Skip to main content

Clonal Culture Models of T Cell Senescence

  • Living reference work entry
  • First Online:
Handbook of Immunosenescence
  • 277 Accesses

Abstract

The ability to culture T cells long-term first became a reality after the discovery of T cell growth factor in the late 1970s. Using interleukin 2 (IL 2), as it is now known, normal human T lymphocytes can now be cultured for extended periods allowing for them to be cloned and monoclonal populations to be grown up to usable amounts for experimentation. This still cannot be achieved with other normal immune cells such as B cells or macrophages, which can only be cultured long term after transformation. This chapter considers clonal T cell populations as models of immune aging. T cell clones may be derived from younger or older, healthy or frail subjects, centenarians, T cell precursors, and a variety of other sources. Their lifespan in culture can be determined under different conditions and progressive changes occurring over time can be investigated. Analogous to the large body of work on fibroblast senescence in vitro, T cell clones may provide models for events occurring in vivo and provide a test bed for certain interventions to restore appropriate immune function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Annett K, Hyland P, Duggan O, Barnett C, Barnett Y (2004) An investigation of DNA excision repair capacity in human CD4+ T cell clones as a function of age in vitro. Exp Gerontol 39(4):491–498

    Article  CAS  PubMed  Google Scholar 

  • Annett K, Duggan O, Freeburn R, Hyland P, Pawelec G, Barnett Y (2005) An investigation of DNA mismatch repair capacity under normal culture conditions and under conditions of supra-physiological challenge in human CD4+T cell clones from donors of different ages. Exp Gerontol 40(12):976–981

    Article  CAS  PubMed  Google Scholar 

  • Barnett YA, King CM (1995) An investigation of antioxidant status, DNA repair capacity and mutation as a function of age in humans. Mutat Res 338(1–6):115–128

    Article  CAS  PubMed  Google Scholar 

  • Bour-Jordan H, Esensten JH, Martinez-Llordella M, Penaranda C, Stumpf M, Bluestone JA (2011) Intrinsic and extrinsic control of peripheral T-cell tolerance by costimulatory molecules of the CD28/ B7 family. Immunol Rev 241(1):180–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bryl E, Vallejo AN, Weyand CM, Goronzy JJ (2001) Down-regulation of CD28 expression by TNF-alpha. J Immunol 167(6):3231–3238

    Article  CAS  PubMed  Google Scholar 

  • Duggan O, Hyland P, Annett K, Freeburn R, Barnett C, Pawelec G, Barnett Y (2004) Effects of a reduced oxygen tension culture system on human T cell clones as a function of in vitro age. Exp Gerontol 39(4):525–530

    Article  CAS  PubMed  Google Scholar 

  • Effros RB, Pawelec G (1997) Replicative senescence of T cells: does the Hayflick limit lead to immune exhaustion? Immunol Today 18(9):450–454

    Article  CAS  PubMed  Google Scholar 

  • Effros RB, Walford RL (1984) T cell cultures and the Hayflick limit. Hum Immunol 9(1):49–46

    Article  CAS  PubMed  Google Scholar 

  • Gillis S, Baker PE, Ruscetti FW, Smith KA (1978) Long-term culture of human antigen-specific cytotoxic T-cell lines. J Exp Med 148(4):1093–1098

    Article  CAS  PubMed  Google Scholar 

  • Hadrup SR, Strindhall J, Køllgaard T, Seremet T, Johansson B, Pawelec G, thor Straten P, Wikby A (2006) Longitudinal studies of clonally expanded CD8 T cells reveal a repertoire shrinkage predicting mortality and an increased number of dysfunctional cytomegalovirus-specific T cells in the very elderly. J Immunol 176(4):2645–2653

    Article  CAS  PubMed  Google Scholar 

  • Hayflick L (1965) The limited in vitro lifetime of human diploid cell strains. Exp Cell Res 37:614–636

    Article  CAS  PubMed  Google Scholar 

  • Hyland P, Duggan O, Hipkiss A, Barnett C, Barnett Y (2000) The effects of carnosine on oxidative DNA damage levels and in vitro lifespan in human peripheral blood derived CD4+ T cell clones. Mech Ageing Dev 121:203–215

    Article  CAS  PubMed  Google Scholar 

  • Hyland P, Barnett C, Pawelec G, Barnett Y (2001) Age-related accumulation of oxidative DNA damage and alterations in levels of p16(INK4a/CDKN2a), p21(WAF1/CIP1/SDI1) and p27(KIP1) in human CD4+ T cell clones in vitro. Mech Ageing Dev 122(11):1151–1167

    Article  CAS  PubMed  Google Scholar 

  • Hyland P, Duggan O, Turbitt J, Coulter J, Wikby A, Johansson B, Tompa A, Barnett C, Barnett Y (2002) Nonagenarians from the Swedish NONA immune study have increased plasma antioxidant capacity and similar levels of DNA damage in peripheral blood mononuclear cells compared to younger control subjects. Exp Gerontol 37(2–3):465–473

    Article  CAS  PubMed  Google Scholar 

  • Kahle P, Wernet P, Rehbein A, Kumbier I, Pawelec G (1981) Cloning of functional human T lymphocytes by limiting dilution: impact of filler cells and interleukin 2 sources on cloning efficiencies. Scand J Immunol 14(5):493–502

    CAS  PubMed  Google Scholar 

  • Krichevsky S, Pawelec G, Gural A, Effros RB, Globerson A, Yehuda DB, Yehuda AB (2004) Age-related microsatellite instability in T cells from healthy individuals. Exp Gerontol 39(4):507–515

    Article  CAS  PubMed  Google Scholar 

  • Larbi A, Kempf J, Pawelec G (2007) Oxidative stress modulation and T cell activation. Exp Gerontol 42(9):852–858

    Article  CAS  PubMed  Google Scholar 

  • Larbi A, Cabreiro F, Zelba H, Marthandan S, Combet E, Friguet B, Petropoulos I, Barnett Y, Pawelec G (2010) Reduced oxygen tension results in reduced human T cell proliferation and increased intracellular oxidative damage and susceptibility to apoptosis upon activation. Free Radic Biol Med 48(1):26–34

    Article  CAS  PubMed  Google Scholar 

  • MacRae SL, Croken MM, Calder RB, Aliper A, Milholland B, White RR, Zhavoronkov A, Gladyshev VN, Seluanov A, Gorbunova V, Zhang ZD, Vijg J (2015) DNA repair in species with extreme lifespan differences. Aging (Albany NY) 7(12):1171–1184

    Article  Google Scholar 

  • Maini MK, Soares MV, Zilch CF, Akbar AN, Beverley PC (1999) Virus-induced CD8+ T cell clonal expansion is associated with telomerase up-regulation and telomere length preservation: a mechanism for rescue from replicative senescence. J Immunol 162(8):4521–4526

    CAS  PubMed  Google Scholar 

  • Marthandan S, Hyland P, Pawelec G, Barnett Y (2013) An investigation of the effects of the antioxidants ebselen or N-acetyl cysteine on human peripheral blood mononuclear cells and T cells. Immun Ageing 10(1):7

    Article  PubMed  PubMed Central  Google Scholar 

  • Marthandan S, Freeburn R, Steinbrecht S, Pawelec G, Barnett Y (2014) SENIEUR status of the originating cell donor negates certain ‘anti-immunosenescence’ effects of ebselen and N-acetyl cysteine in human T cell clone cultures. Immun Ageing 11(1):17

    Article  PubMed  PubMed Central  Google Scholar 

  • Mazzatti DJ, Pawelec G, Longdin R, Powell JR, Forsey RJ (2007a) SELDI-TOF-MS ProteinChip array profiling of T-cell clones propagated in long-term culture identifies human profilin-1 as a potential bio-marker of immunosenescence. Proteome Sci 5(5):7

    Article  PubMed  PubMed Central  Google Scholar 

  • Mazzatti DJ, White A, Forsey RJ, Powell JR, Pawelec G (2007b) Gene expression changes in long-term culture of T-cell clones: genomic effects of chronic antigenic stress in aging and immunosenescence. Aging Cell 6(2):155–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCarron M, Osborne Y, Story CJ, Dempsey JL, Turner DR, Morley AA (1987) Effect of age on lymphocyte proliferation. Mech Ageing Dev 41(3):211–218

    Article  CAS  PubMed  Google Scholar 

  • Müller L, Pawelec G (2015) As we age: does slippage of quality control in the immune system lead to collateral damage? Ageing Res Rev 23(Pt A):116–123. https://doi.org/10.1016/j.arr.2015.01.005. Epub 2015 Feb 9

    Article  PubMed  Google Scholar 

  • Neri S, Cattini L, Facchini A, Pawelec G, Mariani E (2004) Microsatellite instability in in vitro ageing of T lymphocyte clones. Exp Gerontol 39(4):499–505

    Article  CAS  PubMed  Google Scholar 

  • Neri S, Pawelec G, Facchini A, Ferrari C, Mariani E (2008) Altered expression of mismatch repair proteins associated with acquisition of microsatellite instability in a clonal model of human T lymphocyte aging. Rejuvenation Res 11(3):565–572. https://doi.org/10.1089/rej.2007.0639

    Article  CAS  PubMed  Google Scholar 

  • Olivieri F, Spazzafumo L, Santini G, Lazzarini R, Albertini MC, Rippo MR, Galeazzi R, Abbatecola AM, Marcheselli F, Monti D, Ostan R, Cevenini E, Antonicelli R, Franceschi C, Procopio AD (2012) Age-related differences in the expression of circulating microRNAs: miR-21 as a new circulating marker of inflammaging. Mech Ageing Dev 133(11–12): 675–685. https://doi.org/10.1016/j.mad.2012.09.004. Epub 2012 Oct 2

    Article  CAS  PubMed  Google Scholar 

  • Pawelec G (2003) T cell Immunosenescence, Chapter 6. In: Kaul SC, Wadhwa R (eds) Aging of cells in and outside the body. Vol. 1 of the series “Biology of aging and its modulation”, series editor Suresh Rattan. Kluwer, pp 85–100

    Google Scholar 

  • Pawelec G, Schneider EM, Wernet P (1986) Acquisition of suppressive activity and natural killer-like cytotoxicity by human alloproliferative “helper” T cell clones. J Immunol 136(2):402–411

    CAS  PubMed  Google Scholar 

  • Pawelec G, Schwuléra U, Blaurock M, Busch FW, Rehbein A, Balko I, Wernet P (1987) Relative cloning efficiencies and long-term propagation capacity for T cell clones of highly purified natural interleukin 2 compared to recombinant interleukin 2 in man. Immunobiology 174(1): 67–75

    Article  CAS  PubMed  Google Scholar 

  • Pawelec GP, Rehbein A, Schaudt K, Busch FW (1989) IL-4-responsive human helper T cell clones are resistant to growth inhibition by tumor necrosis factor-alpha. J Immunol 143(3):902–906

    CAS  PubMed  Google Scholar 

  • Pawelec G, Rehbein A, Haehnel K, Merl A, Adibzadeh M (1997) Human T-cell clones in long-term culture as a model of immunosenescence. Immunol Rev 160:31–42

    Article  CAS  PubMed  Google Scholar 

  • Pawelec G, Adibzadeh M, Rehbein A, Hähnel K, Wagner W, Engel A (2000) In vitro senescence models for human T lymphocytes. Vaccine 18(16):1666–1674

    Article  CAS  PubMed  Google Scholar 

  • Pawelec G, Barnett Y, Mariani E, Solana R (2002) Human CD4+ T cell clone longevity in tissue culture: lack of influence of donor age or cell origin. Exp Gerontol 37(2–3):265–269

    Article  CAS  PubMed  Google Scholar 

  • Pawelec G, Koch S, Griesemann H, Rehbein A, Hähnel K, Gouttefangeas C (2006) Immunosenescence, suppression and tumour progression. Cancer Immunol Immunother 55(8):981–986. Epub 2005 Dec 6

    Article  CAS  PubMed  Google Scholar 

  • Perillo NL, Walford RL, Newman MA, Effros RB (1989) Human T lymphocytes possess a limited in vitro life span. Exp Gerontol 24(3):177–187

    Article  CAS  PubMed  Google Scholar 

  • Ross OA, Hyland P, Curran MD, McIlhatton BP, Wikby A, Johansson B, Tompa A, Pawelec G, Barnett CR, Middleton D, Barnett YA (2002) Mitochondrial DNA damage in lymphocytes: a role in immunosenescence? Exp Gerontol 37(2–3):329–340

    Article  CAS  PubMed  Google Scholar 

  • Starr ME, Ueda J, Yamamoto S, Evers BM, Saito H (2011) The effects of aging on pulmonary oxidative damage, protein nitration, and extracellular superoxide dismutase down-regulation during systemic inflammation. Free Radic Biol Med 50(2):371–380

    Article  CAS  PubMed  Google Scholar 

  • Teteloshvili N, Kluiver J, van der Geest KS, van der Lei RJ, Jellema P, Pawelec G, Brouwer E, Kroesen BJ, Boots AM, van den Berg A. Age-Associated Differences in MiRNA Signatures Are Restricted to CD45RO Negative T Cells and Are Associated with Changes in the Cellular Composition, Activation and Cellular Ageing. PLoS One. 2015 Sep 11;10(9):e0137556. doi: 10.1371/journal.pone.0137556. eCollection 2015. PMID:26360056

    Google Scholar 

  • Vukmanovic-Stejic M, Zhang Y, Cook JE, Fletcher JM, McQuaid A, Masters JE, Rustin MH, Taams LS, Beverley PC, Macallan DC, Akbar AN (2006) Human CD4+ CD25hi Foxp3+ regulatory T cells are derived by rapid turnover of memory populations in vivo. J Clin Invest 116(9):2423–2433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graham Pawelec .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Cite this entry

Pawelec, G., Kempf, J., Larbi, A., Barnett, Y. (2018). Clonal Culture Models of T Cell Senescence. In: Fulop, T., Franceschi, C., Hirokawa, K., Pawelec, G. (eds) Handbook of Immunosenescence. Springer, Cham. https://doi.org/10.1007/978-3-319-64597-1_5-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64597-1_5-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64597-1

  • Online ISBN: 978-3-319-64597-1

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics