Skip to main content

Future Energy and the Use of Renewables

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Affordable and Clean Energy

Definitions

Future energy refers, mainly, to energy sources not yet explored or that are in the research/precommercial stage. The energy sources of the future depend on the technological developments and the future resources’ availability, as well as on the political will to implement them and the financial conditions to make them flourish, given their potential disruptive character.

Besides that, future energy is also related to reshaping the primary energy use, such as in cooking and heating, by means of the implementation of modern methods and energy technologies. Within this context, it does not necessarily involve using undiscovered or unprecedented energy sources, but merely applying modern and sustainable technologies, such as natural gas boilers in substitution to traditional coal boilers or biogas-fired ovens in substitution to traditional firewood ovens. This reasoning is also applied to the transportation sector, where fossil fuel–fired vehicles, in a future energy scenario,...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Appleby AJ (1976) Energy costs and society – the high price of future energy. Energy Policy 4(2):87–97

    Article  Google Scholar 

  • Ayodele TR, Ogunjuyigbe ASO (2015) Mitigation of wind power intermittency: storage technology approach. Renew Sust Energ Rev 44:447–456

    Article  Google Scholar 

  • Bell W (1997) Foundations of futures studies: human science for a new era, volume 1: history, purposes, and knowledge. Transaction Publishers, New Brunswick

    Google Scholar 

  • Borba BS, Szklo A, Schaeffer R (2012) Plug-in hybrid electric vehicles as a way to maximize the integration of variable renewable energy in power systems: the case of wind generation in northeastern Brazil. Energy 37:469–481

    Article  Google Scholar 

  • Brischke L-A (2005) Modell einer zukünftigen Stromversorgung Deutschlands mit hohen Beiträgen regenerativer Energien auf der Basis eines Mehr-Knoten-Netzes. VDI Fortschritt-Bericht, Düsseldorf, Series 6, Nr. 530

    Google Scholar 

  • Brown TW, Bischof-Niemz T, Blok K, Breyer C, Lund H, Mathiesen BV (2018) Response to ‘burden of proof: a comprehensive review of the feasibility of 100% renewable-electricity systems’. Renew Sust Energ Rev 92:834–847

    Article  Google Scholar 

  • Castro, M (2020) Urban microgrids: benefits, challenges, and business models. In: Guimarães LNMR (org) The regulation and policy of Latin American energy transitions. Elsevier, England

    Google Scholar 

  • Charlier RH, Justus JR (1993) Ocean energies: environmental, economic and technological aspects of alternative power sources. Elsevier, New York

    Google Scholar 

  • Dallinger D, Wietschel M (2012) Grid integration of intermittent renewable energy sources using price-responsive plug-in electric vehicles. Renew Sust Energ Rev 16:3370–3382

    Article  Google Scholar 

  • Deffeyes KS (2008) Hubbert’s peak: the impending world oil shortage. Princeton University Press, Princeton, p 2008

    Google Scholar 

  • Edwards PP, Kuznetsov VL, David WIF, Brandon NP (2008) Hydrogen and fuel cells: towards a sustainable energy future. Energy Policy 36:4356–4362

    Article  Google Scholar 

  • Fuchs G, Lunz B, Leuthold M, Sauer DU (2012) Overview on the potential and on the deployment perspectives of electricity storage technologies. On behalf of Smart Energy for Europe Platform Ltd, Aachen

    Google Scholar 

  • Goldthau A, Sovacool BK (2012) The uniqueness of the energy security, justice and governance problem. Energy Policy 41:232–240

    Article  Google Scholar 

  • Gross R, Heptonstall P, Anderson D, Green T, Leach M, Skea J (2006) The costs and impacts of intermittency: an assessment of the evidence on the costs and impacts of intermittent generation on the British electricity network. UK Energy Research Centre, London

    Google Scholar 

  • Guimarães, LNMRG (2017) Geração de eletricidade a partir de usinas eólicas offshore: premissas a serem consideradas. In: Borges TC, Zanella TV, Toledo AP, Subtil LC, Borges OF (orgs) Direito do mar: Reflexões, tendências e perspectivas, vol 1. D’Placido, Brazil

    Google Scholar 

  • GWEC (2017a) Global installed wind power capacity. Global Wind Energy Council, Belgium

    Google Scholar 

  • GWEC (2017b) Global cumulative offshore wind capacity in 2017. Global Wind Energy Council, Belgium

    Google Scholar 

  • Heinberg R (2005) The party’s over: oil, war, and the fate of industrial societies, 2nd edn. New Society Publishers, Canada

    Google Scholar 

  • Hirschhausen, C (2010) Developing a supergrid. In: Moselle B, Padilla J, Schmalensee R (orgs) Harnessing renewable energy in electric power systems. RFF Press, USA

    Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (2015) Climate change 2014: synthesis report. Cambridge University Press, England

    Google Scholar 

  • Jacobson MZ, Delucchi MA (2011) Providing all global energy with wind, water and solar power, part 1: technologies, energy resources, quantities and areas of infrastructure, and materials. Energy Policy 39:1154–1169

    Article  Google Scholar 

  • Karjalainen, J, Noorava, H, Heinonen, S (2020) Foresight for Chile’s energy transition – unleashing societal transformations. In: Guimarães LNMR (org.). The regulation and policy of Latin American energy transitions. Elsevier, England

    Google Scholar 

  • Lovins A (1976) Energy strategy: the road not taken? Foreign Aff 55:65–96

    Article  Google Scholar 

  • Masini E (2006) Rethinking futures studies. Futures 38:1158–1168

    Article  Google Scholar 

  • Moriarty P, Honnery D (2016) Can renewable power the future? Energy Policy 93(3-7)

    Google Scholar 

  • Mørk G, Barstow S, Pontes MT, Kabuth A (2010) Assessing the global wave energy potential. OMAE, China, p 2010

    Google Scholar 

  • Moselle, B (2010) Renewable generation and security of supply. In: Moselle B, Padilla J, Schmalensee R (org) Harnessing renewable energy in electric power systems – theory, practice, policy. Washington: RFF Press

    Google Scholar 

  • National Renewable Energy Laboratory (NREL) (2016) 2016 offshore wind energy resource assessment for the United States. NREL, Golden

    Google Scholar 

  • Pierpoint LM (2016) Harnessing electricity storage for systems with intermittent sources of power: policy and R&D needs. Energy Policy 96:751–757

    Article  Google Scholar 

  • Pimenta F, Kempton W, Garvine R (2008) Combining meteorological stations and satellite data to evaluate the offshore wind power resource of southeastern Brazil. Renew Energy 33:2375–2387

    Article  Google Scholar 

  • Rahimi E, Rabiee A, Aghaei J, Muttaqi KM, Nezhad AE (2013) On the management of wind power intermittency. Renew Sust Energ Rev 28:643–653

    Article  Google Scholar 

  • REN21 (2017) Renewables global futures report. REN21 Secretariat, France

    Google Scholar 

  • Säcker FJ, König C, Scholz L (2014) Der regulierungsrechtliche Rahmen für ein Offshore-Stromnetz in der Nordsee. Peter Lang, Germany

    Book  Google Scholar 

  • Scheer H (2010) Der energetische Imperativ. Kunstmann, Germany

    Google Scholar 

  • Schumacher P (2009) Innovationsregulierung im Recht der netzgebundenen Elektrizitätswirtschaft. Nomos, Baden-Baden

    Book  Google Scholar 

  • Skråmestø ØS, Skilhagen S-E, Nielsen WK (2009) Power production based on osmotic pressure. Waterpower XVI:1–10

    Google Scholar 

  • Sovacool BK (2009) The intermittency of wind, solar and renewable electricity generators: technical barrier or rhetorical excuse? Util Policy 17:288–296

    Article  Google Scholar 

  • Sovacool BK, Hirsh RF (2009) Beyond batteries: an examination of the benefits and barriers to plug-in hybrid electric vehicles (PHEVs) and a vehicle-to-grid (V2G) transition. Energy Policy 37:1095–1103

    Article  Google Scholar 

  • Sovacool BK, Axsen J, Kempton W (2017) The future promise of vehicle-to-grid (V2G) integration: a sociotechnical review and research agenda. Annu Rev Environ Resour 42:377–406

    Article  Google Scholar 

  • Steinke F, Wolfrum P, Hoffmann C (2013) Grid vs. storage in a 100% renewable Europe. Renew Energy 50:826–832

    Article  Google Scholar 

  • Suberu MY, Mustafa MW, Bashir N (2014) Energy storage systems for renewable energy power sector integration and mitigation of intermittency. Renew Sust Energ Rev 35:499–514

    Article  Google Scholar 

  • Uihlein A, Magagna D (2016) Wave and tidal current energy – a review of the current state of research beyond technology. Renew Sust Energ Rev 58:1070–1081

    Article  Google Scholar 

  • WindEurope (2017) Unleashing Europe’s offshore wind potential

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucas Noura de Moraes Rêgo Guimarães .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Guimarães, L.N.d.M.R. (2020). Future Energy and the Use of Renewables. In: Leal Filho, W., Azul, A., Brandli, L., Lange Salvia, A., Wall, T. (eds) Affordable and Clean Energy. Encyclopedia of the UN Sustainable Development Goals. Springer, Cham. https://doi.org/10.1007/978-3-319-71057-0_6-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71057-0_6-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71057-0

  • Online ISBN: 978-3-319-71057-0

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Future Energy and the Use of Renewables
    Published:
    21 August 2020

    DOI: https://doi.org/10.1007/978-3-319-71057-0_6-2

  2. Original

    Future Energy and the Use of Renewables
    Published:
    12 July 2020

    DOI: https://doi.org/10.1007/978-3-319-71057-0_6-1