Skip to main content

Changes in Natural Killer Cells in Aged Mice

  • Living reference work entry
  • First Online:
Handbook of Immunosenescence
  • 108 Accesses

Abstract

Immune dysfunctions in the elderly result in increased susceptibility to infectious diseases, cancer, or autoimmune diseases. Natural killer (NK) cells are bone marrow derived lymphocytes crucial for host defense against several infections and cancer. It is known that aged C57BL/6 mice compared to young mice have decreased numbers of mature NK cells in the blood, spleen, and bone marrow, resulting in susceptibility to mousepox, a lethal disease caused by Ectromelia virus. The chapter discusses newly described age-related defects in NK cells including reduced proliferation in vivo, dysregulated expression of activating and inhibitory receptors, and altered expression of collagen binding integrins. The chapter also describes that the defect in NK maturation is the consequence of deficient maturational cues provided by bone marrow stromal cells. Treatment with complexes of the cytokine IL-15 and IL-15Rα induce massive expansion of the NK cells but most of these NK cells remain immature and are unable to restore resistance to mousepox. Therefore, it may be crucial to design therapies that specifically increase mature NK cell numbers in the aged.

Some parts of this chapter were previously published in Nair S, Fang M, Sigal LJ. The natural killer cell dysfunction of aged mice is due to the bone marrow stroma and is not restored by IL-15/IL-15Ralpha treatment. Aging Cell. 2015;14(2):180–90. https://doi.org/10.1111/acel.12291. PubMed PMID: 25399821.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Albright JW, Albright JF (1983) Age-associated impairment of murine natural killer activity. Proc Natl Acad Sci USA 80(20):6371–6375

    CAS  PubMed  PubMed Central  Google Scholar 

  • Arase H, Saito T, Phillips JH, Lanier LL (2001) Cutting edge: the mouse NK cell-associated antigen recognized by DX5 monoclonal antibody is CD49b (alpha 2 integrin, very late antigen-2). J Immunol 167(3):1141–1144

    CAS  PubMed  Google Scholar 

  • Beli E, Duriancik DM, Clinthorne JF, Lee T, Kim S, Gardner EM (2013) Natural killer cell development and maturation in aged mice. Mech Ageing Dev 135:33

    PubMed  PubMed Central  Google Scholar 

  • Bernardini G, Sciume G, Bosisio D, Morrone S, Sozzani S, Santoni A (2008) CCL3 and CXCL12 regulate trafficking of mouse bone marrow NK cell subsets. Blood 111(7):3626–3634

    CAS  PubMed  Google Scholar 

  • Bukowski JF, Woda BA, Welsh RM (1984) Pathogenesis of murine cytomegalovirus infection in natural killer cell-depleted mice. J Virol 52(1):119–128

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carlyle JR, Mesci A, Ljutic B, Belanger S, Tai LH, Rousselle E, Troke AD, Proteau MF, Makrigiannis AP (2006) Molecular and genetic basis for strain-dependent NK1.1 alloreactivity of mouse NK cells. J Immunol 176(12):7511–7524

    CAS  PubMed  Google Scholar 

  • Chinn IK, Blackburn CC, Manley NR, Sempowski GD (2012) Changes in primary lymphoid organs with aging. Semin Immunol 24(5):309–320

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chiu BC, Martin BE, Stolberg VR, Chensue SW (2013) The host environment is responsible for aging-related functional NK cell deficiency. J Immunol 191(9):4688–4698

    CAS  PubMed  Google Scholar 

  • Colucci F, Caligiuri MA, Di Santo JP (2003) What does it take to make a natural killer? Nat Rev Immunol 3(5):413–425

    CAS  PubMed  Google Scholar 

  • Coombes JL, Han SJ, van Rooijen N, Raulet DH, Robey EA (2012) Infection-induced regulation of natural killer cells by macrophages and collagen at the lymph node subcapsular sinus. Cell Rep 2(1):124–135

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cui G, Hara T, Simmons S, Wagatsuma K, Abe A, Miyachi H, Kitano S, Ishii M, Tani-ichi S, Ikuta K (2014) Characterization of the IL-15 niche in primary and secondary lymphoid organs in vivo. Proc Natl Acad Sci USA 111(5):1915–1920

    CAS  PubMed  PubMed Central  Google Scholar 

  • Daussy C, Faure F, Mayol K, Viel S, Gasteiger G, Charrier E, Bienvenu J, Henry T, Debien E, Hasan UA, Marvel J, Yoh K, Takahashi S, Prinz I, de Bernard S, Buffat L, Walzer T (2014) T-bet and Eomes instruct the development of two distinct natural killer cell lineages in the liver and in the bone marrow. J Exp Med 211(3):563–577

    CAS  PubMed  PubMed Central  Google Scholar 

  • Delano ML, Brownstein DG (1995) Innate resistance to lethal mousepox is genetically linked to the NK gene complex on chromosome 6 and correlates with early restriction of virus replication by cells with an NK phenotype. J Virol 69(9):5875–5877

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dorshkind K, Montecino-Rodriguez E, Signer RA (2009) The ageing immune system: is it ever too old to become young again? Nat Rev Immunol 9(1):57–62

    CAS  PubMed  Google Scholar 

  • Dubois S, Patel HJ, Zhang M, Waldmann TA, Muller JR (2008) Preassociation of IL-15 with IL-15R alpha-IgG1-Fc enhances its activity on proliferation of NK and CD8+/CD44high T cells and its antitumor action. J Immunol 180(4):2099–2106

    CAS  PubMed  Google Scholar 

  • Elpek KG, Rubinstein MP, Bellemare-Pelletier A, Goldrath AW, Turley SJ (2010) Mature natural killer cells with phenotypic and functional alterations accumulate upon sustained stimulation with IL-15/IL-15Ralpha complexes. Proc Natl Acad Sci USA 107(50):21647–21652

    CAS  PubMed  PubMed Central  Google Scholar 

  • Esteban DJ, Buller RM (2005) Ectromelia virus: the causative agent of mousepox. J Gen Virol 86(Pt 10):2645–2659

    CAS  PubMed  Google Scholar 

  • Fang M, Lanier LL, Sigal LJ (2008) A role for NKG2D in NK cell-mediated resistance to poxvirus disease. PLoS Pathog 4(2):e30

    PubMed  PubMed Central  Google Scholar 

  • Fang M, Roscoe F, Sigal LJ (2010) Age-dependent susceptibility to a viral disease due to decreased natural killer cell numbers and trafficking. J Exp Med 207(11):2369–2381

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fang M, Orr MT, Spee P, Egebjerg T, Lanier LL, Sigal LJ (2011) CD94 is essential for NK cell-mediated resistance to a lethal viral disease. Immunity 34(4):579–589

    CAS  PubMed  PubMed Central  Google Scholar 

  • Feng CG, Kaviratne M, Rothfuchs AG, Cheever A, Hieny S, Young HA, Wynn TA, Sher A (2006) NK cell-derived IFN-gamma differentially regulates innate resistance and neutrophil response in T cell-deficient hosts infected with Mycobacterium tuberculosis. J Immunol 177(10):7086–7093

    CAS  PubMed  Google Scholar 

  • Flint SJ (2009) Principles of virology. ASM Press, Washington, DC

    Google Scholar 

  • Giorda R, Weisberg EP, Ip TK, Trucco M (1992) Genomic structure and strain-specific expression of the natural killer cell receptor NKR-P1. J Immunol 149(6):1957–1963

    CAS  PubMed  Google Scholar 

  • Gordon SM, Chaix J, Rupp LJ, Wu J, Madera S, Sun JC, Lindsten T, Reiner SL (2010) The transcription factors T-bet and Eomes control key checkpoints of natural killer cell maturation. Immunity 36(1):55–67

    Google Scholar 

  • Hayakawa Y, Smyth MJ (2006) CD27 dissects mature NK cells into two subsets with distinct responsiveness and migratory capacity. J Immunol 176(3):1517–1524

    CAS  PubMed  Google Scholar 

  • Hazeldine J, Hampson P, Lord JM (2012) Reduced release and binding of perforin at the immunological synapse underlies the age-related decline in natural killer cell cytotoxicity. Aging Cell 11(5):751–759

    CAS  PubMed  Google Scholar 

  • Hood JD, Cheresh DA (2002) Role of integrins in cell invasion and migration. Nat Rev Cancer 2(2):91–100

    PubMed  Google Scholar 

  • Huntington ND, Tabarias H, Fairfax K, Brady J, Hayakawa Y, Degli-Esposti MA, Smyth MJ, Tarlinton DM, Nutt SL (2007) NK cell maturation and peripheral homeostasis is associated with KLRG1 up-regulation. J Immunol 178(8):4764–4770

    CAS  PubMed  Google Scholar 

  • Kennedy MK, Glaccum M, Brown SN, Butz EA, Viney JL, Embers M, Matsuki N, Charrier K, Sedger L, Willis CR, Brasel K, Morrissey PJ, Stocking K, Schuh JC, Joyce S, Peschon JJ (2000) Reversible defects in natural killer and memory CD8 T cell lineages in interleukin 15-deficient mice. J Exp Med 191(5):771–780

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim S, Iizuka K, Kang HS, Dokun A, French AR, Greco S, Yokoyama WM (2002) In vivo developmental stages in murine natural killer cell maturation. Nat Immunol 3(6):523–528

    PubMed  Google Scholar 

  • Labrie JE 3rd, Borghesi L, Gerstein RM (2005) Bone marrow microenvironmental changes in aged mice compromise V(D)J recombinase activity and B cell generation. Semin Immunol 17(5):347–355

    CAS  PubMed  Google Scholar 

  • Lang PO, Mendes A, Socquet J, Assir N, Govind S, Aspinall R (2012) Effectiveness of influenza vaccine in aging and older adults: comprehensive analysis of the evidence. Clin Interv Aging 7:55–64

    PubMed  PubMed Central  Google Scholar 

  • Lanier LL (2008) Up on the tightrope: natural killer cell activation and inhibition. Nat Immunol 9(5):495–502

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leitinger B, Hohenester E (2007) Mammalian collagen receptors. Matrix Biol 26(3):146–155

    CAS  PubMed  Google Scholar 

  • Leng J, Goldstein DR (2010) Impact of aging on viral infections. Microbes Infect 12(14–15):1120–1124

    PubMed  PubMed Central  Google Scholar 

  • Lodolce JP, Boone DL, Chai S, Swain RE, Dassopoulos T, Trettin S, Ma A (1998) IL-15 receptor maintains lymphoid homeostasis by supporting lymphocyte homing and proliferation. Immunity 9(5):669–676

    CAS  PubMed  Google Scholar 

  • Loh J, Chu DT, O’Guin AK, Yokoyama WM, Virgin HW (2005) Natural killer cells utilize both perforin and gamma interferon to regulate murine cytomegalovirus infection in the spleen and liver. J Virol 79(1):661–667

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marcais A, Viel S, Grau M, Henry T, Marvel J, Walzer T (2013) Regulation of mouse NK cell development and function by cytokines. Front Immunol 4:450

    PubMed  PubMed Central  Google Scholar 

  • Marquardt N, Wilk E, Pokoyski C, Schmidt RE, Jacobs R (2010) Murine CXCR3+CD27bright NK cells resemble the human CD56bright NK-cell population. Eur J Immunol 40(5):1428–1439

    CAS  PubMed  Google Scholar 

  • Nair S, Fang M, Sigal LJ (2015) The natural killer cell dysfunction of aged mice is due to the bone marrow stroma and is not restored by IL-15/IL-15Ralpha treatment. Aging Cell 14(2):180–190

    CAS  PubMed  Google Scholar 

  • Nguyen N, Holodniy M (2008) HIV infection in the elderly. Clin Interv Aging 3(3):453–472

    PubMed  PubMed Central  Google Scholar 

  • Nikolich-Zugich J, Li G, Uhrlaub JL, Renkema KR, Smithey MJ (2012) Age-related changes in CD8 T cell homeostasis and immunity to infection. Semin Immunol 24(5):356–364

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nogusa S, Ritz BW, Kassim SH, Jennings SR, Gardner EM (2008) Characterization of age-related changes in natural killer cells during primary influenza infection in mice. Mech Ageing Dev 129(4):223–230

    CAS  PubMed  Google Scholar 

  • Nykvist P, Tu H, Ivaska J, Kapyla J, Pihlajaniemi T, Heino J (2000) Distinct recognition of collagen subtypes by alpha(1)beta(1) and alpha(2)beta(1) integrins. Alpha(1)beta(1) mediates cell adhesion to type XIII collagen. J Biol Chem 275(11):8255–8261

    CAS  PubMed  Google Scholar 

  • Orange JS (2002) Human natural killer cell deficiencies and susceptibility to infection. Microbes Infect 4(15):1545–1558

    CAS  PubMed  Google Scholar 

  • Peng H, Jiang X, Chen Y, Sojka DK, Wei H, Gao X, Sun R, Yokoyama WM, Tian Z (2013) Liver-resident NK cells confer adaptive immunity in skin-contact inflammation. J Clin Invest 123(4):1444–1456

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rubinstein MP, Kovar M, Purton JF, Cho JH, Boyman O, Surh CD, Sprent J (2006) Converting IL-15 to a superagonist by binding to soluble IL-15R{alpha}. Proc Natl Acad Sci USA 103(24):9166–9171

    CAS  PubMed  PubMed Central  Google Scholar 

  • Seidel UJ, Schlegel P, Lang P (2013) Natural killer cell mediated antibody-dependent cellular cytotoxicity in tumor immunotherapy with therapeutic antibodies. Front Immunol 4:76

    PubMed  PubMed Central  Google Scholar 

  • Sojka DK, Plougastel-Douglas B, Yang L, Pak-Wittel MA, Artyomov MN, Ivanova Y, Zhong C, Chase JM, Rothman PB, Yu J, Riley JK, Zhu J, Tian Z, Yokoyama WM (2014) Tissue-resident natural killer (NK) cells are cell lineages distinct from thymic and conventional splenic NK cells. elife 3:e01659

    PubMed  PubMed Central  Google Scholar 

  • Solana R, Tarazona R, Gayoso I, Lesur O, Dupuis G, Fulop T (2012) Innate immunosenescence: effect of aging on cells and receptors of the innate immune system in humans. Semin Immunol 24(5):331–341

    CAS  PubMed  Google Scholar 

  • Stoklasek TA, Schluns KS, Lefrancois L (2006) Combined IL-15/IL-15Ralpha immunotherapy maximizes IL-15 activity in vivo. J Immunol 177(9):6072–6080

    CAS  PubMed  Google Scholar 

  • Sun JC, Lanier LL (2011) NK cell development, homeostasis and function: parallels with CD8(+) T cells. Nat Rev Immunol 11(10):645–657

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vance RE, Jamieson AM, Raulet DH (1999) Recognition of the class Ib molecule Qa-1(b) by putative activating receptors CD94/NKG2C and CD94/NKG2E on mouse natural killer cells. J Exp Med 190(12):1801–1812

    CAS  PubMed  PubMed Central  Google Scholar 

  • Waterhouse EJ, Quesenberry PJ, Balian G (1986) Collagen synthesis by murine bone marrow cell culture. J Cell Physiol 127(3):397–402

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis J. Sigal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Nair, S., Sigal, L.J. (2019). Changes in Natural Killer Cells in Aged Mice. In: Fulop, T., Franceschi, C., Hirokawa, K., Pawelec, G. (eds) Handbook of Immunosenescence. Springer, Cham. https://doi.org/10.1007/978-3-319-64597-1_97-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64597-1_97-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64597-1

  • Online ISBN: 978-3-319-64597-1

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics