Skip to main content

Polymer Reaction Engineering Tools to Tailor Smart and Superabsorbent Hydrogels

Cellulose-Based Superabsorbent Hydrogels

Abstract

Experimental and theoretical tools to describe and tailor polymer network formation processes are here addressed. Although a special emphasis is given to the synthesis, characterization, and applications of smart and superabsorbent polymers, other networks with higher cross-linker contents are also prospected. Purely synthetic and cellulose-based hydrogels are both considered in this research. The reactor type (e.g., batch or continuous flow micro-reactor), polymerization process (e.g., bulk, inverse suspension, or precipitation polymerization), and polymerization mechanism (e.g., classic free radical polymerization or reversible deactivation radical polymerization RDRP) are highlighted as possible tools to change the morphology and the molecular architecture of polymer networks and hydrogels. The tailoring of cellulose-synthetic hybrid materials is also addressed through the use of RAFT-mediated polymer grafting. Case studies showing the applications of the synthesized materials are presented, namely, molecularly imprinted hydrogel particles for retention of aminopyridines, molecularly imprinted polymers for polyphenols, caffeine or 5-fluorouracil selective uptake/release, as well as modified cellulose adsorbents for polyphenol retention. Cellulose-based hydrogels are also considered as possible vehicles for polyphenol-controlled release. The mechanisms of liberation of polyphenols from these materials are analyzed, namely, when supercritical CO2 is used in the hydrogel impregnation process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Galaev I, Mattiasson B (eds) (2008) Smart polymers. Applications in biotechnology and biomedicine. CRC Press, Boca Raton

    Google Scholar 

  2. Buchholz FL, Graham AT (1998) Modern superabsorbent polymer technology. Wiley-VCH, New York

    Google Scholar 

  3. Asúa JM (2007) Polymer reaction engineering. Blackwell Publishing, Oxford

    Book  Google Scholar 

  4. Zohuriaan-Mehr MJ, Kabiri K (2008) Superabsorbent polymer materials: a review. Iran Polym J 17:451–477

    CAS  Google Scholar 

  5. Chang C, Zhang L (2011) Cellulose-based hydrogels: present status and application prospects. Carbohydr Polym 84:40–53

    Article  CAS  Google Scholar 

  6. Kang H, Liu R, Huang Y (2016) Cellulose-based gels. Macromol Chem Phys 217:1322–1334

    Article  CAS  Google Scholar 

  7. Chang C, Zhang L, Zhou J, Zhang L, Kennedy JF (2010) Structure and properties of hydrogels prepared from cellulose in NaOH/urea aqueous solutions. Carbohydr Polym 82:122–127

    Article  CAS  Google Scholar 

  8. Zhou J, Chang C, Zhang R, Zhang L (2007) Hydrogels prepared from unsubstituted cellulose in NaOH/Urea aqueous solution. Macromol Biosci 7:804–809

    Article  PubMed  CAS  Google Scholar 

  9. Ciolacu D, Oprea AM, Anghel N, Cazacu G, Cazacu M (2012) New cellulose–lignin hydrogels and their application in controlled release of polyphenols. Mater Sci Eng C 32:452–463

    Article  CAS  Google Scholar 

  10. Shibayama M (2017) Exploration of ideal polymer networks. Macromol Symp 372:7–13

    Article  CAS  Google Scholar 

  11. Shibayama M (1998) Spatial inhomogeneity and dynamic fluctuations of polymer gels. Macromol Chem Phys 199:1–30

    Article  CAS  Google Scholar 

  12. Kuru EA, Orakdogen N, Okay O (2007) Preparation of homogeneous polyacrylamide hydrogels by free-radical crosslinking copolymerization. Eur Polym J 43:2913–2921

    Article  CAS  Google Scholar 

  13. Yazici I, Okay O (2005) Spatial inhomogeneity in poly(acrylic acid) hydrogels. Polymer 46:2595–2602

    Article  CAS  Google Scholar 

  14. Flory PJ, Rehner J (1943) Statistical mechanics of cross-linked polymer networks. II. Swelling. J Chem Phys 11:521–526

    Article  CAS  Google Scholar 

  15. Flory PJ (1950) Statistical mechanics of swelling of network structures. J Chem Phys 18:108–111

    Article  CAS  Google Scholar 

  16. van Krevelen DW, Te Nijenhuis K (2008) Properties of polymers. Their correlation with chemical structure; their numerical estimation and prediction from additive group contributions, 4th edn. Elsevier, Amsterdam

    Google Scholar 

  17. Pérez-Salinas P, Jaramillo-Soto G, Rosas-Aburto A, Vázquez-Torres H, Bernad-Bernad MJ, Licea-Claverie Á, Vivaldo-Lima E (2017) Comparison of polymer networks synthesized by conventional free radical and RAFT copolymerization processes in supercritical carbon dioxide. Processes 5:1–23

    Article  Google Scholar 

  18. Gonçalves MAD, Pinto VD, Dias RCS, Costa MRPFN (2010) FTIR-ATR monitoring and SEC/RI/MALLS characterization of ATRP synthesized hyperbranched polyacrylates. Macromol Symp 296:210–228

    Article  CAS  Google Scholar 

  19. Gonçalves MAD, Pinto VD, Dias RCS, Costa MRPFN (2011) Kinetic modeling of the suspension copolymerization of styrene/divinylbenzene with gel formation. Macromol Symp 302:179–190

    Article  CAS  Google Scholar 

  20. Gonçalves MAD, Pinto VD, Dias RCS, Costa MRPFN (2011) Modeling studies on the synthesis of superabsorbent hydrogels using population balance equations. Macromol Symp 306–307:107–125

    Article  CAS  Google Scholar 

  21. Gonçalves MAD, Pinto VD, Costa RAS, Dias RCS, Hernándes-Ortiz JC, Costa MRPFN (2013) Stimuli-responsive hydrogels synthesis using free radical and RAFT polymerization. Macromol Symp 333:41–54

    Article  CAS  Google Scholar 

  22. Gonçalves MAD, Pinto VD, Dias RCS, Costa MRPFN (2013) Polymer reaction engineering studies on smart hydrogels formation. JNPN 9/2:40–45

    Google Scholar 

  23. Gonçalves MAD, Pinto VD, Dias RCS, Hernándes-Ortiz JC, Costa MRPFN (2013) Dynamics of network formation in aqueous suspension RAFT styrene/divinylbenzene copolymerization. Macromol Symp 333:273–285

    Article  CAS  Google Scholar 

  24. Aguiar LG, Gonçalves MAD, Pinto VD, Dias RCS, Costa MRPFN, Giudici R (2014) Mathematical modeling of NMRP of styrene divinylbenzene over the pre- and post-gelation periods including cyclization. Macromol React Eng 8:295–313

    Article  CAS  Google Scholar 

  25. Oliveira D, Dias RCS, Costa MRPFN (2016) Modeling RAFT gelation and grafting of polymer brushes for the production of molecularly imprinted functional particles. Macromol Symp 370:52–65

    Article  CAS  Google Scholar 

  26. Flory PJ (1941) Molecular size distributions in three dimensional polymers. I. Gelation. J Am Chem Soc 63:3083–3090

    Article  CAS  Google Scholar 

  27. Flory PJ (1941) Molecular size distributions in three dimensional polymers. II. Trifunctional branching units. J Am Chem Soc 63:3091–3096

    Article  CAS  Google Scholar 

  28. Flory PJ (1941) Molecular size distributions in three dimensional polymers. III. Tetrafunctional branching units. J Am Chem Soc 63:3096–3100

    Article  CAS  Google Scholar 

  29. Flory PJ (1936) Molecular size distribution in linear condensation polymers. J Am Chem Soc 58:1877–1886

    Article  CAS  Google Scholar 

  30. Flory PJ (1940) Molecular size distribution in ethylene-oxide polymers. J Am Chem Soc 62:1561–1562

    Article  CAS  Google Scholar 

  31. Stockmayer WH (1943) Theory of molecular size distribution and gel formation in branched-chain polymers. J Chem Phys 11:45–55

    Article  CAS  Google Scholar 

  32. Stockmayer WH, Jacobson H (1943) Gel formation in vinyl-divinyl copolymers. J Chem Phys 11:393–393

    Article  CAS  Google Scholar 

  33. Stockmayer WH (1944) Theory of molecular size distribution and gel formation in branched polymers II. General cross linking. J Chem Phys 12:125–131

    Article  CAS  Google Scholar 

  34. Walling C (1945) Gel formation in addition polymerization. J Am Chem Soc 67(4):41–447

    Google Scholar 

  35. Walling C (1945) Correction. Gel formation in addition polymerization. J Am Chem Soc 67:2281–2281

    Article  Google Scholar 

  36. Flory PJ (1953) Principles of polymer chemistry. Chapter 9. Cornell University Press, Ithaca

    Google Scholar 

  37. Good IJ (1962) Cascade theory and the molecular weight averages of the sol fraction. Proc Roy Soc A272:54–59

    Google Scholar 

  38. Gordon M, Scantlebury GR (1964) Non-random polycondensation: statistical theory of the substitution effect. Trans Faraday Soc 60:604–621

    Article  CAS  Google Scholar 

  39. Macosko CW, Miller DR (1976) A new derivation of average molecular weights of non-linear polymers. Macromolecules 9:199–206

    Article  PubMed  CAS  Google Scholar 

  40. Beasley JK (1953) The molecular structure of polyethylene: IV. Kinetic calculations of the effect of branching on molecular weight distribution. J Am Chem Soc 75:6123–6127

    Article  CAS  Google Scholar 

  41. Bamford CH, Tompa H (1954) The calculation of molecular weight distributions from kinetic schemes. Trans Faraday Soc 50:1097–1115

    Article  CAS  Google Scholar 

  42. Zeman RJ, Amundson NR (1965) Continuous polymerization models – I. Polymerization in continuous stirred tank reactors. Chem Eng Sci 20:331–361

    Article  CAS  Google Scholar 

  43. Zeman RJ, Amundson NR (1965) Continuous polymerization models – II. Batch reactor polymerization. Chem Eng Sci 20:637–664

    Article  CAS  Google Scholar 

  44. Kuchanov SI, Pis’men LM (1971) The kinetic theory of gel formation in homogeneous radical polymerizations. Polym Sci USSR A13:2035–2048

    Google Scholar 

  45. Kuchanov SI, Pis’men LM (1972) Calculation of the polycondensation kinetics for monomers having reactive centres with different reactivities. Polym Sci USSR A14:147–160

    Article  Google Scholar 

  46. Tobita H, Hamielec AE (1989) Modeling of network formation in free radical polymerization. Macromolecules 22:3098–3105

    Article  CAS  Google Scholar 

  47. Teymour F, Campbell JD (1994) Analysis of the dynamics of gelation in polymerization reactors using the numerical fractionation technique. Macromolecules 27:2460–2469

    Article  CAS  Google Scholar 

  48. Lazzari S, Storti G (2014) Modeling multiradicals in crosslinking MMA/EGDMA bulk copolymerization. Macromol Theory Simul 23:15–35

    Article  CAS  Google Scholar 

  49. Bachmann R (2017) Extension of the method of moments in nonlinear free radical polymerization. Macromol Theory Simul 26:1–18

    Article  CAS  Google Scholar 

  50. Costa MRPFN, Dias RCS (1994) A general kinetic analysis of non-linear irreversible copolymerisations. Chem Eng Sci 49:491–516

    Article  CAS  Google Scholar 

  51. Costa MRPFN, Dias RCS (2005) An improved general kinetic analysis of non-linear irreversible polymerisations. Chem Eng Sci 60:423–446

    Article  CAS  Google Scholar 

  52. Costa MRPFN, Dias RCS (2003) Prediction of sol fraction and average molecular weights after gelation for non-linear free radical polymerizations using a kinetic. Macromol Theory Simul 12:560–572

    Article  CAS  Google Scholar 

  53. Dias RCS, Costa MRPFN (2003) A new look at kinetic modeling of nonlinear free radical polymerizations with terminal branching and chain transfer to polymer. Macromolecules 36:8853–8863

    Article  CAS  Google Scholar 

  54. Dias RCS, Costa MRPFN (2005) Transient behavior and gelation of free radical polymerizations in continuous stirred tank reactors. Macromol Theory Simul 14:243–255

    Article  CAS  Google Scholar 

  55. Dias RCS, Costa MRPFN (2005) Semibatch operation and primary cyclization effects in homogeneous free-radical crosslinking copolymerizations. Polymer 46:6163–6173

    Article  CAS  Google Scholar 

  56. Dias RCS, Costa MRPFN (2006) A general kinetic method to predict sequence length distributions for non-linear irreversible multicomponent polymerizations. Polymer 47:6895–6913

    Article  CAS  Google Scholar 

  57. Costa MRPFN, Dias RCS (2006) Kinetic modeling of non-linear polymerization. Macromol Symp 243:72–82

    Article  CAS  Google Scholar 

  58. Costa MRPFN, Dias RCS (2007) Prediction of mean square radius of gyration of tree-like polymers by a general kinetic approach. Polymer 48:1785–1801

    Article  CAS  Google Scholar 

  59. Dias RCS, Costa MRPFN (2007) Branching and crosslinking in coordination terpolymerizations. Macromol React Eng 1:440–467

    Article  CAS  Google Scholar 

  60. Dias RCS, Costa MRPFN (2010) Calculation of CLD using population balance equations of generating functions: linear and non-linear ideal controlled radical polymerization. Macromol Theory Simul 19:323–341

    Article  CAS  Google Scholar 

  61. Gonçalves MAD, Dias RCS, Costa MRPFN (2010) Modeling of hyperbranched polymer synthesis through atom-transfer and nitroxide-mediated radical polymerization of vinyl/divinyl monomers. Chem Eng Technol 33:1797–1813

    Article  CAS  Google Scholar 

  62. Lazzari S, Hamzehlou S, Reyes Y, Leiza JR, Costa MRPFN, Dias RCS, Storti G (2014) Bulk crosslinking copolymerization: comparison of different modeling approaches. Macromol React Eng 8:678–695

    Article  CAS  Google Scholar 

  63. Aguiar LG, Gonçalves MAD, Pinto VD, Dias RCS, Costa MRPFN, Giudici R (2014) Development of cyclic propagation kinetics for modeling the nitroxide-mediated radical copolymerization of styrene–divinylbenzene. Macromol React Eng 8:282–294

    Article  CAS  Google Scholar 

  64. Dotson NA, Galván R, Laurence RL, Tirrel M (1996) Polymerization process modeling. Wiley-VCH, New York

    Google Scholar 

  65. Gonçalves MAD, Dias RCS, Costa MRPFN (2010) Prediction and experimental characterization of the molecular architecture of FRP and ATRP synthesized polyacrylate networks. Macromol Symp 289:1–17

    Article  CAS  Google Scholar 

  66. Gonçalves MAD, Trigo IMR, Dias RCS, Costa MRPFN (2010) Kinetic modeling of the molecular architecture of cross-linked copolymers synthesized by controlled radical polymerization techniques. Macromol Symp 291–292:239–250

    Article  CAS  Google Scholar 

  67. Espinosa-Perez L, Hernandez-Ortiz JC, Lopez-Domínguez P, Jaramillo-Soto G, Vivaldo-Lima E, Perez-Salinas P, Rosas-Aburto A, Licea-Claverie A, Vazquez-Torres H, Bernad-Bernad MJ (2014) Modeling of the production of hydrogels from hydroxyethyl methacrylate and (di) ethylene glycol dimethacrylate in the presence of RAFT agents. Macromol React Eng 8:564–579

    Article  CAS  Google Scholar 

  68. Zapata-Gonzalez I, Saldívar-Guerra E, Ortiz-Cisneros J (2011) Full molecular weight distribution in RAFT polymerization. new mechanistic insight by direct integration of the equations. Macromol Theory Simul 20:370–388

    Article  CAS  Google Scholar 

  69. Klumperman B (2015) Reversible deactivation radical polymerization. Enc Polym Sci Technol 1–27. https://doi.org/10.1002/0471440264.pst453.pub2

  70. Matyjaszewski K, Spanswick J (2005) Controlled/living radical polymerization. Mater Today 8:26–33

    Article  CAS  Google Scholar 

  71. Moad G, Rizzardo E, Thang SH (2012) Living radical polymerization by the RAFT process – a third update. Aust J Chem 65:985–1076

    Article  CAS  Google Scholar 

  72. Moad G (2015) RAFT (Reversible addition fragmentation chain transfer) crosslinking (co)polymerization of multi-olefinic monomers to form polymer networks. Polym Int 64:15–24

    Article  CAS  Google Scholar 

  73. Yan M, Huang Y, Lu M, Lin FY, Hernández NB, Cochran EW (2016) Gel point suppression in RAFT polymerization of pure acrylic cross-linker derived from soybean oil. Biomacromolecules 17:2701–2709

    Article  PubMed  CAS  Google Scholar 

  74. Kadhirvel P, Machado C, Freitas A, Oliveira T, Dias RCS, Costa MRPFN (2015) Molecular imprinting in hydrogels using reversible addition-fragmentation chain transfer polymerization and continuous flow micro-reactor. J Chem Technol Biotechnol 90:1552–1564

    Article  CAS  Google Scholar 

  75. Pan G, Zhang Y, Guo X, Li C, Zhang H (2010) An efficient approach to obtaining water compatible and stimuli-responsive molecularly imprinted polymers by the facile surface-grafting of functional polymer brushes via RAFT polymerization. Biosens Bioelectron 26:976–982

    Article  PubMed  CAS  Google Scholar 

  76. Pan G, Ma Y, Zhang Y, Guo X, Li C, Zhang H (2011) Controlled synthesis of water-compatible molecularly imprinted polymer microspheres with ultrathin hydrophilic polymer shells via surface-initiated reversible addition-fragmentation chain transfer polymerization. Soft Matter 7:8428–8439

    Article  CAS  Google Scholar 

  77. Ma Y, Zhang Y, Zhao M, Guo X, Zhang H (2012) Efficient synthesis of narrowly dispersed molecularly imprinted polymer microspheres with multiple stimuli-responsive template binding properties in aqueous media. Chem Commun 48:6217–6219

    Article  CAS  Google Scholar 

  78. Zhang H (2013) Controlled/‘living’ radical precipitation polymerization: a versatile polymerization technique for advanced functional polymers. Eur Polym J 49:579–600

    Article  CAS  Google Scholar 

  79. Zhao M, Chen X, Zhang H, Yan H, Zhang H (2014) Well-defined hydrophilic molecularly imprinted polymer microspheres for efficient molecular recognition in real biological samples by facile RAFT coupling chemistry. Biomacromolecules 15:1663–1675

    Article  PubMed  CAS  Google Scholar 

  80. Zhou T, Jørgensen L, Mattebjerg MA, Chronakis IS, Ye L (2014) Molecularly imprinted polymer beads for nicotine recognition prepared by RAFT precipitation polymerization: a step forward towards multi-functionalities. RSC Adv 4:30292–30299

    Article  CAS  Google Scholar 

  81. Oliveira D, Gomes CP, Dias RCS, Costa MRPFN (2016) Molecular imprinting of 5-fluorouracil in particles with surface RAFT grafted functional brushes. React Funct Polym 107:35–45

    Article  CAS  Google Scholar 

  82. Gurdag G, Sarmad S (2013) Cellulose graft copolymers: synthesis, properties, and applications. polysaccharide based graft copolymers. Chapter 2. In: Kalia S, Sabaa MW (eds) Polysaccharide based graft copolymers. Springer, Berlin/Heidelberg, pp 15–57

    Chapter  Google Scholar 

  83. Kang H, Liu R, Huang Y (2015) Graft modification of cellulose: methods, properties and applications. Polymer 70:A1–A16

    Article  CAS  Google Scholar 

  84. Anzlovar A, Huskic M, Zagar E (2016) Modification of nanocrystalline cellulose for application as a reinforcing nanofiller in PMMA composites. Cellulose 23:505–518

    Article  CAS  Google Scholar 

  85. Barsbay M, Guven O, Davis TP, Barner-Kowollik C, Barner L (2009) RAFT-mediated polymerization and grafting of sodium 4-styrenesulfonate from cellulose initiated via γ-radiation. Polymer 50:973–982

    Article  CAS  Google Scholar 

  86. Haqani M, Roghani-Mamaqani H, Salami-Kalajahi M (2017) Synthesis of dual-sensitive nanocrystalline cellulose-grafted block copolymers of N-isopropylacrylamide and acrylic acid by reversible addition-fragmentation chain transfer polymerization. Cellulose 24:2241–2254

    Article  CAS  Google Scholar 

  87. Zeinali E, Haddadi-Asl V, Roghani-Mamaqani H (2014) Nanocrystalline cellulose grafted random copolymers of N-isopropylacrylamide and acrylic acid synthesized by RAFT polymerization: effect of different acrylic acid contents on LCST behavior. RSC Adv 4:31428–31442

    Article  CAS  Google Scholar 

  88. Moghaddam PN, Avval ME, Fareghi AR (2014) Modification of cellulose by graft polymerization for use in drug delivery systems. Colloid Polym Sci 292:77–84

    Article  CAS  Google Scholar 

  89. Oliveira D, Freitas A, Kadhirvel P, Dias RCS, Costa MRPFN (2016) Development of high performance and facile to pack molecularly imprinted particles for aqueous applications. Biochem Eng J 111:87–99

    Article  CAS  Google Scholar 

  90. Udoetok IA, Dimmick RM, Wilson LD, Headley JV (2016) Adsorption properties of cross-linked cellulose-epichlorohydrin polymers in aqueous solution. Carbohyr Polym 136:329–340

    Article  CAS  Google Scholar 

  91. Domínguez-Avila JA, Wall-Medrano A, Velderrain-Rodríguez GR, Oliver Chen C-Y, Salazar-López J, Robles-Sánchez M, González-Aguilar GA (2017) Gastrointestinal interactions, absorption, splanchnic metabolism and pharmacokinetics of orally ingested phenolic compounds. Food Funct 8:15–38

    Article  PubMed  Google Scholar 

  92. Sellergren B (2001) Molecularly imprinted polymers man-made, mimics of antibodies and their applications in analytical chemistry. Elsevier, Amsterdam

    Google Scholar 

  93. Ye L, Mosbach K (2001) Molecularly imprinted microspheres as antibody binding mimics. React Funct Polym 48:149–157

    Article  CAS  Google Scholar 

  94. Ye L, Mattiasson B (2015) Molecularly imprinted polymers in biotechnology. Springer International Publishing

    Google Scholar 

  95. Whitcombe MJ, Kirsch N, Nicholls IA (2014) Molecular imprinting science and technology: a survey of the literature for the years 2004–2011. J Mol Recognit 27:297–401

    Article  PubMed  CAS  Google Scholar 

  96. Ritger PL, Peppas NA (1987) A simple equation for description of solute release I. Fickian and non-Fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. J Control Release 5:23–36

    Article  CAS  Google Scholar 

  97. Ritger PL, Peppas NA (1987) A simple equation for description of solute release II. Fickian and anomalous release from swellable devices. J Control Release 5:37–42

    Article  CAS  Google Scholar 

  98. Peppas NA, Sahlin JJ (1989) A simple equation for description of solute release III. Coupling of diffusion and relaxation. Int J Pharm 57:169–172

    Article  CAS  Google Scholar 

  99. Peppas NA, Korsmeyer RW (1987) Dynamically swelling hydrogels in controlled release application. In: Peppas NA (ed) Hydrogels in medicine and pharmacy. CRC Press, Boca Raton

    Google Scholar 

  100. Kan W, Li X (2013) Mathematical modeling and sustained release property of a 5-fluorouracil imprinted vehicle. Eur Polym J 49:4167–4175

    Article  CAS  Google Scholar 

  101. Crank J (1975) The mathematics of diffusion, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  102. Li H (2009) Smart hydrogel modeling. Springer, Berlin/Heidelberg

    Book  Google Scholar 

  103. McHugh MA, Krukonis VJ (1994) Supercritical fluid extraction: principles and practice, 2nd edn. Butterworth-Heinemann, Newton

    Google Scholar 

  104. Kikic I, Vecchione F (2003) Supercritical impregnation of polymers. Curr Opin Solid State Mater Sci 7:399–405

    Article  CAS  Google Scholar 

  105. Guney O, Akgerman A (2002) Synthesis of controlled-release products in supercritical medium. AICHE J 48:856–866

    Article  CAS  Google Scholar 

  106. Sagis LMC (2015) Microencapsulation and microspheres for food applications. In: Sagis LMC (ed), Academic Press

    Chapter  Google Scholar 

  107. Annabi N, Nichol JW, Zhong X, Chengdong J, Koshy S, Khademhosseini A, Dehghani F (2010) Controlling the porosity and microarchitecture of hydrogels for tissue engineering. Tissue Eng Part B 16:371–383

    Article  CAS  Google Scholar 

  108. Tsioptsias C, Paraskevopoulos MK, Christofilos D, Andrieux P, Panayiotou C (2011) Polymeric hydrogels and supercritical fluids: the mechanism of hydrogel foaming. Polymer 52:2819–2826

    Article  CAS  Google Scholar 

  109. Palocci C, Barbetta A, Grotta AL, Dentini M (2007) Porous biomaterials obtained using supercritical CO2-water emulsions. Langmuir 23:8243–8251

    Article  PubMed  Google Scholar 

  110. Cardea S, Baldino L, De Marco I, Pisanti P, Reverchon E (2013) Supercritical gel drying of polymeric hydrogels for tissue engineering applications. Chem Eng Trans 32:1123–1128

    Google Scholar 

  111. Mueller PA, Storti G, Morbidelli M (2005) The reaction locus in supercritical carbon dioxide dispersion polymerization. The case of poly(methyl methacrylate). Chem Eng Sci 60:377–397

    Article  CAS  Google Scholar 

  112. Mueller PA, Storti G, Morbidelli M (2005) Detailed modelling of MMA dispersion polymerization in supercritical carbon dioxide. Chem Eng Sci 60:1911–1925

    Article  CAS  Google Scholar 

  113. Chatzidoukas C, Pladis P, Kiparissides C (2003) Mathematical modeling of dispersion polymerization of methyl methacrylate in supercritical carbon dioxide. Ind Eng Chem Res 42:743–751

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Parts of this work are a result of project “AIProcMat@N2020 – Advanced Industrial Processes and Materials for a Sustainable Northern Region of Portugal 2020,” with the reference NORTE-01-0145-FEDER-000006, supported by Norte Portugal Regional Operational Programa (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (ERDF) and of Project POCI-01-0145-FEDER-006984 – Associate Laboratory LSRE-LCM funded by ERDF through COMPETE2020 (Programa Operacional Competitividade e Internacionalização (POCI)) – and by national funds through FCT (Fundação para a Ciência e a Tecnologia). We also acknowledge the contribution of the master student Gayane Sadoyan in the framework of the thesis “Development of amphiphilic adsorbents for the stimulated uptake and release of polyphenols.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rolando C. S. Dias .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Gomes, C.P., Dias, R.C.S., Costa, M.R.P.F.N. (2018). Polymer Reaction Engineering Tools to Tailor Smart and Superabsorbent Hydrogels. In: Mondal, M. (eds) Cellulose-Based Superabsorbent Hydrogels. Polymers and Polymeric Composites: A Reference Series. Springer, Cham. https://doi.org/10.1007/978-3-319-76573-0_19-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76573-0_19-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76573-0

  • Online ISBN: 978-3-319-76573-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Polymer Reaction Engineering Tools to Tailor Smart and Superabsorbent Hydrogels
    Published:
    25 August 2018

    DOI: https://doi.org/10.1007/978-3-319-76573-0_19-2

  2. Original

    Polymer Reaction Engineering Tools to Tailor Smart and Superabsorbent Hydrogels
    Published:
    16 May 2018

    DOI: https://doi.org/10.1007/978-3-319-76573-0_19-1