Skip to main content

Vascular Tissue Engineering: The Role of 3D Bioprinting

  • Living reference work entry
  • First Online:
Tissue-Engineered Vascular Grafts

Part of the book series: Reference Series in Biomedical Engineering ((TIENRE))

  • 171 Accesses

Abstract

Blood vessels are essential in transporting nutrients to and wastes from all tissues and therefore play critical roles in maintaining the homeostasis of the human system. However, blood vessels may be subjected to unwanted damages causing their malfunctions. Alternatively, tissues can suffer from injuries and diseases, leading to their deterioration. In either case, the regeneration of blood vessels is desired prompting the need for better strategies in vascular tissue engineering. To this end, three-dimensional (3D) bioprinting as a recently emerging and enabling technology has allowed for convenient generation of stand-alone blood vessel substitutes and functional vascular networks within tissue constructs at unprecedented controllability. In this chapter, we seek to provide an overview of the various 3D bioprinting strategies that have been applied to vascular tissue engineering with different degrees of success. We first discuss the different types of bioprinting modalities, followed by descriptions of several bioprinting strategies that have been commonly used for vascular tissue engineering, including sacrificial bioprinting, embedded extrusion bioprinting, hollow fiber bioprinting, and stereolithographic bioprinting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Bae H, Puranik AS, Gauvin R, Edalat F, Carrillo-Conde B, Peppas NA, Khademhosseini A (2012) Building vascular networks. Sci Transl Med 4:160ps123

    Article  Google Scholar 

  • Bakirci E, Toprakhisar B, Zeybek MC, Ince GO, Koc B (2017) Cell sheet based bioink for 3D bioprinting applications. Biofabrication 9:024105

    Article  Google Scholar 

  • Bertassoni LE, Cecconi M, Manoharan V, Nikkhah M, Hjortnaes J, Cristino AL, Barabaschi G, Demarchi D, Dokmeci MR, Yang Y (2014) Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs. Lab Chip 14:2202–2211

    Article  Google Scholar 

  • Bhattacharjee T, Zehnder SM, Rowe KG, Jain S, Nixon RM, Sawyer WG, Angelini TE (2015) Writing in the granular gel medium. Sci Adv 1:e1500655

    Article  Google Scholar 

  • Boland T, Mironov V, Gutowska A, Roth EA, Markwald RR (2003) Cell and organ printing 2: fusion of cell aggregates in three-dimensional gels. Anat Rec A: Discov Mol Cell Evol Biol 272A:497–502

    Article  Google Scholar 

  • Carola R, Harley JP, Noback CR (1992) Human anatomy and physiology. McGraw-Hill Higher Education, Columbus, OH

    Google Scholar 

  • Chen Y-C, Lin R-Z, Qi H, Yang Y, Bae H, Melero-Martin JM, Khademhosseini A (2012) Functional human vascular network generated in photocrosslinkable gelatin methacrylate hydrogels. Adv Funct Mater 22:2027–2039

    Article  Google Scholar 

  • Chimene D, Lennox KK, Kaunas RR, Gaharwar AK (2016) Advanced bioinks for 3D printing: a materials science perspective. Ann Biomed Eng 44:2090–102

    Google Scholar 

  • Choi S-W, Zhang Y, MacEwan MR, Xia Y. 2012. Neovascularization in biodegradable inverse opal scaffolds with uniform and precisely controlled pore sizes. Adv Healthcare Mater 2:145-54.

    Google Scholar 

  • Christensen K, Xu C, Chai W, Zhang Z, Fu J, Huang Y (2015) Freeform inkjet printing of cellular structures with bifurcations. Biotechnol Bioeng 112:1047–1055

    Article  Google Scholar 

  • Chung S, Sudo R, Zervantonakis IK, Rimchala T, Kamm RD (2009) Surface-treatment-induced three-dimensional capillary morphogenesis in a microfluidic platform. Adv Mater 9999: NA

    Google Scholar 

  • Gao G, Yonezawa T, Hubbell K, Dai G, Cui X (2015) Inkjet-bioprinted acrylated peptides and PEG hydrogel with human mesenchymal stem cells promote robust bone and cartilage formation with minimal printhead clogging. Biotechnol J 10:1568–1577

    Article  Google Scholar 

  • Guillotin B, Souquet A, Catros S, Duocastella M, Pippenger B, Bellance S, Bareille R, RĂ©my M, Bordenave L, AmĂ©dĂ©e J (2010) Laser assisted bioprinting of engineered tissue with high cell density and microscale organization. Biomaterials 31:7250–7256

    Article  Google Scholar 

  • Gungor-Ozkerim PS, Inci I, Zhang YS, Khademhosseini A, Dokmeci MR (2018) Bioinks for 3D bioprinting: an overview. Biomater Sci 6:915–946

    Article  Google Scholar 

  • Heinrich MA, Liu W, Jimenez A, Yang J, Akpek A, Liu X, Pi Q, Mu X, Hu N, Schiffelers RM et al (2019) 3D bioprinting: from benches to translational applications. Small 15:1805510

    Article  Google Scholar 

  • Highley CB, Rodell CB, Burdick JA (2015) Direct 3D printing of shear-thinning hydrogels into self-healing hydrogels. Adv Mater 27:5075–5079

    Article  Google Scholar 

  • Hinton TJ, Jallerat Q, Palchesko RN, Park JH, Grodzicki MS, Shue H-J, Ramadan MH, Hudson AR, Feinberg AW (2015) Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels. Sci Adv 1:e1500758

    Article  Google Scholar 

  • Hospodiuk M, Dey M, Sosnoski D, Ozbolat IT (2017) The bioink: a comprehensive review on bioprintable materials. Biotechnol Adv 35:217

    Article  Google Scholar 

  • Hull CW (1986) Apparatus for production of three-dimensional objects by stereolithography. Google Patents

    Google Scholar 

  • Jang J, Park H-J, Kim S-W, Kim H, Park JY, Na SJ, Kim HJ, Park MN, Choi SH, Park SH (2017) 3D printed complex tissue construct using stem cell-laden decellularized extracellular matrix bioinks for cardiac repair. Biomaterials 112:264–274

    Article  Google Scholar 

  • Jia W, Gungor-Ozkerim PS, Zhang YS, Yue K, Zhu K, Liu W, Pi Q, Byambaa B, Dokmeci MR, Shin SR et al (2016) Direct 3D bioprinting of perfusable vascular constructs using a blend bioink. Biomaterials 106:58–68

    Article  Google Scholar 

  • Kai Ling GH, Liu J, Zhang X, Ma Y, Lu T, Feng X (2015) Bioprinting-based high-throughput fabrication of three-dimensional MCF-7 human breast cancer cellular spheroids. Engineering 1:269–274

    Article  Google Scholar 

  • Kang H-W, Lee SJ, Ko IK, Kengla C, Yoo JJ, Atala A (2016) A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat Biotechnol 34:312–319

    Article  Google Scholar 

  • Kolesky DB, Truby RL, Gladman AS, Busbee TA, Homan KA, Lewis JA (2014) 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv Mater 26:3124–3130

    Article  Google Scholar 

  • Kolesky DB, Homan KA, Skylar-Scott MA, Lewis JA (2016) Three-dimensional bioprinting of thick vascularized tissues. Proc Natl Acad Sci U S A 113:3179–3184

    Article  Google Scholar 

  • Lee VK, Kim DY, Ngo H, Lee Y, Seo L, Yoo S-S, Vincent PA, Dai G (2014) Creating perfused functional vascular channels using 3D bio-printing technology. Biomaterials 35:8092–8102

    Article  Google Scholar 

  • Lee VK, Dai G, Zou H, Yoo S-S (2015) Generation of 3-D glioblastoma-vascular niche using 3-D bioprinting. In: Biomedical Engineering Conference (NEBEC), 2015 41st Annual Northeast. IEEE, New York, pp 1–2

    Google Scholar 

  • Lin NYC, Homan KA, Robinson SS, Kolesky DB, Duarte N, Moisan A, Lewis JA (2019) Renal reabsorption in 3D vascularized proximal tubule models. Proc Natl Acad Sci U S A 116:5399–5404. 201815208

    Article  Google Scholar 

  • Ma X, Qu X, Zhu W, Li Y-S, Yuan S, Zhang H, Liu J, Wang P, Lai CSE, Zanella F et al (2016) Deterministically patterned biomimetic human iPSC-derived hepatic model via rapid 3D bioprinting. Proc Natl Acad Sci U S A 113:2206–2211

    Article  Google Scholar 

  • Malda J, Visser J, Melchels FP, JĂĽngst T, Hennink WE, Dhert WJA, Groll J, Hutmacher DW (2013) 25th anniversary article: engineering hydrogels for biofabrication. Adv Mater 25:5011–5028

    Article  Google Scholar 

  • Massa S, Seo J, Arneri A, Bersini S, Cha B-H, Antona S, Enrico A, Gao Y, Hassan S, Cox JPA et al (2017) Bioprinted 3D vascularized tissue model for drug toxicity analysis. Biomicrofluidics 11:044109

    Article  Google Scholar 

  • Mirabella T, MacArthur JW, Cheng D, Ozaki CK, Woo YJ, Yang MT, Chen CS (2017) 3D-printed vascular networks direct therapeutic angiogenesis in ischaemia. Nat Biomed Eng 1:0083

    Article  Google Scholar 

  • Miri AK, Nieto D, Iglesias L, Goodarzi Hosseinabadi H, Maharjan S, Ruiz-Esparza GU, Khoshakhlagh P, Manbachi A, Dokmeci MR, Chen S et al (2018) Microfluidics-enabled multimaterial maskless stereolithographic bioprinting. Adv Mater 30:1800242

    Article  Google Scholar 

  • Mironov V, Visconti RP, Kasyanov V, Forgacs G, Drake CJ, Markwald RR (2009) Organ printing: tissue spheroids as building blocks. Biomaterials 30:2164–2174

    Article  Google Scholar 

  • Moldovan NI, Hibino N, Nakayama K (2017) Principles of the Kenzan method for robotic cell spheroid-based three-dimensional bioprinting. Tissue Eng B 23:237–244

    Article  Google Scholar 

  • Moroni L, Burdick JA, Highley C, Lee SJ, Morimoto Y, Takeuchi S, Yoo JJ (2018) Biofabrication strategies for 3D in vitro models and regenerative medicine. Nat Rev Mater 3:21–37

    Article  Google Scholar 

  • Murphy SV, Atala A (2014) 3D bioprinting of tissues and organs. Nat Biotechnol 32:773–785

    Article  Google Scholar 

  • Obata K, El-Tamer A, Koch L, Hinze U, Chichkov BN (2013) High-aspect 3D two-photon polymerization structuring with widened objective working range (WOW-2PP). Light 2:e116

    Article  Google Scholar 

  • Ozbolat IT, Hospodiuk M (2016) Current advances and future perspectives in extrusion-based bioprinting. Biomaterials 76:321–343

    Article  Google Scholar 

  • Pati F, Jang J, Ha D-H, Kim SW, Rhie J-W, Shim J-H, Kim D-H, Cho D-W (2014) Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat Commun 5:3935

    Article  Google Scholar 

  • Perets A, Baruch Y, Weisbuch F, Shoshany G, Neufeld G, Cohen S (2003) Enhancing the vascularization of three-dimensional porous alginate scaffolds by incorporating controlled release basic fibroblast growth factor microspheres. J Biomed Mater Res A 65A:489–497

    Article  Google Scholar 

  • Pi Q, Maharjan S, Yan X, Liu X, Singh B, Van Genderen AM, Robledo-Padilla F, Parra-Saldivar R, Hu N, Jia W et al (2018) Digitally tunable microfluidic bioprinting of multilayered cannular tissues. Adv Mater 30:1706913

    Article  Google Scholar 

  • Rhee S, Puetzer JL, Mason BN, Reinhart-King CA, Bonassar LJ (2016) 3D bioprinting of spatially heterogeneous collagen constructs for cartilage tissue engineering. ACS Biomater Sci Eng 2:1800–1805

    Article  Google Scholar 

  • Rouwkema J, Khademhosseini A (2016) Vascularization and angiogenesis in tissue engineering: beyond creating static networks. Trends Biotechnol 34:733–745

    Article  Google Scholar 

  • Saladin KS, Miller L (1998) Anatomy & physiology. McGraw-Hill, New York

    Google Scholar 

  • Shpichka A, Koroleva A, Kuznetsova D, Burdukovskii V, Chichkov B, BagratashvilŃ– V, Timashev P (2018) Two-photon polymerization in tissue engineering. In: Polymer and photonic materials towards biomedical breakthroughs. Springer, Cham, pp 71–98

    Chapter  Google Scholar 

  • Skardal A, Atala A (2015) Biomaterials for integration with 3-D bioprinting. Ann Biomed Eng 43:730–746

    Article  Google Scholar 

  • Skoog SA, Goering PL, Narayan RJ (2014) Stereolithography in tissue engineering. J Mater Sci Mater Med 25:845–856

    Article  Google Scholar 

  • Tortora GJ, Derrickson BH (2011) Principles of anatomy and physiology. Wiley, Hoboken

    Google Scholar 

  • Wilson WC, Boland T (2003) Cell and organ printing 1: protein and cell printers. Anat Rec 272:491–496

    Article  Google Scholar 

  • Wong KHK, Chan JM, Kamm RD, Tien J (2012) Microfluidic models of vascular functions. Annu Rev Biomed Eng 14:205–230

    Article  Google Scholar 

  • Xu T, Jin J, Gregory C, Hickman JJ, Boland T (2005) Inkjet printing of viable mammalian cells. Biomaterials 26:93–99

    Article  Google Scholar 

  • Xue D, Wang Y, Zhang J, Mei D, Wang Y, Chen S (2018) Projection-based 3D printing of cell patterning scaffolds with multiscale channels. ACS Appl Mater Interfaces 10:19428–19435

    Article  Google Scholar 

  • Ying G, Jiang N, Yu C, Zhang YS (2018) Three-dimensional bioprinting of gelatin methacryloyl (GelMA). Bio-Design Manuf 1:215–224

    Article  Google Scholar 

  • Yu Y, Zhang Y, Martin JA, Ozbolat IT (2013) Evaluation of cell viability and functionality in vessel-like bioprintable cell-laden tubular channels. J Biomech Eng 135:091011–091011

    Article  Google Scholar 

  • Yu Y, Moncal KK, Li J, Peng W, Rivero I, Martin JA, Ozbolat IT (2016) Three-dimensional bioprinting using self-assembling scalable scaffold-free “tissue strands” as a new bioink. Sci Rep 6:28714

    Article  Google Scholar 

  • Zhang YS, Khademhosseini A (2017) Advances in engineering hydrogels. Science 356:eaaf3627

    Article  Google Scholar 

  • Zhang Y, Yu Y, Chen H, Ozbolat IT (2013a) Characterization of printable cellular micro-fluidic channels for tissue engineering. Biofabrication 5:025004

    Article  Google Scholar 

  • Zhang Y, Yu Y, Ozbolat IT (2013b) Direct bioprinting of vessel-like tubular microfluidic channels. J Nanotechnol Eng Med 4:020902

    Article  Google Scholar 

  • Zhang Y, Yu Y, Akkouch A, Dababneh A, Dolati F, Ozbolat IT (2015) In vitro study of directly bioprinted perfusable vasculature conduits. Biomater Sci 3:134–143

    Article  Google Scholar 

  • Zhang YS, Davoudi F, Walch P, Manbachi A, Luo X, Dell’Erba V, Miri AK, Albadawi H, Arneri A, Li X et al (2016) Bioprinted thrombosis-on-a-chip. Lab Chip 16:4097–4105

    Article  Google Scholar 

  • Zhang YS, Yue K, Aleman J, Moghaddam K, Bakht SM, Dell’Erba V, Assawes P, Shin SR, Dokmeci MR, Oklu R et al (2017) 3D bioprinting for tissue and organ fabrication. Ann Biomed Eng 45:148–163

    Article  Google Scholar 

  • Zhu W, Qu X, Zhu J, Ma X, Patel S, Liu J, Wang P, Lai CSE, Gou M, Xu Y, Zhang K, Chen S. (2017) Direct 3D bioprinting of prevascularized tissue constructs with complex microarchitecture. Biomaterials 124:106–115

    Google Scholar 

Download references

Acknowledgments

Y.S.Z. acknowledges funding from the National Institutes of Health (CA201603, EB025270, EB026175, EB028143), the American Heart Association (19TPA34850188), and the Brigham Research Institute. A.K. acknowledges funding from the National Institutes of Health (AR057837, DE021468, AR068258, AR066193, EB022403).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu Shrike Zhang or Ali Khademhosseini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Zhang, Y.S., Khademhosseini, A. (2020). Vascular Tissue Engineering: The Role of 3D Bioprinting. In: Walpoth, B., Bergmeister, H., Bowlin, G., Kong, D., Rotmans, J., Zilla, P. (eds) Tissue-Engineered Vascular Grafts. Reference Series in Biomedical Engineering(). Springer, Cham. https://doi.org/10.1007/978-3-319-71530-8_11-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71530-8_11-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71530-8

  • Online ISBN: 978-3-319-71530-8

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics