Skip to main content

Taurine in the Cerebellum Contact Information

Handbook of the Cerebellum and Cerebellar Disorders

Abstract

Taurine (2-aminoethanesulfonic acid) is a sulfur-containing amino acid. It is one of the most abundant free amino acids in many excitable tissues, including the brain and skeletal and cardiac muscles. Physiological actions of taurine are widespread and include regulation of plasma glucose levels, bile acid conjugation, detoxification, membrane stabilization, blood pressure regulation, osmoregulation, neurotransmission, and modulation of mitochondria function and cellular calcium levels. Taurine plays an important role in modulating glutamate and GABA neurotransmission and prevents excitotoxicity in vitro primarily through modulation of intracellular calcium homeostasis. Taurine supplementation prevents age-dependent decline of cognitive functions. Because of the widespread actions of taurine, its levels are highly regulated through enzymatic biosynthesis or dietary intake. Furthermore, depletion of endogenous or dietary supplementation of exogenous taurine has been shown to induce widespread actions on multiple organs. Cysteine sulfonic acid decarboxylase (CSAD) was first identified in the liver and is thought to be the rate-limiting enzyme in taurine biosynthesis. CSAD mRNA is expressed in the brain in astrocytes. Homozygous knockout mice lacking CSAD (CSAD-KO) have very reduced taurine content and show severe functional histopathology in the visual system, skeletal system, heart, pancreas, and brain. Conversely, dietary supplementation of taurine results in significant health benefits acting through the same organ systems. Fluctuation of taurine bioavailability leads to changes in the expression levels of taurine transporters in neuronal plasma membranes, endothelial cells forming the blood-brain barrier, and proximal cells of the kidneys. This suggests a highly regulated mechanism for maintaining taurine homeostasis and organ systems function. This chapter discusses examples of how alterations in taurine levels directly affect the function of one organ system and through functional interaction and compensatory adaptation; these effects extend to another organ systems with focus on cerebellar function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ábrahám H, Richter Z, Gyimesi C, Horváth Z, Janszky J, Dóczi T, Seress L (2011) Degree and pattern of calbindin immunoreactivity in granule cells of the dentate gyrus differ in mesial temporal sclerosis, cortical malformation- and tumor-related epilepsies. Brain Res 1399:66–78

    Article  PubMed  Google Scholar 

  • Agrawal H, Davison A, Kaczmarek L (1971) Subcellular distribution of taurine and cysteinesulphinate decarboxylase in developing rat brain. Biochem J 122(5):759–763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmad M, Khan A, Mahmood R (2013) Taurine ameliorates potassium bromate-induced kidney damage in rats. Amino Acids 45(5):1109–1121

    Article  CAS  PubMed  Google Scholar 

  • Arany E, Strutt B, Romanus P, Remacle C, Reusens B, Hill DJ (2004) Taurine supplement in early life altered islet morphology, decreased insulitis and de-layed the onset of diabetes in non-obese diabetic mice. Diabetologia 47:1831–1837

    Article  CAS  PubMed  Google Scholar 

  • Banks WA, Jaspan JB, Huang W, Kastin AJ (1997) Transport of insulin across the blood-brain barrier: saturability at euglycemic doses of insulin. Peptides 18(9):1423–1429

    Article  CAS  PubMed  Google Scholar 

  • Benuck M, Banay-Schwartz M, Deguzman T, Lajtha A (1995) Effect of food deprivation on glutathione and amino acid levels in brain and liver of young and aged rats. Brain Res 678(1):259–264

    Article  CAS  PubMed  Google Scholar 

  • Bonfleur B, Ribeiro C, Soares GM, Carneiro EM, Balbo SL (2015) Improvement in the expression of hepatic genes involved in fatty acid metabolism in obese rats supplemented with taurine. Life Sci 135(C):15–21

    Article  CAS  PubMed  Google Scholar 

  • Carneiro EM, Latorraca MQ, Araujo E, Beltrá M, Oliveras MJ, Navarro M, Martín F (2009) Taurine supplementation modulates glucose homeostasis and islet function. J Nutr Biochem 20(7):503–511

    Article  CAS  PubMed  Google Scholar 

  • Dalmau J, Geis C, Graus F (2017) Autoantibodies to synaptic receptors and neuronal cell surface proteins in autoimmune diseases of the central nervous system. Physiol Rev 97(2):839–887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dugan LL, Choi DW (1999) Free radicals in hypoxia-ischemia. In: Siegel GJ, Agranoff BW, Albers RW et al (eds) Basic neurochemistry: molecular, cellular and medical aspects, 6th edn. Lippincott-Raven, Philadelphia

    Google Scholar 

  • El Idrissi A (2008) Taurine improves learning and retention in aged mice. Neurosci Lett 436(1):19–22

    Article  PubMed  Google Scholar 

  • El Idrissi A (2011) Functional consequences of taurine interaction with the GABAergic system. Amino Acids 41:S83–S83

    Google Scholar 

  • El Idrissi A, Trenkner E (1999) Growth factors and taurine protect against excitotoxicity by stabilizing calcium homeostasis and energy metabolism. J Neurosci 19:9459–9468

    Article  PubMed  Google Scholar 

  • El Idrissi A, Trenkner E (2004) Taurine as a modulator of excitatory and inhibitory neurotransmission. Neurochem Res 29:189–197

    Article  PubMed  Google Scholar 

  • El Idrissi A, Messing J, Scalia J, Trenkner E (2003) Prevention of epileptic seizures through taurine. In: Lombardini JB, Schaffer SW, Azuma J (eds) Taurine 5 beginning the 21st century, Advances in experimental medicine and biology, vol 526. Kluwer Press, New York, pp 515–525

    Google Scholar 

  • El Idrissi A, Yan X, Sidime F, L’Amoreaux WJ (2010) Neuro-endocrine basis for altered plasma glucose homeostasis in the fragile X mouse. J Biomed Sci 17(Suppl 1):S8–S8

    Article  PubMed  PubMed Central  Google Scholar 

  • El Idrissi A, Shen CH, L’Amoreaux WJ (2013) Neuroprotective role of taurine during aging. Amino Acids 45(4):735–750. https://doi.org/10.1007/s00726-013-1544-7. 23963537

    Article  CAS  PubMed  Google Scholar 

  • El Idrissi A, El Hilali F, Rotondo S, Sidime F (2017) Effects of taurine supplementation on neuronal excitability and glucose homeostasis. Adv Exp Med Biol 975:271–279. https://doi.org/10.1007/978-94-024-1079-2_24. 28849462

    Article  CAS  PubMed  Google Scholar 

  • Eom H, Park J (2017) Inhibitory effect of taurine on biofilm formation during alkane degradation in Acinetobacter oleivorans DR1. Microb Ecol 74(4):821–831

    Article  CAS  PubMed  Google Scholar 

  • Erlander MG, Tillakaratne NJK, Feldblum S, Patel N, Tobin AJ (1991) Two genes encode distinct glutamate decarboxylases. Neuron 7:91–100

    Article  CAS  PubMed  Google Scholar 

  • Hayashi M, Yamashita A, Shimizu K (1997) Somatostatin and brain-derived neurotrophic factor mRNA expression in the primate brain: decreased levels of mRNAs during aging. Brain Res 749(2):283–289

    Article  CAS  PubMed  Google Scholar 

  • Huxtable RJ (1989) Taurine in the central nervous system and the mammalian action actions of taurine. Prog Neurobiol 32:471–533

    Article  CAS  PubMed  Google Scholar 

  • Ishibashi H, Akaike N (1995) Somatostatin modulates high-voltageactivated ca channels in freshly dissociated rat hippocampal neurons. J Neurophysiol 74:1028–1036

    Article  CAS  PubMed  Google Scholar 

  • Khodorov B, Storozhevykh I, Surin T, Yuryavichyus P, Sorokina A, Borodin M, Pinelis V (2002) The leading role of mitochondrial depolarization in the mechanism of glutamate-induced disruptions in Ca2+ homeostasis. Neurosci Behav Physiol 32(5):541–547

    Article  CAS  PubMed  Google Scholar 

  • Kuriyama K, Hashimoto T (1998) Interrelationship between taurine and GABA. Adv Exp Med Biol 442:329–337

    Article  CAS  PubMed  Google Scholar 

  • Lau D, Bengtson CP, Buchthal B, Bading H (2015) BDNF reduces toxic extrasynaptic NMDA receptor signaling via synaptic NMDA receptors and nuclear-calcium-induced transcription of inhba/Activin A. Cell Rep 12(8):1353–1366

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Tonna-DeMasi M, Park E, Schuller-Levis G, Quinn MR (1998) Taurine chloramine inhibits production of nitric oxide and prostaglandin E2 in activated C6 glioma cells by suppressing inducible nitric oxide synthase and cyclooxygenase-2 expression. Brain Res Mol Brain Res 59:189–195

    Article  CAS  PubMed  Google Scholar 

  • Lötsch J, Hummel T, Warskulat U, Coste O, Häussinger D, Geisslinger G, Tegeder I (2014) Congenital taurine deficiency in mice is associated with reduced sensitivity to nociceptive chemical stimulation. Neuroscience 259(C):63–70

    Article  PubMed  Google Scholar 

  • Luscher B, Shen Q, Sahir N (2011) The GABAergic deficit hypothesis of major depressive disorder.(Report). Mol Psychiatry 16(4):383–406

    Article  CAS  PubMed  Google Scholar 

  • Magnusson K, Madl J, Clements J, Wu J, Larson A, Beitz A (1988) Colocalization of taurine- and cysteine sulfinic acid decarboxylase-like immunoreactivity in the cerebellum of the rat with monoclonal antibodies against taurine. J Neurosci Off J Soc Neurosci 8(12):4551–4564

    Article  CAS  Google Scholar 

  • Marks DR, Tucker K, Cavallin MA, Mast TG, Fadool DA (2009) Awake intrana-Sal insulin delivery modifies protein complexes and alters memory, anxiety, and olfactory behaviors. J Neurosci 29:6734–6751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin D, Madelian V, Seligmann B, Shain W (1990) The role of osmotic pressure and membrane potential in K+-stimulated taurine release from cultured astrocytes and LRM55 cells. J Neurosci Off J Soc Neurosci 10(2):571–577

    Article  CAS  Google Scholar 

  • Mellor JR, Gunthorpe MJ, Randall AD (2000) The taurine uptake inhibitor guanidinoethyl sulphonate is an agonist at γ-aminobutyric acid a receptors in cultured murine cerebellar granule cells. Neurosci Lett 286(1):25–28

    Article  CAS  PubMed  Google Scholar 

  • Mielke JG, Taghibiglou C, Wang YT (2006) Endogenous insulin signaling protects cultured neurons from oxygen–glucose deprivation-induced cell death. Neuroscience 143:165–173

    Article  CAS  PubMed  Google Scholar 

  • Miranda-Contreras L, Benítez-Diaz PR, Mendoza-Briceño RV, Delgado-Saez MC, Palacios-Prü EL (1999) Levels of amino acid neurotransmitters during mouse cerebellar neurogenesis and in histotypic cerebellar cultures. Dev Neurosci 21:147–158

    Article  CAS  PubMed  Google Scholar 

  • Moghbelinejad S, Rashvand Z, Khodabandehloo F, Mohammadi G, Nassiri-Asl M (2016) Modulation of the expression of the GABAA receptor β1 and β3 subunits by pretreatment with quercetin in the KA model of epilepsy in mice: -the effect of quercetin on GABAA receptor Beta subunits. J Pharm 19(2):163–166

    Google Scholar 

  • Moore SD, Madamba SG, Joels M, Siggins GR (1988) Somatostatin augments the M-current in hippocampal neurons. Science 239:278–280

    Article  CAS  PubMed  Google Scholar 

  • Nguyen T, Bhattarai J, Park S, Han S (2013) Activation of Glycine and Extrasynaptic GABA receptors by taurine on the substantia Gelatinosa neurons of the trigeminal subnucleus Caudalis. Neural Plast 2013(4):740581

    PubMed  PubMed Central  Google Scholar 

  • Petrik J, Arany E, McDonald TJ, Hill DJ (1998) Apoptosis in the pancreatic islet cells of the neonatal rat is associated with a reduced expression of insulin-like growth factor II that may act as a survival factor. Endocrinology 139:2994–3004

    Article  CAS  PubMed  Google Scholar 

  • Pitari G, Malergue F, Martin F, Philippe JP, Massucci MT, Maras CB, Duprè S, Naquet P, Galland F (2000) Pantetheinase activity of membrane-bound Vanin-1: lack of free cysteamine in tissues of Vanin-1 deficient mice. FEBS Lett 483:149–154

    Article  PubMed  Google Scholar 

  • Plum L, Schubert M, Brüning JC (2005) The role of insulin receptor signaling in the brain. Trends Endocrinol Metab 16:59–65

    Article  CAS  PubMed  Google Scholar 

  • Prentki M, Janjic D, Wollheim C (1983) The regulation of extramitochondrial steady state free Ca2 concentration by rat insulinoma mitochondria. J Biol Chem 258(12):7597–7602

    CAS  PubMed  Google Scholar 

  • Riback CE, Lauterborn JC, Navetta MS, Gall CM (1993) The inferior colliculus of GEPRs contains greater numbers of cells that express glutamate decarboxylase (GAD67) mRNA. Epilepsy Res 14:105–113

    Article  Google Scholar 

  • Rose J, Brian C, Woods J, Pappa A, Panayiotidis MI, Powers R, Franco R (2017) Mitochondrial dysfunction in glial cells: implications for neuronal homeostasis and survival. Toxicology 391:109–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saransaari P, Oja S (2000) Modulation of the ischemia-induced taurine release by adenosine receptors in the developing and adult mouse hippocampus. Neuroscience 97(3):425–430

    Article  CAS  PubMed  Google Scholar 

  • Scaglia L, Cahill CJ, Finegood DT, Bonner-Weir S (1997) Apoptosis participates in the remodeling of the endocrine pancreas in the neonatal rat. Endocrinology 138(4):1736–1741

    Article  CAS  PubMed  Google Scholar 

  • Shennan D (2008) Swelling-induced taurine transport: relationship with chloride channels, anion-exchangers and other swelling-activated transport pathways. Cell Physiol Biochem 21(1–3):015–028

    Article  CAS  Google Scholar 

  • Silbereis J, Heintz T, Taylor MM, Ganat Y, Ment LR, Bordey A, Vaccarino F (2010) Astroglial cells in the external granular layer are precursors of cerebellar granule neurons in neonates. Mol Cell Neurosci 44(4):362–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sturman JA (1991) Dietary taurine and feline reproduction and development. J Nutr 121(11 Suppl):S166–S170

    Article  CAS  PubMed  Google Scholar 

  • Sturman JA (1993) Taurine in development. Physiol Rev 73:119–147

    Article  CAS  PubMed  Google Scholar 

  • Sturman J, Lu A (1997) Role of feline maternal taurine nutrition in fetal cerebellar development: an immunohistochemical study. Amino Acids 13(3):369–377

    Article  CAS  Google Scholar 

  • Sun QQ, Huguenard JR, Prince DA (2002) Somatostatin inhibits thalamic network oscillations In vitro: actions on the GABAergic neurons of the reticular nucleus. J Neurosci 22:5374–5386

    Article  CAS  PubMed  Google Scholar 

  • Ueki I, Roman H, Valli A, Fieselmann K, Lam J, Peters R, Stipanuk M (2011) Knockout of the murine cysteine dioxygenase gene results in severe impairment in ability to synthesize taurine and an increased catabolism of cysteine to hydrogen sulfide. Am J Physiol Endocrinol Metab 301(4):E668–E684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Unger JW, Livingston JN, Moss AM (1991) Insulin receptors in the central nervous system: localization, signalling mechanisms and functional aspects. Prog Neurobiol 36:343–362

    Article  CAS  PubMed  Google Scholar 

  • Van Den Pol A, Gorcs T (1988) Glycine and glycine receptor immunoreactivity in brain and spinal cord. J Neurosci Off J Soc Neurosci 8(2):472–492

    Article  Google Scholar 

  • Vezzani A, Hoyer D (1999) Brain somatostatin: a candidate inhibitory role in seizures and epileptogenesis. Eur J Neurosci 11:3767–3776

    Article  CAS  PubMed  Google Scholar 

  • Willoughby JO, Mackenzie L (1999) Picrotoxin-, kainic acid- and seizure-induced Fos in brainstem, with special reference to catecholamine cell groups. Neurosci Res 33:163–169

    Article  CAS  PubMed  Google Scholar 

  • Winter C, Djodari-Irani A, Sohr R, Morgenstern R, Feldon J, Juckel G, Meyer U (2009) Prenatal immune activation leads to multiple changes in basal neurotransmitter levels in the adult brain: implications for brain disorders of neurodevelopmental origin such as schizophrenia. Int J Neuropsychopharmacol 12(4):513–524

    Article  CAS  PubMed  Google Scholar 

  • Wu JY, Tang XW, Schloss JV, Faiman MD (1998) Regulation of taurine biosynthesis and its physiological significance in the brain. Adv Exp Med Biol 442:339–345

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Kim S (2007) Taurine induces anti-anxiety by activating strychnine-sensitive Glycine receptor in vivo. Ann Nutr Metab 51(4):379–386

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdeslem El Idrissi .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

El Idrissi, A., Sidime, F., Rotondo, S., Ahmed, Z. (2019). Taurine in the Cerebellum Contact Information. In: Manto, M., Gruol, D., Schmahmann, J., Koibuchi, N., Sillitoe, R. (eds) Handbook of the Cerebellum and Cerebellar Disorders. Springer, Cham. https://doi.org/10.1007/978-3-319-97911-3_114-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97911-3_114-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97911-3

  • Online ISBN: 978-3-319-97911-3

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Taurine in the Cerebellum
    Published:
    07 May 2019

    DOI: https://doi.org/10.1007/978-3-319-97911-3_114-2

  2. Original

    Taurine in the Cerebellum Contact Information
    Published:
    21 February 2019

    DOI: https://doi.org/10.1007/978-3-319-97911-3_114-1