Skip to main content

Cerebro-Cerebellar Connections

Handbook of the Cerebellum and Cerebellar Disorders
  • 156 Accesses

Abstract

The cerebro-cerebellar system is one of the largest pathways in the central nervous system, yet knowledge of its structure and function remains far from complete. This is an important gap in understanding because anatomical connectivity is a key determinant of cerebellar function. This updated chapter focuses on recent advances in understanding the anatomical and physiological properties of cerebro-cerebellar connections in nonhuman species. There are two main routes by which cerebral information can gain access to the cerebellum: cerebro-pontocerebellar pathways that terminate in the cerebellar cortex as mossy fibers and cerebro-olivocerebellar pathways that terminate as climbing fibers. A common principle of organization seems to be the convergence of somatotopically corresponding pathways, with the climbing fiber system playing a key role in imposing this order. In addition to this well-ordered spatial arrangement, there is also precise timing of integration of ascending and descending inputs. The spatial and temporal congruence of inputs is consistent with the one-map hypothesis of cerebellar organization (Apps and Hawkes, Nat Rev Neurosci 10:670-681, 2009). The functional significance of this precise arrangement remains to be determined but is likely to have a major impact on cerebellar activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ackerley R, Pardoe J, Apps R (2006) A novel site of synaptic relay for climbing fiber pathways relaying signals from the motor cortex to the cerebellar cortical C1 zone. J Physiol 576:503–518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allen GI, Tsukahara N (1974) Cerebrocerebellar communication systems. Physiol Rev 54:957–1006

    Article  CAS  PubMed  Google Scholar 

  • Allen GI, Azzena GB, Ohno T (1974) Somatotopically organized inputs from fore- and hind limb areas of sensorimotor cortex to cerebellar Purkinje cells. Exp Brain Res 20:255–272

    CAS  PubMed  Google Scholar 

  • Andersson G (1984) Demonstration of a cuneate relay in a cortico-olivo-cerebellar pathway in the cat. Neurosci Lett 46:47–52

    Article  CAS  PubMed  Google Scholar 

  • Andersson G, Nyquist J (1983) Origin and sagittal termination areas of cerebro-cerebellar climbing fiber paths in the cat. J Physiol 337:257–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Angaut P (1970) The ascending projections of the nucleus interpositus posterior of the cat cerebellum: an experimental anatomical study using silver impregnation methods. Brain Res 24:377–394

    Article  CAS  PubMed  Google Scholar 

  • Aoki S, Coulon P, Ruigrok TJH (2017) Multizonal cerebellar influence over sensorimotor areas of the rat cerebral cortex. Cereb Cortex 29:598–614

    Article  Google Scholar 

  • Apps R (1998) Input-output connections of the “hindlimb” region of the inferior olive in cats. J Comp Neurol 399:513–529

    Article  CAS  PubMed  Google Scholar 

  • Apps R (1999) Movement-related gating of climbing fiber input to cerebellar cortical zones. Prog Neurobiol 57:537–562

    Article  CAS  PubMed  Google Scholar 

  • Apps R, Garwicz M (2005) Anatomical and physiological foundations of cerebellar information processing. Nat Rev Neurosci 6:297–311

    Article  CAS  PubMed  Google Scholar 

  • Apps R, Hawkes R (2009) Cerebellar cortical organization: a one-map hypothesis. Nat Rev Neurosci 10:670–681

    Article  CAS  PubMed  Google Scholar 

  • Apps R, Hartell NA, Armstrong DM (1995) Step phase-related excitability changes in spino-olivocerebellar paths to the c1 and c3 zones in cat cerebellum. J Physiol 483(Pt3):687–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Armstrong DM, Harvey RJ (1966) Responses in the inferior olive to stimulation of the cerebellar and cerebral cortices in the cat. J Physiol 187:553–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atkins MJ, Apps R (1997) Somatotopical organisation within the climbing fiber projection to the paramedian lobule and copula pyramidis of the rat cerebellum. J Comp Neurol 389:249–263

    Article  CAS  PubMed  Google Scholar 

  • Baker MR, Javid M, Edgley SA (2001) Activation of cerebellar climbing fibers to rat cerebellar posterior lobe from motor cortical output pathways. J Physiol 536:825–839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berrevoets CE, Kuypers HG (1975) Pericruciate cortical neurons projecting to brain stem reticular formation, dorsal column nuclei and spinal cord in the cat. Neurosci Lett 1:257–262

    Article  CAS  PubMed  Google Scholar 

  • Bjaalie JG, Leergaard TB (2000) Functions of the pontine nuclei in cerebro-cerebellar communication. Trends Neurosci 23:152–153

    Article  CAS  PubMed  Google Scholar 

  • Brochu G, Maler L, Hawkes R (1990) Zebrin II: a polypeptide antigen expressed selectively by Purkinje cells reveals compartments in rat and fish cerebellum. J Comp Neurol 291:538–552

    Article  CAS  PubMed  Google Scholar 

  • Brodal P (1978a) The corticopontine projection in the rhesus monkey. Origin and principles of organization. Brain 101:251–283

    Article  CAS  PubMed  Google Scholar 

  • Brodal P (1978b) Principles of organization of the monkey corticopontine projection. Brain Res 148:214–218

    Article  CAS  PubMed  Google Scholar 

  • Brodal P, Bjaalie JG (1992) Organization of the pontine nuclei. Neurosci Res 13:83–118

    Article  CAS  PubMed  Google Scholar 

  • Brodal P, Bjaalie JG (1997) Salient anatomic features of the cortico-ponto-cerebellar pathway. Prog Brain Res 114:227–249

    Article  CAS  PubMed  Google Scholar 

  • Brodal A, Kawamura K (1980) Olivocerebellar projection: a review. Adv Anat Embryol Cell Biol 64(IVIII):1–140

    Google Scholar 

  • Brodal P, Steen N (1983) The corticopontocerebellar pathway to crus I in the cat as studied with anterograde and retrograde transport of horseradish peroxidase. Brain Res 267:1–17

    Article  CAS  PubMed  Google Scholar 

  • Brooks VB, Thach WT (1981) Cerebellar control of posture and movement. In: Brooks VB (ed) Handbook of physiology the nervous system, Part 2, 2nd edn, vol 2. American Physiological Society, Bethesda, pp 877–946

    Google Scholar 

  • Brown IE, Bower JM (2001) Congruence of mossy fiber and climbing fiber tactile projections in the lateral hemispheres of the rat cerebellum. J Comp Neurol 429:59–70

    Article  CAS  PubMed  Google Scholar 

  • Brown JT, Chan-Palay V, Palay SL (1977) A study of afferent input to the inferior olivary complex in the rat by retrograde axonal transport of horseradish peroxidase. J Comp Neurol 176:1–22

    Article  CAS  PubMed  Google Scholar 

  • Buisseret-Delmas C, Angaut P (1993) The cerebellar olivo-corticonuclear connections in the rat. Prog Neurobiol 40:63–87

    Article  CAS  PubMed  Google Scholar 

  • Buzsaki G (2006) Rhythms of the brain. Oxford University Press, New York

    Book  Google Scholar 

  • Buzsaki G, Draguhn A (2004) Neuronal oscillations in cortical networks. Science 304:1926–1929

    Article  CAS  PubMed  Google Scholar 

  • Carlton SM, Leichnetz GR, Mayer JD (1982) Projections from the nucleus parafascicularis prerubralis to medullary raphe nuclei and inferior olive in the rat: a horseradish peroxidase and autoradiography study. Neurosci Lett 30:191–197

    Article  CAS  PubMed  Google Scholar 

  • Cerminara NL, Lang EJ, Sillitoe RV, Apps R (2015) Redefining the cerebellar cortex as an assembly of non-uniform Purkinje cell microcircuits. Nat Rev Neurosci 16(2):79–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chapin JK, Lin CS (1984) Mapping the body representation in the SI cortex of anesthetized and awake rats. J Comp Neurol 229:199–213

    Article  CAS  PubMed  Google Scholar 

  • Cheema S, Rustioni A, Whitsel BL (1985) Sensorimotor cortical projections to the primate cuneate nucleus. J Comp Neurol 240:196–211

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Wang YJ, Yang L, Sui JF, Hu ZA, Hu B (2016) Theta synchronization between medial prefrontal cortex and cerebellum is associated with adaptive performance of associative learning behavior. Sci Rep 16(6):20960

    Article  CAS  Google Scholar 

  • Choe KY, Sanchez CF, Harris NG, Otis TS, Mathews PJ (2018) Optogenetic fMRI and electrophysiological identification of region-specific connectivity between the cerebellar cortex and forebrain. Neuorimage 173:370–383

    Article  Google Scholar 

  • Courtemanche R, Lamarre Y (2005) Local field potential oscillations in primate cerebellar cortex: synchronization with cerebral cortex during active and passive expectancy. J Neurophysiol 93:2039–2052

    Article  PubMed  Google Scholar 

  • D'Angelo E, Nieus T, Maffei A, Armano S, Rossi P, Taglietti V, Fontana A, Naldi G (2001) Theta-frequency bursting and resonance in cerebellar granule cells: experimental evidence and modeling of a slow k + −dependent mechanism. J Neurosci 21:759–770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dow R (1942) Cerebellar action potentials in response to stimulation of the cerebral cortex in monkeys and cats. J Neurophysiol 5:121–136

    Article  Google Scholar 

  • Eccles J, Ito M, Szentágothai J (eds) (1967) The cerebellum as a neuronal machine. Springer, New York

    Google Scholar 

  • Edwards SB (1972) The ascending and descending projections of the red nucleus in the cat: an experimental study using an autoradiographic tracing method. Brain Res 48:45–63

    Article  CAS  PubMed  Google Scholar 

  • Fries P (2005) A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn Sci 9:474–480

    Article  PubMed  Google Scholar 

  • Glickstein M (1997) Mossy-fiber sensory input to the cerebellum. Prog Brain Res 114:251–259

    Article  CAS  PubMed  Google Scholar 

  • Glickstein M (2007) What does the cerebellum really do? Curr Biol 17:R824–R827

    Article  CAS  PubMed  Google Scholar 

  • Glickstein M, May JG 3rd, Mercier BE (1985) Corticopontine projection in the macaque: the distribution of labelled cortical cells after large injections of horseradish peroxidase in the pontine nuclei. J Comp Neurol 235:343–359

    Article  CAS  PubMed  Google Scholar 

  • Gordon G, Jukes MG (1964) Descending influences on the exteroceptive organizations of the cat's gracile nucleus. J Physiol 173:291–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartmann MJ, Bower JM (1998) Oscillatory activity in the cerebellar hemispheres of unrestrained rats. J Neurophysiol 80:1598–1604

    Article  CAS  PubMed  Google Scholar 

  • Hassler R, Muhs-Clement K (1964) Architectonic construction of the sensorimotor and parietal cortex in the cat. J Hirnforsch 20:377–420

    Google Scholar 

  • Hesslow G, Yeo C (1998) Cerebellum and learning: a complex problem. Science 280:1817–1819

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann LC, Berry SD (2009) Cerebellar theta oscillations are synchronized during hippocampal theta-contingent trace conditioning. Proc Natl Acad Sci U S A 106:21371–21376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang CC, Sugino K, Shima Y, Guo C, Bai S, Mensh BD, Nelson SB, Hantman AW (2013) Convergence of pontine and proprioceptive streams onto multimodal cerebellar granule cells. Elife 2:e00400

    Article  PubMed  PubMed Central  Google Scholar 

  • Hyvärinen J (1982) Posterior parietal lobe of the primate brain. Physiol Rev 62:1060–1129

    Article  PubMed  Google Scholar 

  • Ito M (1984) The cerebellum and neural control. Raven, New York

    Google Scholar 

  • Jansen J (1957) Afferent impulses to the cerebellar hemispheres from the cerebral cortex and certain subcortical nuclei; an electroanatomical study in the cat. Acta Physiol Scand Suppl 41:1–99

    Article  PubMed  Google Scholar 

  • Joseph JW, Shambes GM, Gibson JM, Welker W (1978) Tactile projections to granule cells in caudal vermis of the rat's cerebellum. Brain Behav Evol 15:141–149

    Article  CAS  PubMed  Google Scholar 

  • Kassel J, Shambes GM, Welker W (1984) Fractured cutaneous projections to the granule cell layer of the posterior cerebellar hemisphere of the domestic cat. J Comp Neurol 225:458–468

    Article  CAS  PubMed  Google Scholar 

  • Kelly RM, Strick PL (2000) Rabies as a transneuronal tracer of circuits in the central nervous system. J Neurosci Methods 103:63–71

    Article  CAS  PubMed  Google Scholar 

  • Kelly RM, Strick PL (2003) Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. J Neurosci 23:8432–8444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kitai ST, Oshima T, Provini L, Tsukahara N (1969) Cerebro-cerebellar connections mediated by fast and slow conducting pyramidal tract fibers of the cat. Brain Res 15:267–271

    Article  CAS  PubMed  Google Scholar 

  • Kitao Y, Nakamura Y, Okoyama S (1983) An electron microscope study of the cortico-pretecto-olivary projection in the cat by a combined degeneration and horseradish peroxidase tracing technique. Brain Res 280:139–142

    Article  CAS  PubMed  Google Scholar 

  • Kyuhou S (1992) Cerebro-cerebellar projections from the ventral bank of the anterior ectosylvian sulcus in the cat. J Physiol 451:673–687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lang EJ, Sugihara I, Welsh JP, Llinas R (1999) Patterns of spontaneous purkinje cell complex spike activity in the awake rat. J Neurosci 19:2728–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lang EJ, Llinas R, Sugihara I (2006a) Isochrony in the olivocerebellar system underlies complex spike synchrony. J Physiol 573:277–279. author reply 281-272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lang EJ, Sugihara I, Llinas R (2006b) Olivocerebellar modulation of motor cortex ability to generate vibrissal movements in rat. J Physiol 571:101–120

    Article  CAS  PubMed  Google Scholar 

  • Larsell O (1953) The cerebellum of the cat and the monkey. J Comp Neurol 99:135–199

    Article  CAS  PubMed  Google Scholar 

  • Larsell O (1970) The comparative anatomy and histology of the cerebellum from monotremes through primates. University of Minnesota Press, Minneapolis

    Google Scholar 

  • Leergaard TB, Bjaalie JG (2007) Topography of the complete corticopontine projection: from experiments to principal Maps. Front Neurosci 1:211–223

    Article  PubMed  PubMed Central  Google Scholar 

  • Leergaard TB, Lillehaug S, De Schutter E, Bower JM, Bjaalie JG (2006) Topographical organization of pathways from somatosensory cortex through the pontine nuclei to tactile regions of the rat cerebellar hemispheres. Eur J Neurosci 24:2801–2812

    Article  PubMed  Google Scholar 

  • Legg CR, Mercier B, Glickstein M (1989) Corticopontine projection in the rat: the distribution of labelled cortical cells after large injections of horseradish peroxidase in the pontine nuclei. J Comp Neurol 286:427–441

    Article  CAS  PubMed  Google Scholar 

  • Leiner HC, Leiner AL, Dow RS (1991) The human cerebro-cerebellar system: its computing, cognitive, and language skills. Behav Brain Res 44:113–128

    Article  CAS  PubMed  Google Scholar 

  • Lidierth M, Apps R (1990) Gating in the spino-olivocerebellar pathways to the c1 zone of the cerebellar cortex during locomotion in the cat. J Physiol 430:453–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Llinas RR (2009) Inferior olive oscillation as the temporal basis for motricity and oscillatory reset as the basis for motor error correction. Neuroscience 162:797–804

    Article  CAS  PubMed  Google Scholar 

  • Llinas R, Sasaki K (1989) The functional organization of the olivo-cerebellar system as examined by multiple Purkinje cell recordings. Eur J Neurosci 1:587–602

    Article  PubMed  Google Scholar 

  • Llinas R, Yarom Y (1981a) Electrophysiology of mammalian inferior olivary neurones in vitro. Different types of voltage-dependent ionic conductances. J Physiol 315:549–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Llinas R, Yarom Y (1981b) Properties and distribution of ionic conductances generating electroresponsiveness of mammalian inferior olivary neurones in vitro. J Physiol 315:569–584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Llinas R, Yarom Y (1986) Oscillatory properties of guinea-pig inferior olivary neurones and their pharmacological modulation: an in vitro study. J Physiol 376:163–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez L, Lamas JA, Canedo A (1995) Pyramidal tract and corticospinal neurons with branching axons to the dorsal column nuclei of the cat. Neuroscience 68:195–206

    Article  CAS  PubMed  Google Scholar 

  • Middleton FA, Strick PL (1994) Anatomical evidence for cerebellar and basal ganglia involvement in higher cognitive function. Science 266:458–461

    Article  CAS  PubMed  Google Scholar 

  • Middleton FA, Strick PL (1997a) Dentate output channels: motor and cognitive components. Prog Brain Res 114:553–566

    Article  CAS  PubMed  Google Scholar 

  • Middleton FA, Strick PL (1997b) Cerebellar output channels. Int Rev Neurobiol 41:61–82

    Article  CAS  PubMed  Google Scholar 

  • Mihailoff GA, McArdle CB, Adams CE (1981) The cytoarchitecture, cytology, and synaptic organization of the basilar pontine nuclei in the rat I. Nissl and Golgi studies. J Comp Neurol 195:181–201

    Article  CAS  PubMed  Google Scholar 

  • Miles TS, Wiesendanger M (1975) Climbing fiber inputs to cerebellar Purkinje cells from trigeminal cutaneous afferents and the SI face area of the cerebral cortex in the cat. J Physiol 245:425–445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller S, Nezlina N, Oscarsson O (1969) Projection and convergence patterns in climbing fiber paths to cerebellar anterior lobe activated from cerebral cortex and spinal cord. Brain Res 14:230–233

    Article  CAS  PubMed  Google Scholar 

  • Molinari HH, Schultze KE, Strominger NL (1996) Gracile, cuneate, and spinal trigeminal projections to inferior olive in rat and monkey. J Comp Neurol 375:467–480

    Article  CAS  PubMed  Google Scholar 

  • Morissette J, Bower JM (1996) Contribution of somatosensory cortex to responses in the rat cerebellar granule cell layer following peripheral tactile stimulation. Exp Brain Res 109:240–250

    Article  CAS  PubMed  Google Scholar 

  • Nakamura Y, Kitao Y, Okoyama S (1983) Cortico-Darkschewitsch-olivary projection in the cat: an electron microscope study with the aid of horseradish peroxidase tracing technique. Brain Res 274:140–143

    Article  CAS  PubMed  Google Scholar 

  • O’Connor SM, Berg RW, Kleinfeld D (2002) Coherent electrical activity between vibrissa sensory areas of cerebellum and neocortex is enhanced during free whisking. J Neurophsyiol. 87(4):2137–48

    Google Scholar 

  • Odeh F, Ackerley R, Bjaalie JG, Apps R (2005) Pontine maps linking somatosensory and cerebellar cortices are in register with climbing fiber somatotopy. J Neurosci 25:5680–5690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oka H, Sasaki K, Matsuda Y, Yasuda T, Mizuno N (1975) Responses of pontocerebellar neurones to stimulation of the parietal association and the frontal motor cortices. Brain Res 93:399–407

    Article  CAS  PubMed  Google Scholar 

  • Oka H, Jinnai K, Yamamoto T (1979) The parieto-rubro-olivary pathway in the cat. Exp Brain Res 37:115–125

    Article  CAS  PubMed  Google Scholar 

  • Oscarsson O (1980a) Functional organization of olivary projection to the cerebellar anterior lobe. In: Courville J, De Montigny C, Lamarre Y (eds) The inferior olivary nucleus: anatomy and physiology. Raven, New York, pp 279–289

    Google Scholar 

  • Oscarsson O (1980b) Sagittal zones and microzones – the functional units of cerebellum. In: Szentgothai J, Hamori M, Palkovits M (eds) Regulatory functions of the CNS subsystems. Pergamon Press, Elmsford, pp 21–28. (Adv Physiol Sci 2)

    Google Scholar 

  • Pandya DN, Seltzer B, Barbas H (1988) Input-output organization of the primate cerebral cortex. In: Steklis HD, Erwin J (eds) Comparative primate biology. A.R. Liss, New York, pp 39–80

    Google Scholar 

  • Pardoe J, Edgley SA, Drew T, Apps R (2004) Changes in excitability of ascending and descending inputs to cerebellar climbing fibers during locomotion. J Neurosci 24:2656–2666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parker KL, Kim YC, Kelley RM, Nessler AJ, Chen KH, Muller-Ewald VA, Andreasen NC, Narayanan NS (2017) Delta-frequency stimulation of cerebellar projections can compensate for schizophrenia-related medial frontal dysfunction. Mol Psychiatry 22:647–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paxinos G, Watson C (eds) (2005) Rat brain in stereotaxic Co-ordinates. Academic, San Diego

    Google Scholar 

  • Placantonakis DG, Bukovsky AA, Aicher SA, Kiem HP, Welsh JP (2006) Continuous electrical oscillations emerge from a coupled network: a study of the inferior olive using lentiviral knockdown of Connexin36. J Neurosci 26:5008–5016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Proville RD, Spolidoro M, Guyon N, Dugué GP, Selimi F, Isope P, Popa D, Léna C (2014) Cerebellum involvement in cortical sensorimotor circuits for the control of voluntary movements. Nat Neurosci 17(9):1233–1239

    Article  CAS  PubMed  Google Scholar 

  • Provini L, Redman S, Strata P (1968) Mossy and climbing fiber organization on the anterior lobe of the cerebellum activated by forelimb and hindlimb areas of the sensorimotor cortex. Exp Brain Res 6:216–233

    Article  CAS  PubMed  Google Scholar 

  • Ramanathan DS, Gulati T, Ganguly K (2015) Sleep-Dependent Reactivation of Ensembles in Motor Cortex Promotes Skill Consolidation. PLoS Biol 13:e1002263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramnani N (2006) The primate cortico-cerebellar system: anatomy and function. Nat Rev Neurosci 7:511–522

    Article  CAS  PubMed  Google Scholar 

  • Rogers TD, Dickson PE, McKimm E, Heck DH, Goldowitz D, Blaha CD, Mittleman G (2013) Reorganization of circuits underlying cerebellar modulation of prefrontal cortical dopamine in mouse models of autism spectrum disorder. Cerebellum 12(4):547–556

    Article  CAS  PubMed  Google Scholar 

  • Rowe MJ (1977) Cerebral cortical areas associated with the activation of climbing fiber input to cerebellar Purkinje cells. Arch Ital Biol 115:79–93

    CAS  PubMed  Google Scholar 

  • Rowland NC, Goldberg JA, Jaeger D (2010) Cortico-cerebellar coherence and causal connectivity during slow-wave activity. Neuroscience 166:698–711

    Article  CAS  PubMed  Google Scholar 

  • Rutherford JG, Zuk-Harper A, Gwyn DG (1989) A comparison of the distribution of the cerebellar and cortical connections of the nucleus of Darkschewitsch (ND) in the cat: a study using anterograde and retrograde HRP tracing techniques. Anat Embryol (Berl) 180:485–486

    Article  CAS  Google Scholar 

  • Saint-Cyr JA (1983) The projection from the motor cortex to the inferior olive in the cat. An experimental study using axonal transport techniques. Neuroscience 10:667–684

    Article  CAS  PubMed  Google Scholar 

  • Saint-Cyr JA, Courville J (1982) Descending projections to the inferior olive from the mesencephalon and superior colliculus in the cat. An autoradiographic study. Exp Brain Res 45:333–348

    Article  CAS  PubMed  Google Scholar 

  • Sasaki K, Matsuda Y, Oka H, Shimono T, Mizuno N (1973) Proceedings: 261. On the projection from the parietal association cortex to the cerebellum. Nippon Seirigaku Zasshi 35:492

    CAS  PubMed  Google Scholar 

  • Sasaki K, Oka H, Matsuda Y, Shimono T, Mizuno N (1975) Electrophysiological studies of the projections from the parietal association area to the cerebellar cortex. Exp Brain Res 23:91–102

    Article  CAS  PubMed  Google Scholar 

  • Sasaki K, Oka H, Kawaguchi S, Jinnai K, Yasuda T (1977) Mossy fiber and climbing fiber responses produced in the cerebellar cortex by stimulation of the cerebral cortex in monkeys. Exp Brain Res 29:419–428

    CAS  PubMed  Google Scholar 

  • Schmahmann JD, Pandya DN (1991) Projections to the basis pontis from the superior temporal sulcus and superior temporal region in the rhesus monkey. J Comp Neurol 308:224–248

    Article  CAS  PubMed  Google Scholar 

  • Schmahmann JD, Pandya DN (1993) Prelunate, occipitotemporal, and parahippocampal projections to the basis pontis in rhesus monkey. J Comp Neurol 337:94–112

    Article  CAS  PubMed  Google Scholar 

  • Schmahmann JD, Pandya DN (1995) Prefrontal cortex projections to the basilar pons in rhesus monkey: implications for the cerebellar contribution to higher function. Neurosci Lett 199:175–178

    Article  CAS  PubMed  Google Scholar 

  • Schmahmann JD, Pandya DN (1997) Anatomic organization of the basilar pontine projections from prefrontal cortices in rhesus monkey. J Neurosci 17:438–458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwarz C (2010) The fate of spontaneous synchronous rhythms on the cerebrocerebellar loop. Cerebellum 9:77–87

    Article  PubMed  Google Scholar 

  • Schwarz C, Thier P (1995) Modular organization of the pontine nuclei – dendritic fields of identified pontine projection neurons in the rat respect the borders of cortical afferent fields. J Neurosci 15:3475–3489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwarz C, Thier P (2000) Reply. Trends Neurosci 23:152–153

    Article  CAS  PubMed  Google Scholar 

  • Schwarz C, Welsh JP (2001) Dynamic modulation of mossy fiber system throughput by inferior olive synchrony: a multielectrode study of cerebellar cortex activated by motor cortex. J Neurophysiol 86:2489–2504

    Article  CAS  PubMed  Google Scholar 

  • Shambes GM, Gibson JM, Welker W (1978a) Fractured somatotopy in granule cell tactile areas of rat cerebellar hemispheres revealed by micromapping. Brain Behav Evol 15:94–140

    Article  CAS  PubMed  Google Scholar 

  • Shambes GM, Beermann DH, Welker W (1978b) Multiple tactile areas in cerebellar cortex: another patchy cutaneous projection to granule cell columns in rats. Brain Res 157:123–128

    Article  CAS  PubMed  Google Scholar 

  • Sokolov AA, Miall RC, Ivry RB (2017) The cerebellum: adaptive prediction for movement and cognition. Trends Cogn Sci 21:313–332

    Article  PubMed  PubMed Central  Google Scholar 

  • Solinas S, Nieus T, D'Angelo E (2010) A realistic large-scale model of the cerebellum granular layer predicts circuit spatio-temporal filtering properties. Front Cell Neurosci 4:12

    PubMed  PubMed Central  Google Scholar 

  • Soteropoulos DS, Baker SN (2006) Cortico-cerebellar coherence during a precision grip task in the monkey. J Neurophysiol 95:1194–1206

    Article  PubMed  Google Scholar 

  • Spence SJ, Saint-Cyr JA (1988) Comparative topography of projections from the mesodiencephalic junction to the inferior olive, vestibular nuclei, and upper cervical cord in the cat. J Comp Neurol 268:357–374

    Article  CAS  PubMed  Google Scholar 

  • Steriade M (1995) Two channels in the cerebellothalamocortical system. J Comp Neurol 354:57–70

    Article  CAS  PubMed  Google Scholar 

  • Steriade M, Gloor P, Llinas RR, Lopes de Silva FH, Mesulam MM (1990) Report of IFCN committee on basic mechanisms. Basic mechanisms of cerebral rhythmic activities. Electroencephalogr Clin Neurophysiol 76:481–508

    Article  CAS  PubMed  Google Scholar 

  • Stoodley CJ, D’Mello AM, Ellegood J, Jakkamsetti V, Liu P, Nebel MB, Gibson JM, Kelly E, Meng F, Cano CA, Pascual JM, Mostofsky SH, Lerch JP, Tsai PT (2017) Altered cerebellar connectivity in autism and cerebellar-mediated rescue of autism-related behaviors in mice. Nat Neurosci 20:1744–1751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strick PL, Dum RP, Fiez JA (2009) Cerebellum and nonmotor function. Annu Rev Neurosci 32:413–434

    Article  CAS  PubMed  Google Scholar 

  • Suzuki L, Coulon P, Sabel-Goedknegt EH, Ruigrok TJ (2012) Organization of cerebral projections to identified cerebellar zones in the posterior cerebellum of the rat. J Neurosci 32(32):10854–10869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swenson RS, Castro AJ (1983) The afferent connections of the inferior olivary complex in rats. An anterograde study using autoradiographic and axonal degeneration techniques. Neuroscience 8:259–275

    Article  CAS  PubMed  Google Scholar 

  • Swenson RS, Sievert CF, Terreberry RR, Neafsey EJ, Castro AJ (1989) Organization of cerebral cortico-olivary projections in the rat. Neurosci Res 7:43–54

    Article  CAS  PubMed  Google Scholar 

  • Takeda T, Maekawa K (1976) The origin of the pretecto-olivary tract. A study using the horseradish peroxidase method. Brain Res 117:319–325

    Article  CAS  PubMed  Google Scholar 

  • Teune TM, van der Burg J, van der Moer J, Voogd J, Ruigrok TJ (2000) Topography of cerebellar nuclear projections to the brain stem in the rat. Prog Brain Res 124:141–172

    Article  CAS  PubMed  Google Scholar 

  • Tomasch J (1969) Numerical capacity of human cortico-ponto-cerebellar system. Brain Res 13:476–484

    Article  CAS  PubMed  Google Scholar 

  • Towe AL, Jabbur SJ (1961) Cortical inhibition of neurons in dorsal column nuclei of cat. J Neurophysiol 24:488–498

    Article  CAS  PubMed  Google Scholar 

  • Van Der Giessen RS, Koekkoek SK, van Dorp S, De Gruijl JR, Cupido A, Khosrovani S, Dortland B, Wellershaus K, Degen J, Deuchars J, Fuchs EC, Monyer H, Willecke K, De Jeu MT, De Zeeuw CI (2008) Role of olivary electrical coupling in cerebellar motor learning. Neuron 58:599–612

    Article  CAS  Google Scholar 

  • Voogd J (2011) Cerebellar zones: a personal history. Cerebellum 10:334–350

    Article  PubMed  Google Scholar 

  • Voogd J, Barmack NH (2005) Oculomotor cerebellum. Prog Brain Res 151:231–268

    Article  Google Scholar 

  • Voogd J, Glickstein M (1998) The anatomy of the cerebellum. Trends Neurosci 21:370–375

    Article  CAS  PubMed  Google Scholar 

  • Voogd J, Pardoe J, Ruigrok TJ, Apps R (2003) The distribution of climbing and mossy fiber collateral branches from the copula pyramidis and the paramedian lobule: congruence of climbing fiber cortical zones and the pattern of zebrin banding within the rat cerebellum. J Neurosci 23:4645–4656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walberg F (1956) Descending connections to the inferior olive; an experimental study in the cat. J Comp Neurol 104:77–173

    Article  CAS  PubMed  Google Scholar 

  • Watson TC, Jones MW, Apps R (2009) Electrophysiological mapping of novel prefrontal - cerebellar pathways. Front Integr Neurosci 3:18

    Article  PubMed  PubMed Central  Google Scholar 

  • Watson TC, Becker N, Apps R, Jones MW (2014) Back to Front: cerebellar connections and interactions with the prefrontal cortex. Front Syst Neurosci 8:4

    Article  PubMed  PubMed Central  Google Scholar 

  • Woolsey CN (1958) Organization of somatic sensory and motor areas of the cerebral cortex. In: Harlow HF, Woolsey CN (eds) Biological and biochemical bases of behavior. University of Wisconsin, Madison, pp 63–81

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Thomas C. Watson or Richard Apps .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Watson, T.C., Apps, R. (2019). Cerebro-Cerebellar Connections. In: Manto, M., Gruol, D., Schmahmann, J., Koibuchi, N., Sillitoe, R. (eds) Handbook of the Cerebellum and Cerebellar Disorders. Springer, Cham. https://doi.org/10.1007/978-3-319-97911-3_48-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97911-3_48-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97911-3

  • Online ISBN: 978-3-319-97911-3

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Cerebro-Cerebellar Connections
    Published:
    23 May 2019

    DOI: https://doi.org/10.1007/978-3-319-97911-3_48-3

  2. Original

    Cerebro-Cerebellar Connections
    Published:
    01 March 2019

    DOI: https://doi.org/10.1007/978-3-319-97911-3_48-2