scholar 

  • Olariu S, Zomaya AY (2005) Handbook of bioinspired algorithms and applications. Chapman & Hall/CRC Computer & Information Science, Boca Raton

    Book  MATH  Google Scholar 

  • Parker LE, Schneider FE, Schultz AC (2005) Multi-robot systems. From swarms to intelligent automata. In: Proceedings from the 2005 international workshop on multi-robot systems, vol III. Springer

    Google Scholar 

  • Passino K (2004) Biomimicry for optimization, control, and automation. Springer, London

    MATH  Google Scholar 

  • Peruggia M (1993) Discrete iterated function systems. CRC Press, Wellesley. 1568810156

    Book  MATH  Google Scholar 

  • Pinciroli C, Trianni V, O’Grady R, Pini G, Brutschy A, Brambilla M, Mathews N, Ferrante E, DiCaro G, Ducatelle F, Birattari M, Gambardella LM, Dorigo M (2012) ARGoS: a modular, parallel, multi-engine simulator for multi-robot systems. Swarm Intell 6:271–295

    Article  Google Scholar 

  • Reynolds C (1987) Flocks, herds, and schools: a distributed behavioral model. Comput Graph 21(4):25–34

    Article  Google Scholar 

  • Rubenstein M, Cornejo A, Nagpal R (2014) Programmable self-assembly in a thousand-robot swarm. Science 345:6198

    Article  Google Scholar 

  • Sahin E, Spears WM (2005) Swarm robotics: SAB 2004 international workshop, Santa Monica, 17 July 2004, revised selected papers. Lecture notes in computer science. Springer

    Google Scholar 

  • Sahin E, Spears WM, Winfield AFT (eds) (2007) Swarm robotics. Second SAB 2006 international workshop, Rome, 30 Sept 2006–1 Oct 2006 revised selected papers. Lecture notes in computer science, vol 4433. Springer, Berlin/Heidelberg/New York

    Google Scholar 

  • Schonfisch B, de Roos A (1999) Synchronous and asynchronous updating in cellular automata. Biosystems 51:123–143

    Article  Google Scholar 

  • Sengupta S, Basak S, Peters II RA (2018) Particle swarm optimization: a survey of historical and recent developments with hybridization perspectives. Mach Learn Knowl Extr 1:157–191

    Article  Google Scholar 

  • Sipper M (1997) Evolution of parallel cellular machines: the cellular programming approach. Lecture notes in computer science. Springer, New York

    Book  Google Scholar 

  • Sipper M (1999) The emergence of cellular computing. IEEE Comput 32(7):18–26

    Article  Google Scholar 

  • Sipper M, Tomassini M, Capcarrere MS (1997) Evolving asynchronous and scalable non-uniform cellular automata. In: Proceedings of international conference on artificial neural networks and genetic algorithms (ICANNGA97). Springer

    Google Scholar 

  • Snyman JA (2005) Practical mathematical optimization. An introduction to basic optimization theory and classical and new gradient-based algorithms. Springer, New York

    MATH  Google Scholar 

  • Sun J, Lai C-H, Wu X-J (2011) Particle swarm optimisation: classical and quantum perspectives. Numerical analysis and scientific computing series. Chapman & Hall/CRC, 1 Har/Cdr, Boca Raton

    Google Scholar 

  • Swarm Intelligence (2007) Springer. ISSN: 1935–3812

    Google Scholar 

  • Takada Y, Isokawa T, Peper F, Matsui N (2006) Construction universality in purely asynchronous cellular automata. J Comput Syst Sci 72:1368–1385

    Article  MathSciNet  MATH  Google Scholar 

  • Tan Y (ed) (2018) Swarm Intelligence: principles, current algorithms and methods (control, robotics, and sensors). The Institution of Engineering and Technology, London

    Google Scholar 

  • Topaz CM, Bertozzi A (2004) Swarming patterns in two-dimensional kinematic model for biological groups. SIAM J Appl Math 65(1):152–174

    Article  MathSciNet  MATH  Google Scholar 

  • Topaz CM, D’Orsogna MR, Edelstein-Keshet L, Bernoff AJ (2012) Locust dynamics: behavioral phase change and swarming. PLOS Comp Biol 8(8):e1002642

    Article  ADS  MathSciNet  Google Scholar 

  • Traub J (editor in chief) J Complex. Elsevier http://www.elsevier.com/wps/find/journaldescription.cws_home/622865/description#description

  • Trianni V, Tuci E, Passino KM, Marshall JAR (2011) Swarm cognition: an interdisciplinary approach to the study of self-organising biological collectives. Swarm Intell 5:3–18

    Article  Google Scholar 

  • Turing AM (1952) The chemical basis for morphogenesis. Philos Trans R Soc Lond B 237:37–72

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • von Neumann J (1966) Theory of self-reproducing automata. University of Illinois Press. edited and completed by Burks AW

    Google Scholar 

  • Weiss G (2000) Multiagent systems: a modern approach to distributed artificial intelligence. MIT Press, Cambridge

    Google Scholar 

  • Wolfram S (1985) Undecidability and intractability in theoretical physics. Phys Rev Lett 54:735–738

    Article  ADS  MathSciNet  Google Scholar 

  • Wolfram S (2002) A new kind of science. Wolfram Media, Champaign

    MATH  Google Scholar 

  • Xu W-L, Lee J, Chen H-H, Isokawa T (2019) Universal computation in a simplified Brownian cellular automaton with Von Neumann Neighbrohood. Fundamenta Informaticae 165(2):139–156

    Article  MathSciNet  MATH  Google Scholar 

  • Yang X-S, Cui Z, Xiao R, Gandomi AH (2013) Swarm intelligence and bio-inspired computation: theory and applications. Elsevier, Boston

    Book  Google Scholar 

Books and Reviews

  • Agrawal A, Gans J, Goldfarb A (2018) Prediction machines: the simple economics of artificial Intelligence. Harvard Business Review Press, Boston

    Google Scholar 

  • Camazine S, Deneubourg J-L, Franks NR, Sneyd J, Theraulaz G, Bonabeau E (2001) Self-organization in biological systems. Princeton University Press, Princeton

    MATH  Google Scholar 

  • Deutsch A, Dormann S (2018) Cellular automaton modeling of biological pattern formation: characterization, examples, and analysis, 2nd edn. Birkhauser, Basel

    MATH  Google Scholar 

  • Dorigo M, Sahin E (2004) Swarm robotics – special issue editorial. Auton Robot 17(2–3):111–113

    Article  Google Scholar 

  • Engelbrecht AP (2006) Fundamentals of computational swarm intelligence. Wiley, New York

    Google Scholar 

  • Hamann H (2010) Space-time continuous models of swarm robotic systems: supporting global-to-local programming, cognitive systems monographs. Springer, Berlin

    Book  Google Scholar 

  • Hamann H (2018) Swarm robotics: a formal approach. Springer, Cham

    Book  Google Scholar 

  • Hassanien AE, Emary E (2016) Swarm intelligence: principles, advances, and applications. CRC Press, Boca Raton

    Book  Google Scholar 

  • Kacprzyk J, Pedrycz W (2015) Springer handbook of computational intelligence. Springer, Berlin

    Book  MATH  Google Scholar 

  • Kruse R, Borgelt C, Klawonn F, Moewes C, Steinbrecher M, Held P (2013) Computational intelligence: a methodological introduction. Springer, New York

    Book  MATH  Google Scholar 

  • Mohanty S (2018) Swarm Intelligence methods for statistical regression. Chapman and Hall/CRC, Boca Raton

    Book  MATH  Google Scholar 

  • Nayyar A, Le D-N, Nguyen NG (2018) Advances in swarm intelligence for optimizing problems in computer science. Chapman and Hall/CRC, Boca Raton

    Book  MATH  Google Scholar 

  • Sipper M (2002) Machine nature: the coming age of bio-inspired computing. McGraw-Hill, New York

    Google Scholar 

  • Solnon C (2010) Ant colony optimization and constraint programming. Wiley-ISTE, Hoboken

    MATH  Google Scholar 

  • Tan Y, Takagi H, Shi Y, Niu B (2017) Advances in swarm intelligence: 8th international conference, ICSI 2017, Fukuoka

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerardo Beni .

Editor information

Editors and Affiliations

Additional information

References (Bonabeau et al. 1999; Kennedy et al. 2001; Abraham et al. 2006; Engelbrecht 2006; Keller et al. 2016; Dorigo and Stutzle 2004; Olariu and Zomaya 2005; Passino 2004; Gazi and Passino 2011; Yang et al. 2013) are the main books and reviews. The journal Swarm Intelligence (2007) is the main source for new research results. The following provide additional general material related to Swarm Intelligence.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media LLC

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Beni, G. (2019). Swarm Intelligence. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27737-5_530-5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27737-5_530-5

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27737-5

  • Online ISBN: 978-3-642-27737-5

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Swarm Intelligence
    Published:
    11 October 2019

    DOI: https://doi.org/10.1007/978-3-642-27737-5_530-5

  2. Original

    Swarm Intelligence
    Published:
    18 November 2014

    DOI: https://doi.org/10.1007/978-3-642-27737-5_530-4