Skip to main content

In Vivo Tissue-Engineered Vascular Grafts

  • Living reference work entry
  • First Online:
Tissue-Engineered Vascular Grafts

Abstract

Vascular grafts are needed for coronary and peripheral vascular bypass surgeries as well as for access surgeries for hemodialysis and reconstruction of congenital heart defects. Despite good results in the large caliber, small caliber (<6 mm) show unsatisfactory clinical results. Tissue-engineered vascular grafts (TEVG) have been made using several approaches ranging from acellular synthetic or biologic polymer scaffolds to decellularized natural matrices, self-assembled cell-based bioreactor matured, or 3D cell-printed constructs. This chapter will focus mainly on in vivo tissue engineering which was used as first-in-man. This is based on an acellular, synthetic, degradable, polymer scaffold which is repopulated by the host cells after implantation to create a “neo-artery.” Advantages are shelf-readiness; simple, cost-effective manufacturing; and avoidance of bioreactor cell maturation. Short-, mid-, and long-term experimental and clinical results show good cellular remodeling with extracellular matrix formation and endothelialization as well as patency and function. Thus, the approach of using an acellular, synthetic, biodegradable scaffold is an optimal clinical option for TEVG.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ballyk PD, Walsh C, Butany J, Ojha M (1997) Compliance mismatch may promote graft-artery intimal hyperplasia by altering suture-line stresses. J Biomech 31:229

    Article  Google Scholar 

  • Barnes CP, Sell SA, Knapp DC, Walpoth BH, Brand D, Bowlin GL (2007) Preliminary investigation of electrospun collagen and polydioxanone for vascular tissue engineering applications. Int J Electrospun Nanofibers Applic 1:73–87

    Google Scholar 

  • Best CA, Szafron JM, Rocco KA, Zbinden J, Dean EW, Maxfield MW et al (2019) Differential outcomes of venous and arterial tissue engineered vascular grafts highlight the importance of coupling long-term implantation studies with computational modeling. Acta Biomater 94:183–194

    Article  Google Scholar 

  • Boccafoschi F, Rajan N, Habermehl J, Mantovani D (2007) Preparation and characterization of a scaffold for vascular tissue engineering by direct-assembling of collagen and cells in a cylindrical geometry. Macromol Biosci 7:719

    Article  Google Scholar 

  • Boethig D, Horke A, Hazekamp M, Meyns B, Rega F, Van Puyvelde J et al (2019) A European study on decellularized homografts for pulmonary valve replacement: initial results from the prospective ESPOIR trial and ESPOIR registry data†. Eur J Cardiothorac Surg 56(3):503–509

    Article  Google Scholar 

  • Brown BN, Ratner BD, Goodman SB, Amar S, Badylak SF (2012) Macrophage polarization: an opportunity for improved outcomes in biomaterials and regenerative medicine. Biomaterials 33:3792

    Article  Google Scholar 

  • Chemla ES, Morsy M (2009) Randomized clinical trial comparing decellularized bovine ureter with expanded polytetrafluoroethylene for vascular access. Br J Surg 96:34

    Article  Google Scholar 

  • Chlupac J, Filova E, Bacakova L (2009) Blood vessel replacement: 50 years of development and tissue engineering paradigms in vascular surgery. Physiol Res 58:S119

    Google Scholar 

  • Cikirikcioglu M, Pektok E, Cikirikcioglu YB, Osorio-da Cruz S, Tille J-C, Kalangos A, Walpoth BH (2008) Matching the diameter of ePTFE bypass prosthesis with a native artery improves Neoendothelialization. Eur Surg Res 40:333–340

    Article  Google Scholar 

  • Conte MS (2013) Critical appraisal of surgical revascularization for critical limb ischemia. J Vasc Surg 57:8S

    Article  Google Scholar 

  • Conte MS, Pomposelli FB, Clair DG, Geraghty PJ, McKinsey JF, Mills JL, Moneta GL, Murad MH, Powell RJ, Reed AB, Schanzer A, Sidawy AN, Society for Vascular Surgery (2015) Society for Vascular Surgery practice guidelines for atherosclerotic occlusive disease of the lower extremities: management of asymptomatic disease and claudication. J Vasc Surg 61(3 Suppl):2S–41S

    Article  Google Scholar 

  • D’Angelo M, Benedetti E, Tupone MG, Catanesi M, Castelli V, Antonosante A et al (2019) The role of stiffness in cell reprogramming: a potential role for biomaterials in inducing tissue regeneration. Cells MDPI AG 8(9):1036

    Google Scholar 

  • D’Levit R (2018) Engineering vessels as good as new? JACC 3(1):119–121

    Google Scholar 

  • Daenens K, Schepers S, Fourneau I, Houthoofd S, Nevelsteen A (2009) Heparin-bonded ePTFE grafts compared with vein grafts in femoropopliteal and femorocrural bypasses: 1- and 2-year results. J Vasc Surg 49(5):1210–1216

    Article  Google Scholar 

  • Dahl SLM, Blum JL, Niklason LE (2011a) Bioengineered vascular grafts: can we make them off-the-shelf? Trends Cardiovasc Med 21:83

    Article  Google Scholar 

  • Dahl SLM, Kypson AP, Lawson JH, Blum JL, Strader JT, Li Y, Manson RJ, Tente WE, Di-Bernardo L, Hensley MT, Carter R, Williams TP, Prichar HL, Dey MS, Begelman KG, Niklason LE (2011b) Readily available tissue-engineered vascular grafts. Sci Transl Med 3:68ra9

    Article  Google Scholar 

  • De Valence S, Tille J-C, Mugnai D, Mrowczynski W, Gurny R, Moeller M, Walpoth BH (2012) Long term performance of polycaprolactone vascular grafts in a rat abdominal aorta replacement model. Biomaterials 33:38–47

    Article  Google Scholar 

  • de Valence S, Tille J-C, Mugnai D, Mrowczynski W, Gurny R, Möller M et al (2012a) Long term performance of polycaprolactone vascular grafts in a rat abdominal aorta replacement model. Biomaterials 33(1):38–47

    Article  Google Scholar 

  • de Valence S, Tille J-C, Giliberto J-P, Mrowczynski W, Gurny R, Walpoth BH et al (2012b) Advantages of bilayered vascular grafts for surgical applicability and tissue regeneration. Acta Biomater 8(11):3914–3920

    Article  Google Scholar 

  • De Valence S, Tille J-C, Chaabane C, Gurny R, Bochaton-Piallat ML, Walpoth BH, Möller M (2013) Plasma treatment for improving cell biocompatibility of a biodegradable polymer scaffold for vascular graft applications. Eur J Pharm Biopharm 85(1):78–86

    Article  Google Scholar 

  • Debakey ME, Cooley DA, Crawford ES, Morris GC (1982) Clinical application of a new flexible knitted Dacron arterial substitute. Arch Surg 117:1367–1370

    Article  Google Scholar 

  • Deutsch M, Meinhart J, Zilla P, Howanietz N, Gorlitzer M, Froeschl A, Stuempflen A, Bezuidenhout D, Grabenwoeger M (2009) Long-term experience in autologous in vitro endothelialization of infrainguinal ePTFE grafts. J Vasc Surg 49(2):352–362; discussion 362

    Article  Google Scholar 

  • Drews JD, Miyachi H, Shinoka T (2017) Tissue-engineered vascular grafts for congenital cardiac disease: clinical experience and current status. Trends Cardiovasc Med 27(8):521–531

    Article  Google Scholar 

  • Duijvelshoff R, van Engeland NCA, Gabriels KMR, Söntjens SHM, Smits AIPM, Dankers PYW, Bouten CVC (2018) Host response and neo-tissue development during resorption of a fast degrading Supramolecular Electrospun arterial scaffold. Bioengineering (Basel) 5(3)

    Google Scholar 

  • Dukkipati R, Peck M, Dhamija R, Hentschel DM, Reynolds T, Tammewar G, McAllister T (2013) Biological grafts for hemodialysis access: historical lessons, state-of-the-art and future directions. Semin Dial 26:233

    Article  Google Scholar 

  • Dunn LL, de Valence S, Tille J-C, Hammel P, Walpoth BH, Stocker R et al (2016) Biodegradable and plasma-treated electrospun scaffolds coated with recombinant Olfactomedin-like 3 for accelerating wound healing and tissue regeneration. Wound Repair Regen 24(6):1030–1035

    Article  Google Scholar 

  • Ehrmann K, Potzmann P, Dworak C, Bergmeister H, Eilenberg M, Grasl C, Koch T, Schima H, Liska R, Baudis S (2020) Hard block degradable polycarbonate urethanes: promising biomaterials for Electrospun vascular prostheses. Biomacromolecules 21(2):376–387. https://doi.org/10.1021/acs.biomac.9b01255. Epub 2019 Nov 26

    Article  Google Scholar 

  • Eilenberg M, Enayati M, Ehebruster D, Grasl C, Walter I, Messner B, Baudis S, Potzmann P, Kaun C, Podesser BK, Wojta J, Bergmeister H (2019) Long term evaluation of Nanofibrous, bioabsorbable polycarbonate urethane grafts for small diameter vessel replacement in rodents. Eur J Vasc Endovasc Surg. https://doi.org/10.1016/j.ejvs.2019.11.004. [Epub ahead of print]. pii: S1078-5884(19)32544-4

  • Ellis H (2012) Alexis Carrel receives the Nobel prize for medicine. Br J Hosp Med (London: 2005) 73(10):594

    Article  Google Scholar 

  • Enomoto S, Sumi M, Kajimoto K, Nakazawa Y, Takahashi R, Takabayashi C, Asakura T, Sata M (2010) Long-term patency of small-diameter vascular graft made from fibroin, a silk-based biodegradable material. J Vasc Surg 51:155

    Article  Google Scholar 

  • Ercolani E, Del Gaudio C, Bianco A (2015) Vascular tissue engineering of small-diameter blood vessels: reviewing the electrospinning approach. J Tissue Eng Regen Med 9(8):861–888

    Article  Google Scholar 

  • FitzGibbon GM, Leach AJ, Kafka HP, Keon WJ (1991) Coronary bypass graft fate: long-term angiographic study. J Am Coll Cardiol 17:1075

    Article  Google Scholar 

  • Garg K, Sell SA, Madurantakam P, Bowlin GL (2009) Angiogenic potential of human macrophages on electrospun bioresorbable vascular grafts. Biomed Mater 4(3):031001

    Article  Google Scholar 

  • Geelhoed WJ, Moroni L, Rotmans JI (2017) Utilizing the foreign body response to grow tissue engineered blood vessels in vivo. J Cardiovasc Transl Res 10(2):167–179

    Article  Google Scholar 

  • Geelhoed WJ, van der Bogt KEA, Rothuizen TC, Damanik FFR, Hamming JF, Mota CD, van Agen MS, de Boer HC, Restrepo MT, Hinz B, Kislaya A, Poelma C, van Zonneveld AJ, Rabelink TJ, Moroni L, Rotmans JI (2020) A novel method for engineering autologous non-thrombogenic in situ tissue-engineered blood vessels for arteriovenous grafting. Biomaterials 229:119577

    Article  Google Scholar 

  • Giannico S, Hammad F, Amodeo A, Michielon G, Drago F, Turchetta A, Di Donato R, Sanders SP (2006) Clinical outcome of 193 extracardiac Fontan patients the first 15 years. J Am Coll Cardiol 47:2065

    Article  Google Scholar 

  • Go AS, Mozaffarian D, Roger VL, Benjamin J, Berry JD, Borden WB, Bravata DM, Dai S, Ford ES, Fox CS, Franco S, Fullerton HJ, Gillespie C, Hailpern SM, Heit JA, Howard VJ, Huffman MD, Kissela BM, Kittner SJ, Lackland D, Lichtman JH, Lisabeth LD, Magid D, Marcus GM, Marelli A, Matchar DB, McGuire DK, Mohler ER, Moy CS, Mussolino ME, Nichol G, Paynter NP, Schreiner PJ, Sorlie PD, Stein J, Turan TN, Virani SS, Wong ND, Woo D, Turner MB (2013) Heart disease and stroke statistics – 2013 update a report from the American heart association. Circulation 127:e6

    Google Scholar 

  • Harskamp RE, Lopes RD, Baisden CE, de Winter RJ, Alexander JH (2013) Saphenous vein graft failure after coronary artery bypass surgery: pathophysiology, management, and future directions. Ann Surg 257:824

    Article  Google Scholar 

  • Hehrlein FW, Schlepper M, Loskot F, Scheld HH, Walter P, Mulch J (1984) The use of expanded polytetrafluoroethylene (PTFE) grafts for myocardial revascularization. J Cardiovasc Surg 25:549

    Google Scholar 

  • Heidenhain C, Veeravoorn A, Vachkov B, Weichert W, Schmidmaier G, Wildemann B et al (2011) Fibroblast and vascular endothelial growth factor coating of decellularized vascular grafts stimulates undesired giant cells and graft encapsulation in a rat model. Artif Organs 35(1):1–10

    Article  Google Scholar 

  • Hibino N, McGillicuddy E, Matsumura G, Ichihara Y, Naito Y, Breuer C, Shin’oka T (2010) Late-term results of tissue-engineered vascular grafts in humans. J Thorac Cardiovasc Surg 139:431

    Article  Google Scholar 

  • Hill JM, Zalos G, Halcox JPJ, Schenke WH, Waclawiw MA, Quyyumi AA, Finkel T (2003) Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med 348:593

    Article  Google Scholar 

  • Hoerstrup SP, Mrcs IC, Lachat M, Schoen FJ, Jenni R, Leschka S, Neuenschwander S, Schmidt D, Mol A, Günter C, Gössi M, Genoni M, Zund G (2006) Functional growth in tissue-engineered living, vascular grafts follow-up at 100 weeks in a large animal model. Circulation 114:I159

    Article  Google Scholar 

  • Hsieh YF, Sahagian K, Huang F, Xu K, Patel S, Li S (2017) Comparison of plasma and chemical modifications of poly-L-lactide-co-caprolactone scaffolds for heparin conjugation. Biomed Mater 12(6):065004

    Article  Google Scholar 

  • Huang R, Gao X, Wang J, Chen H, Tong C, Tan Y et al (2018) Triple-layer vascular grafts fabricated by combined E-jet 3D printing and Electrospinning. Ann Biomed Eng 46(9):1254–1266

    Article  Google Scholar 

  • Hurt AV, Batello-Cruz M, Skipper BJ, Teaf SR, Sterling WA Jr (1983) Bovine carotid artery heterografts versus polytetrafluoroethylene grafts: a prospective, randomized study. Am J Surg 146:844

    Article  Google Scholar 

  • Innocente F, Mandracchia D, Pektok E, Nottelet B, Tille J-C, de Valence S et al (2009) Paclitaxel-eluting biodegradable synthetic vascular prostheses: a step towards reduction of neointima formation? Circulation 120(11 Suppl):S37–S45

    Article  Google Scholar 

  • Karrer L, Duwe J, Zisch AH, Khabiri E, Cikirikcioglu M, Napoli A, Goessl A, Schaffner T, Hess OM, Carrel T, Kalangos A, Hubbell JA, Walpoth BH (2005) PPS-PEG surface coating to reduce thrombogenicity of small diameter ePTFE vascular grafts. Int J Art Organs 28(10):993–1002

    Article  Google Scholar 

  • Kato N, Yamagishi M, Kanda K, Miyazaki T, Maeda Y, Yamanami M, Watanabe T, Yaku H (2016) First successful clinical application of the in vivo tissue-engineered autologous vascular graft. Ann Thorac Surg 102(4):1387–1390

    Article  Google Scholar 

  • Katsimpoulas M, Morticelli L, Gontika I, Kouvaka A, Mallis P, Dipresa D, Böer U, Soudah B, Haverich A, Michalopoulos E, Korossis S (2019) Biocompatibility and immunogenicity of Decellularized allogeneic aorta in the Orthotopic rat model. Tissue Eng Part A 25(5–6):399–415

    Article  Google Scholar 

  • Keane TJ, Londono R, Turner NJ, Badylak SF (2012) Consequences of ineffective decellularization of biologic scaffolds on the host response. Biomaterials 33:1771

    Article  Google Scholar 

  • Kirkton RD, Prichard HL, Santiago-Maysonet M, Niklason LE, Lawson JH, Dahl SLM (2018) Susceptibility of ePTFE vascular grafts and bioengineered human acellular vessels to infection. J Surg Res 221:143–151

    Article  Google Scholar 

  • Kirkton RD, Santiago-Maysonet M, Lawson JH, Tente WE, Dahl SLM, Niklason LE, Prichard HL (2019) Bioengineered human acellular vessels recellularize and evolve into living blood vessels after human implantation. Sci Transl Med 27:11(485)

    Google Scholar 

  • Klinkert P, Post PN, Breslau PJ, van Bockel JH (2004) Saphenous vein versus PTFE for above-knee femoropopliteal bypass. A review of the literature. Eur J Vasc Endovasc Surg 27:357

    Article  Google Scholar 

  • Koch S, Flanagan TC, Sachweh JS, Tanios F, Schnoering H, Deichmann T, Ella V, Kellomäki M, Gronloh N, Gries T, Tolba R, Schmitz-Rode T, Jockenhoevel S (2010) Fibrin-polylactide-based tissue-engineered vascular graft in the arterial circulation. Biomaterials 31:4731

    Article  Google Scholar 

  • Kuwabara F, Narita Y, Yamawaki-Ogata A, Satake M, Kaneko H, Oshima H, Usui A, Ueda Y (2012) Longterm results of tissue-engineered small-caliber vascular grafts in a rat carotid arterial replacement model. J Artif Organs 15:399

    Article  Google Scholar 

  • L’Heureux N, Letourneur D (2015) Clinical translation of tissue-engineered constructs for severe leg injuries. Ann Translat Med 3(10):134

    Google Scholar 

  • L’Heureux N, Pâquet S, Labbé R, Germain L, Auger FA (1998) A completely biological tissue-engineered human blood vessel. FASEB J 12:47

    Google Scholar 

  • L’Heureux N, Dusserre N, Konig G, Victor B, Keire P, Wight TN, Chronos NAF, Kyles AE, Gregory CR, Hoyt G, Robbins RC, McAllister TN (2006) Human tissue-engineered blood vessels for adult arterial revascularization. Nat Med 12:361

    Article  Google Scholar 

  • L’Heureux N, McAllister TN, de la Fuente LM (2007) Tissue-engineered blood vessel for adult arterial revascularization. N Engl J Med 357(14):1451–1453

    Article  Google Scholar 

  • Langer RS, Vacanti JP (1999) Tissue engineering: the challenges ahead. Sci Am 280(4):86–89

    Article  Google Scholar 

  • Lawson JH, Glickman MH, Ilzecki M, Jakimowicz T, Jaroszynski A, Peden EK, Pilgrim AJ, Prichard HL, Guziewicz M, Przywara S, Szmidt J, Turek J, Witkiewicz W, Zapotoczny N, Zubilewicz T, Niklason LE (2016) Bioengineered human acellular vessels for dialysis access in patients with end-stage renal disease: two phase 2 single-arm trials. Lancet 387(10032):2026–2034

    Article  Google Scholar 

  • Lee K-W, Stolz DB, Wang Y (2011) Substantial expression of mature elastin in arterial constructs. Proc Natl Acad Sci 108:2705

    Article  Google Scholar 

  • Lemson MS, Tordoir JHM, Daemen MJAP, Kitslaar PJEHM (2000) Intimal hyperplasia in vascular grafts. Eur J Vasc Endovasc Surg 19:336

    Article  Google Scholar 

  • Levy RJ, Schoen FJ, Anderson HC, Harasaki H, Koch TH, Brown W, Lian JB, Cumming R, Gavin JB (1991) Cardiovascular implant calcification: a survey and update. Biomaterials 12(8):707–714. Review

    Article  Google Scholar 

  • Li L, Terry CM, Shiu Y-TE, Cheung AK (2008) Neointimal hyperplasia associated with synthetic hemodialysis grafts. Kidney Int 74:1247

    Article  Google Scholar 

  • Lovett M, Eng G, Kluge J, Cannizzaro C, Vunjak-Novakovic G, Kaplan DL (2010) Tubular silk scaffolds for small diameter vascular grafts. Organogenesis 6:217

    Article  Google Scholar 

  • Low EL, Baker AH, Bradshaw AC (2019) TGFβ, smooth muscle cells and coronary artery disease: a review. Cell Signal 53:90–101

    Article  Google Scholar 

  • Madden RL, Lipkowitz GS, Browne BJ, Kurbanov A (2004) Experience with cryopreserved cadaveric femoral vein allografts used for hemodialysis access. Ann Vasc Surg 18:453

    Article  Google Scholar 

  • Magnan L, Labrunie G, Fénelon M, Dusserre N, Foulc MP, Lafourcade M, Svahn I, Gontier E, Vélez VJH, McAllister TN, L’Heureux N (2020) Human textiles: a cell-synthesized yarn as a truly “bio” material for tissue engineering applications. Acta Biomater. https://doi.org/10.1016/j.actbio.2020.01.037. [Epub ahead of print]. pii: S1742-7061(20)30052-0

  • Maina RM, Barahona MJ, Finotti M, Lysyy T, Geibel P, D’Amico F et al (2018) Generating vascular conduits: from tissue engineering to three-dimensional bioprinting. Innov Sur Sci 3(3):203–213

    Google Scholar 

  • Mangum KD, Farber MA (2020) Genetic and epigenetic regulation of abdominal aortic aneurysms. Clin Genet (Jan 19). https://doi.org/10.1111/cge.13705. [Epub ahead of print] Review

  • Matthew JS, Michael JM, Scott AS, Catherine PB, Beat HW, David GS, Gary LB (2008) Suture-reinforced electrospun polydioxanone – Elastin small-diameter tubes for use in vascular tissue engineering: A feasibility study. Acta Biomaterialia 4(1):58–66

    Google Scholar 

  • Matsumura G, Isayama N, Matsuda S, Taki K, Sakamoto Y, Ikada Y, Yamazaki K (2013) Long-term results of cell-free biodegradable scaffolds for in situ tissue engineering of pulmonary artery in a canine model. Biomaterials 34:6422

    Article  Google Scholar 

  • McAllister TN, Maruszewski M, Garrido SA, Wystrychowski W, Dusserre N, Marini A, Zagalski K, Fiorillo A, Avila H, Manglano X, Antonelli J, Kocher A, Zembala M, Cierpka L, de la Fuente LM, L’Heureux N (2009) Effectiveness of haemodialysis access with an autologous tissue-engineered vascular graft: a multicentre cohort study. Lancet 373:1440

    Article  Google Scholar 

  • McClure MJ, Sell SA, Simpson DG, Walpoth BH, Bowlin GL (2010) A three-layered electrospun matrix to mimic native arterial architecture using polycaprolactone, elastin, and collagen: a preliminary study. Acta Biomater 6(7):2422–2433

    Article  Google Scholar 

  • Min S, Ko IK, Yoo JJ (2019) State-of-the-art strategies for the vascularization of three-dimensional engineered organs. Vasc Specialist Int 35(2):77–89

    Article  Google Scholar 

  • Möller M, de Valence S, Walpoth BH (2011) Nanofibre-based vascular grafts. In: Hunter RJ, Preedy VR (eds) Nanomedicine and the cardiovascular system. CRC Press, Boca Raton

    Google Scholar 

  • Mrówczyński W, Mugnai D, de Valence S, Tille J-C, Khabiri E, Cikirikcioglu M et al (2014a) Porcine carotid artery replacement with biodegradable electrospun poly-e-caprolactone vascular prosthesis. J Vasc Surg 59(1):210–219

    Article  Google Scholar 

  • Mrówczyński W, Rungatscher A, Buchegger F, Tille J-C, Namy S, Ratib O, Kutryk M, Walpoth BH (2014b) Biological effects of anti-CD34-coated ePTFE vascular grafts. Early in vivo experimental results. Kardiochirurgia I Torakochirurgia Polska 11(2):1–9

    Google Scholar 

  • Mugnai D, Tille J-C, Mrówczyński W, de Valence S, Montet X, Möller M et al (2013) Experimental noninferiority trial of synthetic small-caliber biodegradable versus stable vascular grafts. J Thorac Cardiovasc Surg 146(2):400–7.e1

    Article  Google Scholar 

  • Nabel EG, Yang ZY, Plautz G, Forough R, Zhan X, Haudenschild CC, Maciag T, Nabel GJ (1993) Recombinant fibroblast growth factor-1 promotes intimal hyperplasia and angiogenesis in arteries in vivo. Nature 362(6423):844–846

    Article  Google Scholar 

  • Nieponice A, Soletti L, Guan J, Hong Y, Gharaibeh B, Maul TM, Huard J, Wagner WR, Vorp DA (2010) In vivo assessment of a tissue-engineered vascular graft combining a biodegradable elastomeric scaffold and muscle-derived stem cells in a rat model. Tissue Eng Part A 16:1215

    Article  Google Scholar 

  • Nottelet B, Pektok E, Mandracchia D, Pektok E, Tille J-C, Walpoth B, Gurny R, Möller M (2009) Factorial design optimization and in vivo feasibility of poly(caprolactone)-micro-and nanofiber-based small diameter vascular grafts. J Biomed Mater Res A 89(4):865–875

    Article  Google Scholar 

  • Olausson M, Patil PB, Kuna VK, Chougule P, Hernandez N, Methe K, Kullberg-Lindh C, Borg H, Ejnell H, Sumitran-Holgersson S (2012) Transplantation of an allogeneic vein bioengineered with autologous stem cells: a proof-of-concept study. Lancet 380:230

    Article  Google Scholar 

  • Osorio-da Cruz S, Aggoun Y, Cikirikcioglu M, Khabiri E, Djebaili K, Kalangos A, Walpoth B (2009) Vascular ultrasound studies for the non invasive assessment of vascular flow and patency in experimental surgery in the pig. Lab Anim 43:333–337

    Article  Google Scholar 

  • Padberg FT Jr, Calligaro KD, Sidawy AN (2008) Complications of arteriovenous hemodialysis access: recognition and management. J Vasc Surg 48:S55

    Article  Google Scholar 

  • Pashneh-Tala S, MacNeil S, Claeyssens F (2016) The tissue-engineered vascular graft-past, present, and future. Tissue Eng Part B Rev 22(1):68–100

    Article  Google Scholar 

  • Peck M, Gebhart D, Dusserre N, McAllister TN, L’Heureux N (2012) The evolution of vascular tissue engineering and current state of the art. Cells Tissues Organs 195:144

    Article  Google Scholar 

  • Pektok E, Nottelet B, Tille J-C, Gurny R, Kalangos A, Moeller M, Walpoth BH (2008) Degradation and healing characteristics of small-diameter poly(ε-caprolactone) vascular grafts in the rat systemic arterial circulation. Circulation 118:2563–2570

    Article  Google Scholar 

  • Pektok E, Cikirikcioglu M, Tille J-C, Kalangos A, Walpoth BH (2009) Alcohol pre-treatment of small-diameter ePTFE grafts: quantitative analysis of graft healing characteristics in the rat abdominal aorta interposition model. Artif Organs 33(7):532–553

    Article  Google Scholar 

  • Qian Y, Li L, Song Y, Dong L, Chen P, Li X et al (2018) Surface modification of nanofibrous matrices via layer-by-layer functionalized silk assembly for mitigating the foreign body reaction. Biomaterials 164:22–37

    Article  Google Scholar 

  • Roy S, Silacci P, Stergiopulos N (2005) Biomechanical proprieties of decellularized porcine common carotid arteries. Am J Physiol Heart Circ Physiol 289:H1567

    Article  Google Scholar 

  • Sapienza P, di Marzo L, Cucina A, Borrelli V, Mosiello G, Basile U et al (2009) The effect of locally administered anti-growth factor antibodies on neointimal hyperplasia formation in expanded polytetrafluoroethylene grafts. Ann Vasc Surg 23(3):398–409

    Article  Google Scholar 

  • Sarkar S, Salacinski HJ, Hamilton G, Seifalian AM (2006) The mechanical properties of infrainguinal vascular bypass grafts: their role in influencing patency. Eur J Vasc Endovasc Surg 31:627

    Article  Google Scholar 

  • Schmidli J, Savolainen H, Heller G, Widmer MK, Then-Schlagau U, Baumgartner I, Carrel TP (2004) Bovine mesenteric vein graft (ProCol) in critical limb ischaemia with tissue loss and infection. Eur J Vasc Endovasc Surg 27:251

    Article  Google Scholar 

  • Schutte SC, Chen Z, Brockbank KGM, Nerem RM (2010) Cyclic strain improves strength and function of a collagen-based tissue-engineered vascular media. Tissue Eng Part A 16:3149

    Article  Google Scholar 

  • Sell SA, McClure MJ, Barnes CP, Knapp DC, Walpoth BH, Simpson DG, Bowlin GL (2006) Electrospun polydioxanone – elastin blends: potential for bioresorbable vascular grafts. Biomed Mater 1:72–80

    Article  Google Scholar 

  • Shi J, Chen S, Wang L, Zhang X, Gao J, Jiang L, Tang D, Zhang L, Midgley A, Kong D, Wang S (2019) Rapid endothelialization and controlled smooth muscle regeneration by electrospun heparin-loaded polycaprolactone/gelatin hybrid vascular grafts. J Biomed Mater Res B Appl Biomater 107(6):2040–2049

    Article  Google Scholar 

  • Shin’oka T, Matsumura G, Hibino N, Naito Y, Watanabe M, Konuma T, Sakamoto T, Nagatsu M, Kurosawa H (2005) Midterm clinical result of tissue-engineered vascular autografts seeded with autologous bone marrow cells. J Thorac Cardiovasc Surg 129:1330–1338

    Article  Google Scholar 

  • Simon P, Kasimir MT, Seebacher G, Weigel G, Ullrich R, Salzer-Muhar U, Rieder E, Wolner E (2003) Early failure of the tissue engineered porcine heart valve SYNERGRAFT_ in pediatric patients. Eur J Cardiothorac Surg 23:1002

    Article  Google Scholar 

  • Smith RB (1993) Arthur B. Voorhees, Jr.: pioneer vascular surgeon. J Vasc Surg 18(3):341–348

    Article  MathSciNet  Google Scholar 

  • Smith MJ, McClure MJ, Sell SA, Barnes CP, Walpoth BH, Simpson DG, Bowlin GL (2008) Suture-reinforced Electrospun Polydioxanone – elastin small-diameter tubes for use in vascular tissue engineering: a feasibility study. Acta Biomater 4(1):58–66

    Article  Google Scholar 

  • Sologashvili T, Saat SA, Tille J-C, De Valence S, Mugnai D, Giliberto JP et al (2019) Effect of implantation site on outcome of tissue-engineered vascular grafts. Eur J Pharm Biopharm 139:272–278

    Article  Google Scholar 

  • Sterpetti AV, Lepidi S, Borrelli V, Di Marzo L, Sapienza P, Cucina A et al (2016) Growth factors and experimental arterial grafts. J Vasc Surg 64(5):1444–1449

    Article  Google Scholar 

  • Stowell CET, Wang Y (2018) Quickening: translational design of resorbable synthetic vascular grafts. Biomaterials 173:71–86

    Article  Google Scholar 

  • Suresh S, Gryshkov O, Glasmacher B (2018) Impact of setup orientation on blend electrospinning of poly-ε-caprolactone-gelatin scaffolds for vascular tissue engineering. Int J Artif Organs 41(11):801–810

    Article  Google Scholar 

  • Syedain ZH, Meier LA, Bjork JW, Lee A, Tranquillo RT (2011) Implantable arterial grafts from human fibroblasts and fibrin using a multi-graft pulsed flowstretch bioreactor with noninvasive strength monitoring. Biomaterials 32:714

    Article  Google Scholar 

  • Syedain ZH, Meier LA, Lahti MT, Johnson SL, Tranquillo RT (2014) Implantation of completely biological engineered grafts following decellularization into the sheep femoral artery. Tissue Eng Part A 20:1726

    Article  Google Scholar 

  • Tille J-C, de Valence S, Mandracchia D, Nottelet B, Innocente F, Gurny R et al (2016) Histologic assessment of drug-eluting grafts related to implantation site. J Dev Biol 4(1)

    Google Scholar 

  • Tillman BW, Yazdani SK, Lee SJ, Geary RL, Atala A, Yoo JJ (2009) The in vivo stability of electrospun polycaprolactone-collagen scaffolds in vascular reconstruction. Biomaterials 30:583

    Article  Google Scholar 

  • Tillman BW, Yazdani SK, Neff LP, Corriere MA, Christ GJ, Soker S, Atala A, Geary R, Yoo JJ (2012) Bioengineered vascular access maintains structural integrity in response to arteriovenous flow and repeated needle puncture. J Vasc Surg 56:783

    Article  Google Scholar 

  • Walpoth BH (2010) Vascular organogenesis: dream or reality? Organogenesis 6(3):158–160

    Article  Google Scholar 

  • Walpoth BH, Bowlin GL (2005) The daunting quest for a small diameter vascular graft. Expert Rev Med Devices 2(6):647–651

    Article  Google Scholar 

  • Walpoth B, Rheiner P, Cox J, Rothen R, Faidutti B, Mégevand R, Gogolewski S (1986) Biocompatibility of new biodegradable and nondegradable polymeric membranes. Life Support Syst 4(2):82–84

    Google Scholar 

  • Walpoth B, Ammon A, Galdikas J, Ris HB, Schaffner T, Höflin F, Schilt W, Mettler D, Nachbur B, Althaus U (1993) Experimental assessment of thrombogenicity in vascular prostheses before and during prostaglandin E1 treatment. Eur J Vasc Surg 7:493–499

    Article  Google Scholar 

  • Walpoth BH, Rogulenko R, Tikhvinskaia E, Gogolewski S, Schaffner T, Hess OM, Althaus U (1998) Improvement of patency rate in heparin-coated small synthetic vascular grafts. Circulation 98(Suppl. II):319–324

    Google Scholar 

  • Walpoth BH, Zammaretti P, Cikirikcioglu M, Khabiri E, Djebaili MK, Pache J-C, Tille J-C, Aggoun Y, Morel D, Kalangos A, Hubbell JA, Zisch AH (2007) Enhanced intimal thickening of expanded polytetrafluoroethylene grafts coated with fibrin or fibrin-releasing vascular endothelial growth factor in the pig carotid artery interposition model. J Thor Cardio-vasc Surg 133:1163–1170

    Article  Google Scholar 

  • Walpoth B, Schmid M, Schwab A, Bosshard A, Eckstein F, Carrel T, Hess OM (2008) Vascular adaptation of the internal thoracic artery graft early and late after bypass surgery. J Thorac Cardiovasc Surg 136(4):876–883

    Article  Google Scholar 

  • Wang D, Wang X, Zhang Z, Wang L, Li X, Xu Y et al (2019) Programmed release of multimodal, cross-linked vascular endothelial growth factor and heparin layers on Electrospun Polycaprolactone vascular grafts. ACS Appl Mater Interfaces 11(35):32533–32542

    Article  Google Scholar 

  • Weber B, Emmert MY, Schoenauer R, Brokopp C, Baumgartner L, Hoerstrup SP (2011) Tissue engineering on matrix: future of autologous tissue replacement. Semin Immunopathol 33:307

    Article  Google Scholar 

  • Weinberg CB, Bell E (1986) A blood vessel model constructed from collagen and cultured vascular cells. Science 231:397

    Article  Google Scholar 

  • Wise SG, Byrom MJ, Waterhouse A, Bannon PG, Ng MKC, Weiss AS (2011) A multilayered synthetic human elastin/polycaprolactone hybrid vascular graft with tailored mechanical properties. Acta Biomater 7:295

    Article  Google Scholar 

  • Wu W, Allen RA, Wang Y (2012) Fast-degrading elastomer enables rapid remodeling of a cell-free synthetic graft into a neoartery. Nat Med 18:1148

    Article  Google Scholar 

  • Zetrenne E, McIntosh BC, McRae MH, Gusberg R, Evans GRD, Narayan D (2007) Prosthetic vascular graft infection: a multi-center review of surgical management. Yale J Biol Med 80:113

    Google Scholar 

  • Zhang L, Ao Q, Wang A, Lu G, Kong L, Gong Y, Zhao N, Zhang X (2006) A sandwich tubular scaffold derived from chitosan for blood vessel tissue engineering. J Biomed Mater Res A 77A:277

    Article  Google Scholar 

  • Zhang X, Shi J, Chen S, Dong Y, Zhang L, Midgley AC, Kong D, Wang S (2019) Polycaprolactone/gelatin degradable vascular grafts simulating endothelium functions modified by nitric oxide generation. Regen Med 14(12):1089–1105

    Article  Google Scholar 

  • Zilla P, Bezuidenhout D, Human P (2007) Prosthetic vascular grafts: wrong models, wrong questions and no healing. Biomaterials 28(34):5009–5027

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the research groups of the Departments of Cardiovascular Surgery, Clinical Pathology, Pathology & Immunology and Pharmaceutics of the University of Geneva as well as the expert help of Mr. Jean-Pierre Giliberto from the experimental surgery laboratory.

B. H. Walpoth expresses his thanks to the Thematic Group of Vascular Tissue Engineering of TERMIS, as well as the group of the International Symposium on Vascular Tissue Engineering.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beat H. Walpoth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Walpoth, B.H. et al. (2020). In Vivo Tissue-Engineered Vascular Grafts. In: Walpoth, B., Bergmeister, H., Bowlin, G., Kong, D., Rotmans, J., Zilla, P. (eds) Tissue-Engineered Vascular Grafts. Reference Series in Biomedical Engineering(). Springer, Cham. https://doi.org/10.1007/978-3-319-71530-8_7-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71530-8_7-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71530-8

  • Online ISBN: 978-3-319-71530-8

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics