Skip to main content

Gut Microbiota in Elderly’s Health

  • Living reference work entry
  • First Online:
Handbook of Immunosenescence

Abstract

The human gut microbiome is linked to health status, and imbalances in the gut microbial populations have been also related to aging. Immunosenescence and a persistent low-grade chronic inflammation (inflammaging) contribute to most health problems in the elderly, such as increased susceptibility to infections, and a number of pathologies like dementia, Alzheimer’s disease, and atherosclerosis, among others. Changes in the gut bacterial profiles take place during aging, particularly within the phylum of Firmicutes, where numbers of facultative anaerobes increase, including opportunistic pro-inflammatory species, while levels of beneficial immunomodulatory species such as Faecalibacterium prausnitzii and Bifidobacterium spp. are reduced. Those changes nurture an inflammatory environment in the gut and possibly aggravate age-related pathologies. However, there is a great interindividual variability in the microbiota of older persons. Recent studies revealed differences in the gut microbiota composition according to diet, institution and community living, and health status. Strategies to promote healthy aging are needed, and, in this context, consumption of pro-, pre- and synbiotics might be of interest to improve health in the elderly since some studies demonstrated a reduction of pro-inflammatory cytokines, increase in natural killer cells, phagocytic a decrease rate of constipation, Clostridium dificile-associated diarrhea, and an adjuvant effect for influenza vaccine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aagaard K et al (2014) The placenta harbors a unique microbiome. Sci Transl Med 6(237):237ra65

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ahmed M et al (2007) Impact of consumption of different levels of Bifidobacterium lactis HN019 on the intestinal microflora of elderly human subjects. J Nutr Health Aging 11(1):26–31

    CAS  PubMed  Google Scholar 

  • Akatsu H et al (2012) Clinical effects of probiotic bifidobacterium longum BB536 on immune function and intestinal microbiota in elderly patients receiving enteral tube feeding. J Parenter Enter Nutr 37(5):631

    Article  Google Scholar 

  • Almanzar G et al (2005) Long-term cytomegalovirus infection leads to significant changes in the composition of the CD8+ T-cell repertoire, which may be the basis for an imbalance in the cytokine production profile in elderly persons. J Virol 79(6):3675–3683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ana MCF, Howard LW (2006) Oral tolerance and TGF-β -producing cells. Inflamm Allergy-Drug Targets (Discontinued) 5(3):179–190

    Article  Google Scholar 

  • Ando T et al (2007) Orally administered TGF-β is biologically active in the intestinal mucosa and enhances oral tolerance. J Allergy Clin Immunol 120(4):916–923

    Article  CAS  PubMed  Google Scholar 

  • Arpaia N et al (2013) Metabolites produced by commensal bacteria promote peripheral regulatory T cell generation. Nature 504(7480):451–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arumugam M et al (2011) Enterotypes of the human gut microbiome. Nature 473(7346):174–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azad MB et al (2013) Infant gut microbiota and the hygiene hypothesis of allergic disease: impact of household pets and siblings on microbiota composition and diversity. Allergy, Asthma Clin Immunol 9(1):15

    Article  Google Scholar 

  • Bajaj JS et al (2016) Elderly patients have an altered gut-brain axis regardless of the presence of cirrhosis. Sci Rep 6:38481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barcelo A et al (2000) Mucin secretion is modulated by luminal factors in the isolated vascularly perfused rat colon. Gut 46(2):218–224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartosch S et al (2004) Characterization of bacterial communities in feces from healthy elderly volunteers and hospitalized elderly patients by using real-time PCR and effects of antibiotic treatment on the fecal microbiota. Appl Environ Microbiol 70(6):3575–3581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartosch S et al (2005) Microbiological effects of consuming a synbiotic containing Bifidobacterium bifidum, Bifidobacterium lactis, and oligofructose in elderly persons, determined by real-time polymerase chain reaction and counting of viable bacteria. Clin Infect Dis 40(1):28–37

    Article  PubMed  Google Scholar 

  • Bauer ME, Fuente MDl (2016) The role of oxidative and inflammatory stress and persistent viral infections in immunosenescence. Mech Ageing Dev 158:27–37

    Article  CAS  PubMed  Google Scholar 

  • Bäuerl C et al (2013) Lactobacillus paracasei and Lactobacillus plantarum strains downregulate proinflammatory genes in an ex vivo system of cultured human colonic mucosa. Genes Nutr 8(2):165–180

    Article  PubMed  CAS  Google Scholar 

  • Benton D, Williams C, Brown A (2006) Impact of consuming a milk drink containing a probiotic on mood and cognition. Eur J Clin Nutr 61(3):355–361

    Article  PubMed  Google Scholar 

  • Bercik P et al (2010) Chronic gastrointestinal inflammation induces anxiety-like behavior and alters central nervous system biochemistry in mice. Gastroenterology 139(6):2102–2112.e1

    Article  CAS  PubMed  Google Scholar 

  • Bercik P et al (2011) The anxiolytic effect of Bifidobacterium longum NCC3001 involves vagal pathways for gut–brain communication. Neurogastroenterol Motil 23(12):1132–1139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berndt BE et al (2012) Butyrate increases IL-23 production by stimulated dendritic cells. Am J Physiol Gastrointest Liver Physiol 303(12):G1384–G1392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biagi E et al (2010) Through ageing, and beyond: gut microbiota and inflammatory status in seniors and centenarians. PLoS One 5(5):e10667

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Biagi E et al (2012) Aging of the human metaorganism: the microbial counterpart. Age (Dordr) 34:247

    Article  Google Scholar 

  • Biagi E et al (2013) Ageing and gut microbes: perspectives for health maintenance and longevity. Pharmacol Res 69(1):11–20

    Article  PubMed  Google Scholar 

  • Bindels LB et al (2015) Towards a more comprehensive concept for prebiotics. Nat Rev Gastroenterol Hepatol 12(5):303–310

    Article  CAS  PubMed  Google Scholar 

  • Bolognini D et al (2016) The pharmacology and function of receptors for short-chain fatty acids. Mol Pharmacol 89(3):388–398

    Article  CAS  PubMed  Google Scholar 

  • Bosch M et al (2012) Lactobacillus plantarum CECT7315 and CECT7316 stimulate immunoglobulin production after influenza vaccination in elderly. Nutr Hosp 27(2):504–509

    CAS  PubMed  Google Scholar 

  • Bouhnik Y et al (2007) Four-week short chain fructo-oligosaccharides ingestion leads to increasing fecal bifidobacteria and cholesterol excretion in healthy elderly volunteers. Nutr J 6(1):42

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bravo JA et al (2011) Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci 108(38): 16050–16055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown AJ et al (2003) The orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J Biol Chem 278(13):11312–11319

    Article  CAS  PubMed  Google Scholar 

  • Butel MJ (2014) Probiotics, gut microbiota and health. Med Mal Infect 44(1):1–8

    Article  PubMed  Google Scholar 

  • Camous X et al (2012) NK cells in healthy aging and age-associated diseases. J Biomed Biotechnol 2012:195956

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Candore G et al (2008) Immunosenescence and anti-immunosenescence therapies: the case of probiotics. Rejuvenation Res 11(2):425–432

    Article  CAS  PubMed  Google Scholar 

  • Canfora EE, Jocken JW, Blaak EE (2015) Short-chain fatty acids in control of body weight and insulin sensitivity. Nat Rev Endocrinol 11(10):577–591

    Article  CAS  PubMed  Google Scholar 

  • Caracciolo B et al (2014) Cognitive decline, dietary factors and gut–brain interactions. Mech Ageing Dev 136–137:59–69

    Article  PubMed  Google Scholar 

  • Carlos GG, Salminen S (2016) Novel probiotics and prebiotics: how can they help in human gut microbiota dysbiosis? Appl Food Biotechnol 3(2):72

    Google Scholar 

  • Cattaneo A et al (2017) Association of brain amyloidosis with pro-inflammatory gut bacterial taxa and peripheral inflammation markers in cognitively impaired elderly. Neurobiol Aging 49:60–68

    Article  CAS  PubMed  Google Scholar 

  • Chen W et al (2012) Human intestinal lumen and mucosa-associated microbiota in patients with colorectal cancer. PLoS One 7(6):e39743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chow J, Tang H, Mazmanian SK (2011) Pathobionts of the gastrointestinal microbiota and inflammatory disease. Curr Opin Immunol 23(4):473–480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Claesson MJ et al (2011) Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc Natl Acad Sci USA 108:4586

    Article  CAS  PubMed  Google Scholar 

  • Claesson MJ et al (2012) Gut microbiota composition correlates with diet and health in the elderly. Nature 488(7410):178–184

    CAS  PubMed  Google Scholar 

  • Clemente JC et al (2012) The impact of the gut microbiota on human health: an integrative view. Cell 148(6):1258–1270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collado MC et al (2016) Human gut colonisation may be initiated in utero by distinct microbial communities in the placenta and amniotic fluid. Sci Rep 6:23129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cox M et al (2009) Short-chain fatty acids act as antiinflammatory mediators by regulating prostaglandin E(2) and cytokines. World J Gastroenterol 15(44):5549–5557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cryan JF, Dinan TG (2012) Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci 13(10):701–712

    Article  CAS  PubMed  Google Scholar 

  • Cuevas-Ramos G et al (2010) Escherichia coli induces DNA damage in vivo and triggers genomic instability in mammalian cells. Proc Natl Acad Sci 107(25):11537–11542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Filippis F et al (2015) High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut 65:1812

    Article  PubMed  Google Scholar 

  • De Filippo C et al (2010) Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci 107(33):14691–14696

    Article  PubMed  PubMed Central  Google Scholar 

  • Desbonnet L et al (2008) The probiotic Bifidobacteria infantis: an assessment of potential antidepressant properties in the rat. J Psychiatr Res 43(2):164–174

    Article  PubMed  Google Scholar 

  • Desbonnet L et al (2015) Gut microbiota depletion from early adolescence in mice: implications for brain and behaviour. Brain Behav Immun 48:165–173

    Article  CAS  PubMed  Google Scholar 

  • Dethlefsen L et al (2008) The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol 6(11):e280

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Diano S et al (2006) Ghrelin controls hippocampal spine synapse density and memory performance. Nat Neurosci 9(3):381–388

    Article  CAS  PubMed  Google Scholar 

  • DiGiulio DB (2012) Diversity of microbes in amniotic fluid. Semin Fetal Neonatal Med 17(1):2–11

    Article  PubMed  Google Scholar 

  • Douglas-Escobar M, Elliott E, Neu J (2013) Effect of intestinal microbial ecology on the developing brain. JAMA Pediatr 167(4):374–379

    Article  PubMed  Google Scholar 

  • Duncan SH, Flint HJ (2013) Probiotics and prebiotics and health in ageing populations. Maturitas 75(1):44–50

    Article  CAS  PubMed  Google Scholar 

  • Eloe-Fadrosh EA et al (2015) Functional dynamics of the gut microbiome in elderly people during probiotic consumption. mBio 6(2):e00231

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Everett JR, Loo RL, Pullen FS (2013) Pharmacometabonomics and personalized medicine. Ann Clin Biochem 50(6):523–545

    Article  PubMed  Google Scholar 

  • Food and Agricultural Organization of the United Nations (2002) Joint FAO/WHO working group report on drafting guidelines for the evaluation of probiotics in food. Food and Agricultural Organization of the United Nations

    Google Scholar 

  • Franceschi C et al (2017) Inflammaging and ‘Garb-aging’. Trends Endocrinol Metab 28:199

    Article  CAS  PubMed  Google Scholar 

  • Friedland RP (2015) Mechanisms of molecular mimicry involving the microbiota in neurodegeneration. J Alzheimers Dis 45(2):349–362

    CAS  PubMed  Google Scholar 

  • Gill HS et al (2001) Enhancement of immunity in the elderly by dietary supplementation with the probiotic Bifidobacterium lactis HN019. Am J Clin Nutr 74(6):833–839

    CAS  PubMed  Google Scholar 

  • Gomez-Gallego C et al (2016) The human milk microbiome and factors influencing its composition and activity. Semin Fetal Neonatal Med 21(6):400–405

    Article  PubMed  Google Scholar 

  • Goodrich JK et al (2014) Human genetics shape the gut microbiome. Cell 159(4):789–799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gotto AM (2007) Statin therapy and the elderly: SAGE advice? Circulation 115(6):681–683

    Article  PubMed  Google Scholar 

  • Granata M et al (2013) Synbiotic yogurt consumption by healthy adults and the elderly: the fate of bifidobacteria and LGG probiotic strain. Int J Food Sci Nutr 64(2):162–168

    Article  CAS  PubMed  Google Scholar 

  • Greer RL et al (2016) Akkermansia muciniphila mediates negative effects of IFNγ on glucose metabolism. Nat Commun 7:13329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gruver AL, Hudson LL, Sempowski GD (2007) Immunosenescence of ageing. J Pathol 211(2): 144–156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guigoz Y et al (2002) Effects of oligosaccharide on the faecal flora and non-specific immune system in elderly people. Nutr Res 22(1–2):13–25

    Article  CAS  Google Scholar 

  • Guigoz Y, Dore J, Schiffrin EJ (2008) The inflammatory status of old age can be nurtured from the intestinal environment. Curr Opin Clin Nutr Metab Care 11(1):13–20

    Article  PubMed  Google Scholar 

  • Heuvelin E et al (2009) Mechanisms involved in alleviation of intestinal inflammation by bifidobacterium breve soluble factors. PLoS One 4(4):e5184

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hibberd PL et al (2014) No evidence of harms of probiotic Lactobacillus rhamnosus GG ATCC 53103 in healthy elderly – a phase I open label study to assess safety, tolerability and cytokine responses. PLoS One 9(12):e113456

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hill C et al (2014) Expert consensus document: the International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol 11(8):506–514

    Article  PubMed  Google Scholar 

  • Hong Y-H et al (2005) Acetate and propionate short chain fatty acids stimulate adipogenesis via GPCR43. Endocrinology 146(12):5092–5099

    Article  CAS  PubMed  Google Scholar 

  • Huycke MM, Abrams V, Moore DR (2002) Enterococcus faecalis produces extracellular superoxide and hydrogen peroxide that damages colonic epithelial cell DNA. Carcinogenesis 23(3): 529–536

    Article  CAS  PubMed  Google Scholar 

  • Jackson MA et al (2016) Signatures of early frailty in the gut microbiota. Genome Med 8(1):8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jafarnejad S et al (2016) Probiotics reduce the risk of antibiotic-associated diarrhea in adults (18–64 years) but not the elderly (>65 years): a meta-analysis. Nutr Clin Pract 31(4):502–513

    Article  PubMed  Google Scholar 

  • Jeffery IB, Lynch DB, O’Toole PW (2016) Composition and temporal stability of the gut microbiota in older persons. ISME J 10(1):170–182

    Article  CAS  PubMed  Google Scholar 

  • Jernberg C et al (2010) Long-term impacts of antibiotic exposure on the human intestinal microbiota. Microbiology 156(11):3216–3223

    Article  CAS  PubMed  Google Scholar 

  • Kaner G et al (2015) Evaluation of nutritional status of patients with depression. Biomed Res Int 2015:9

    Article  CAS  Google Scholar 

  • Kennedy PJ et al (2017) Kynurenine pathway metabolism and the microbiota-gut-brain axis. Neuropharmacology 112(Part B):399–412

    Article  CAS  PubMed  Google Scholar 

  • Khan N et al (2002) Cytomegalovirus seropositivity drives the CD8 T cell repertoire toward greater clonality in healthy elderly individuals. J Immunol 169(4):1984–1992

    Article  CAS  PubMed  Google Scholar 

  • Kim K-A et al (2016) Gut microbiota lipopolysaccharide accelerates inflamm-aging in mice. BMC Microbiol 16(1):9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kimura I et al (2013) The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nat Commun 4:1829

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kleessen B et al (1997) Effects of inulin and lactose on fecal microflora, microbial activity, and bowel habit in elderly constipated persons. Am J Clin Nutr 65(5):1397–1402

    CAS  PubMed  Google Scholar 

  • Kobayashi A et al (2013) The functional maturation of M cells is dramatically reduced in the Peyer/’s patches of aged mice. Mucosal Immunol 6(5):1027–1037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koenig JE et al (2011) Succession of microbial consortia in the developing infant gut microbiome. Proc Natl Acad Sci USA 108(Suppl):4578

    Article  CAS  PubMed  Google Scholar 

  • Koeth RA et al (2013) Intestinal microbiota metabolism of l-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med 19(5):576–585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kondo J et al (2013) Modulatory effects of Bifidobacterium longum BB536 on defecation in elderly patients receiving enteral feeding. World J Gastroenterol 19(14):2162–2170

    Article  PubMed  PubMed Central  Google Scholar 

  • Kraft-Bodi E et al (2015) Effect of probiotic bacteria on oral candida in frail elderly. J Dent Res 94(Suppl 9):181S–186S

    Article  CAS  PubMed  Google Scholar 

  • Lahtinen S et al (2009) Probiotics modulate the Bifidobacterium microbiota of elderly nursing home residents. Age 31(1):59–66

    Article  PubMed  Google Scholar 

  • Lange K et al (2016) Effects of antibiotics on gut microbiota. Dig Dis 34(3):260–268

    Article  PubMed  Google Scholar 

  • Le Poul E et al (2003) Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation. J Biol Chem 278(28):25481–25489

    Article  PubMed  CAS  Google Scholar 

  • Lefevre M et al (2015) Probiotic strain Bacillus subtilis CU1 stimulates immune system of elderly during common infectious disease period: a randomized, double-blind placebo-controlled study. Immun Ageing 12(1):24

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lei M, Hua L-M, Wang D-W (2016) The effect of probiotic treatment on elderly patients with distal radius fracture: a prospective double-blind, placebo-controlled randomised clinical trial. Benefic Microbes 7(5):631–637

    Article  CAS  Google Scholar 

  • Liang S et al (2015) Administration of Lactobacillus helveticus NS8 improves behavioral, cognitive, and biochemical aberrations caused by chronic restraint stress. Neuroscience 310:561–577

    Article  CAS  PubMed  Google Scholar 

  • Liu L et al (2012) Butyrate interferes with the differentiation and function of human monocyte-derived dendritic cells. Cell Immunol 277(1–2):66–73

    Article  CAS  PubMed  Google Scholar 

  • Lomax AR, Calder PC (2009) Probiotics, immune function, infection and inflammation: a review of the evidence from studies conducted in humans. Curr Pharm Des 15(13):1428–1518

    Article  CAS  PubMed  Google Scholar 

  • Lovat LB (1996) Age related changes in gut physiology and nutritional status. Gut 38(3):306–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lührs H et al (2002) Butyrate inhibits NF-κB activation in lamina propria macrophages of patients with ulcerative colitis. Scand J Gastroenterol 37(4):458–466

    Article  PubMed  Google Scholar 

  • Macia L et al (2015) Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome. Nat Commun 6:6734

    Article  CAS  PubMed  Google Scholar 

  • Marchesi JR et al (2015) The gut microbiota and host health: a new clinical frontier. Gut 65:330

    Article  PubMed  PubMed Central  Google Scholar 

  • Mariat D et al (2009) The Firmicutes/Bacteroidetes ratio of the human microbiota changes with age. BMC Microbiol 9(1):123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marques TM et al (2010) Programming infant gut microbiota: influence of dietary and environmental factors. Curr Opin Biotechnol 21(2):149–156

    Article  CAS  PubMed  Google Scholar 

  • Martín R et al (2015) Faecalibacterium prausnitzii prevents physiological damages in a chronic low-grade inflammation murine model. BMC Microbiol 15(1):67

    Article  PubMed  PubMed Central  Google Scholar 

  • Martínez I et al (2013) Diet-induced alterations of host cholesterol metabolism are likely to affect the gut microbiota composition in hamsters. Appl Environ Microbiol 79(2):516–524

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maruyama M et al (2016) The effects of non-viable Lactobacillus on immune function in the elderly: a randomised, double-blind, placebo-controlled study. Int J Food Sci Nutr 67(1):67–73

    Article  CAS  PubMed  Google Scholar 

  • Maslowski KM et al (2009) Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 461(7268):1282–1286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsumoto M et al (2001) Effect of yogurt with Bifidobacterium lactis LKM 512 in improving fecal microflora and defecation of healthy volunteers. J Intest Microbiol 14(2):97–102

    Google Scholar 

  • Meance CC, Turchet P, Raimondi A, Lucas C, Antoine J-M, Séverine (2001) A fermented milk with a Bifidobacterium probiotic strain DN-173 010 shortened oro-fecal gut transit time in elderly. Microb Ecol Health Dis 13(4):217–222

    Article  Google Scholar 

  • Meance S et al (2003) Recent advances in the use of functional foods: effects of the commercial fermented milk with Bifidobacterium animalis strain DN-173 010 and yoghurt strains on gut transit time in the elderly. Microb Ecol Health Dis 15(1):15–22

    Article  Google Scholar 

  • Mellace L et al (2013) Epidemiology of Clostridium difficile-associated disease in internal medicine wards in northern Italy. Intern Emerg Med 8(8):717–723

    Article  PubMed  Google Scholar 

  • Mendonca FH et al (2012) Effects of probiotic bacteria on Candida presence and IgA anti-Candida in the oral cavity of elderly. Braz Dent J 23(5):534–538

    Article  PubMed  Google Scholar 

  • Miyazawa K et al (2015) Heat-killed Lactobacillus gasseri can enhance immunity in the elderly in a double-blind, placebo-controlled clinical study. Benefic Microbes 6(4):441–449

    Article  CAS  Google Scholar 

  • Möhler H (2012) The GABA system in anxiety and depression and its therapeutic potential. Neuropharmacology 62(1):42–53

    Article  PubMed  CAS  Google Scholar 

  • Moro-García M et al (2013) Oral supplementation with Lactobacillus delbrueckii subsp. Bulgaricus 8481 enhances systemic immunity in elderly subjects. Age (Dordr) 35(4):1311–1326

    Google Scholar 

  • Morrisette-Thomas V et al (2014) Inflamm-aging does not simply reflect increases in pro-inflammatory markers. Mech Ageing Dev 139:49–57

    Article  CAS  PubMed  Google Scholar 

  • Mshvildadze M et al (2010) Intestinal microbial ecology in premature infants assessed with non–culture-based techniques. J Pediatr 156(1):20–25

    Article  PubMed  PubMed Central  Google Scholar 

  • Mueller S et al (2006) Differences in fecal microbiota in different European study populations in relation to age, gender, and country: a cross-sectional study. Appl Environ Microbiol 72(2):1027–1033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nieuwboer MVD et al (2015) Improving the bowel habits of elderly residents in a nursing home using probiotic fermented milk. Benefic Microbes 6(4):397–403

    Article  Google Scholar 

  • Nøhr MK et al (2015) Expression of the short chain fatty acid receptor GPR41/FFAR3 in autonomic and somatic sensory ganglia. Neuroscience 290:126–137

    Article  PubMed  CAS  Google Scholar 

  • O’Sullivan Ó et al (2013) Alterations in intestinal microbiota of elderly Irish subjects post-antibiotic therapy. J Antimicrob Chemother 68(1):214–221

    Article  PubMed  CAS  Google Scholar 

  • Okamoto M et al (2002) Relationship between age and site of colorectal cancer based on colonoscopy findings. Gastrointest Endosc 55(4):548–551

    Article  PubMed  Google Scholar 

  • Ostan R et al (2016) Impact of diet and nutraceutical supplementation on inflammation in elderly people. Results from the RISTOMED study, an open-label randomized control trial. Clin Nutr 35(4):812–818

    Article  CAS  PubMed  Google Scholar 

  • Ouwehand AC et al (2002) Effect of probiotics on constipation, fecal azoreductase activity and fecal mucin content in the elderly. Ann Nutr Metab 46(3–4):159–162

    Article  CAS  PubMed  Google Scholar 

  • Ouwehand AC et al (2008) Bifidobacterium microbiota and parameters of immune function in elderly subjects. FEMS Immunol Med Microbiol 53(1):18–25

    Article  CAS  PubMed  Google Scholar 

  • Passarino G, De Rango F, Montesanto A (2016) Human longevity: genetics or lifestyle? It takes two to tango. Immun Ageing 13:12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Patel MD, Martin FC (2008) Why don’t elderly hospital inpatients eat adequately? J Nutr Health Aging 12(4):227–231

    Article  CAS  PubMed  Google Scholar 

  • Penders J et al (2006) Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics 118:511

    Article  PubMed  Google Scholar 

  • Pérez Martínez G, Bäuerl C, Collado MC (2014) Understanding gut microbiota in elderly’s health will enable intervention through probiotics. Benefic Microbes 5(3):235–246

    Article  CAS  Google Scholar 

  • Plovier H et al (2017) A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat Med 23:107–113

    Google Scholar 

  • Pluznick JL et al (2013) Olfactory receptor responding to gut microbiota-derived signals plays a role in renin secretion and blood pressure regulation. Proc Natl Acad Sci 110(11):4410–4415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Postma N, Kiers D, Pickkers P (2015) The challenge of Clostridium difficile infection: overview of clinical manifestations, diagnostic tools and therapeutic options. Int J Antimicrob Agents 46(Suppl 1):S47–S50

    Article  CAS  PubMed  Google Scholar 

  • Qin J et al (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464(7285):59–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quévrain E et al (2016) Identification of an anti-inflammatory protein from Faecalibacterium prausnitzii, a commensal bacterium deficient in Crohn’s disease. Gut 65(3):415–425

    Article  PubMed  CAS  Google Scholar 

  • Rampelli S et al (2013) A probiotics-containing biscuit modulates the intestinal microbiota in the elderly. J Nutr Health Aging 17(2):166–172

    Article  CAS  PubMed  Google Scholar 

  • Rea MC et al (2012) Clostridium difficile carriage in elderly subjects and associated changes in the intestinal microbiota. J Clin Microbiol 50(3):867–875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reboldi A et al (2016) IgA production requires B cell interaction with subepithelial dendritic cells in Peyer’s patches. Science 352(6287):aaf4822

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Roberfroid M et al (2010) Prebiotic effects: metabolic and health benefits. Br J Nutr 104(Suppl S2):S1–S63

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez JM et al (2015) The composition of the gut microbiota throughout life, with an emphasis on early life. Microb Ecol Health Dis 26:26050

    PubMed  Google Scholar 

  • Salazar N et al (2013) Microbial targets for the development of functional foods accordingly with nutritional and immune parameters altered in the elderly. J Am Coll Nutr 32(6):399–406

    Article  CAS  PubMed  Google Scholar 

  • Sandhu KV et al (2017) Feeding the microbiota-gut-brain axis: diet, microbiome, and neuropsychiatry. Transl Res 179:223–244

    Article  CAS  PubMed  Google Scholar 

  • Sansoni P et al (2008) The immune system in extreme longevity. Exp Gerontol 43(2):61–65

    Article  CAS  PubMed  Google Scholar 

  • Santiago AF et al (2011) Aging correlates with reduction in regulatory-type cytokines and T cells in the gut mucosa. Immunobiology 216(10):1085–1093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saulnier DM et al (2013) The intestinal microbiome, probiotics and prebiotics in neurogastroenterology. Gut Microbes 4(1):17–27

    Article  PubMed  PubMed Central  Google Scholar 

  • Savignac HM et al (2013) Prebiotic feeding elevates central brain derived neurotrophic factor, N-methyl-d-aspartate receptor subunits and d-serine. Neurochem Int 63(8):756–764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scheperjans F et al (2015) Gut microbiota are related to Parkinson’s disease and clinical phenotype. Mov Disord 30(3):350–358

    Article  PubMed  Google Scholar 

  • Schiffrin EJ et al (2010) The inflammatory status of the elderly: the intestinal contribution. Mutat Res/Fundam Mol Mech Mutagen 690(1–2):50–56

    Article  CAS  Google Scholar 

  • Sherwin E et al (2016) May the force be with you: the light and dark sides of the microbiota–gut–brain axis in neuropsychiatry. CNS Drugs 30(11):1019–1041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shida K et al (2017) Daily intake of fermented milk with Lactobacillus casei strain Shirota reduces the incidence and duration of upper respiratory tract infections in healthy middle-aged office workers. Eur J Nutr 56(1):45–53

    Google Scholar 

  • Slashinski MJ et al (2012) “Snake-oil,” “quack medicine,” and “industrially cultured organisms:” biovalue and the commercialization of human microbiome research. BMC Med Ethics 13(1):28

    Article  PubMed  PubMed Central  Google Scholar 

  • Sokol H et al (2008) Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci USA 105:16731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song SJ, Dominguez-Bello MG, Knight R (2013) How delivery mode and feeding can shape the bacterial community in the infant gut. Can Med Assoc J 185:373

    Article  Google Scholar 

  • Stefano S et al (2013) Immune system, cell senescence, aging and longevity – inflamm-aging reappraised. Curr Pharm Des 19(9):1675–1679

    Google Scholar 

  • Takanaga H et al (2001) GAT2/BGT-1 as a system responsible for the transport of γ-aminobutyric acid at the mouse blood–brain barrier. J Cereb Blood Flow Metab 21(10):1232–1239

    Article  CAS  PubMed  Google Scholar 

  • Tanaka R, Shimosaka K (1982) Investigation of the stool frequency in elderly who are bed ridden and its improvements by ingesting bifidus yogurt. Nihon Ronen Igakkai Zasshi 19(6):577–582

    Article  CAS  PubMed  Google Scholar 

  • Tang WHW et al (2013) Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med 368(17):1575–1584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tap J et al (2015) Gut microbiota richness promotes its stability upon increased dietary fibre intake in healthy adults. Environ Microbiol 17(12):4954–4964

    Article  CAS  PubMed  Google Scholar 

  • Thompson AL et al (2015) Milk- and solid-feeding practices and daycare attendance are associated with differences in bacterial diversity, predominant communities, and metabolic and immune function of the infant gut microbiome. Front Cell Infect Microbiol 5:3

    Article  PubMed  PubMed Central  Google Scholar 

  • Thota VR et al (2011) Eggerthella lenta bacteremia in a Crohn’s disease patient after ileocecal resection. Future Microbiol 6(5):595–597

    Article  PubMed  Google Scholar 

  • Toward R, Montandon S, Walton G (2012) Effect of prebiotics on the human gut microbiota of elderly persons. Gut Microbes 3(1):57–60

    Article  PubMed  Google Scholar 

  • Tran L, Greenwood-Van Meerveld B (2013) Age-associated remodeling of the intestinal epithelial barrier. J Gerontol Ser A Biol Med Sci 68(9):1045–1056

    Article  CAS  Google Scholar 

  • Unger MM et al (2016) Short chain fatty acids and gut microbiota differ between patients with Parkinson’s disease and age-matched controls. Parkinsonism Relat Disord 32:66–72

    Article  PubMed  Google Scholar 

  • Urbaniak C et al (2016) Human milk microbiota profiles in relation to birthing method, gestation and infant gender. Microbiome 4(1):1

    Article  PubMed  PubMed Central  Google Scholar 

  • Valentini L et al (2015) Impact of personalized diet and probiotic supplementation on inflammation, nutritional parameters and intestinal microbiota – the “RISTOMED project”: randomized controlled trial in healthy older people. Clin Nutr 34(4):593–602

    Article  PubMed  Google Scholar 

  • Valladares R et al (2013) Lactobacillus johnsonii inhibits indoleamine 2,3-dioxygenase and alters tryptophan metabolite levels in BioBreeding rats. FASEB J 27(4):1711–1720

    Article  CAS  PubMed  Google Scholar 

  • Valles Y et al (2012) Metagenomics and development of the gut microbiota in infants. Clin Microbiol Infect 18(Suppl 4):21–26

    Article  CAS  PubMed  Google Scholar 

  • Vernaya M, McAdam J (2015) The effectiveness of probiotics in reducing the incidence of Clostridium difficile associated diarrhea in elderly patients: a systematic review protocol. JBI Database Syst Rev Implement Rep 13(8):79–91

    Google Scholar 

  • Vinolo MAR et al (2011) SCFAs induce mouse neutrophil chemotaxis through the GPR43 receptor. PLoS One 6(6):e21205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vulevic J et al (2008) Modulation of the fecal microflora profile and immune function by a novel trans-galactooligosaccharide mixture (B-GOS) in healthy elderly volunteers. Am J Clin Nutr 88(5):1438–1446

    CAS  PubMed  Google Scholar 

  • Walton GE et al (2012) A randomised crossover study investigating the effects of galacto-oligosaccharides on the faecal microbiota in men and women over 50 years of age. Br J Nutr 107(10):1466–1475

    Article  CAS  PubMed  Google Scholar 

  • Wang F et al (2015) Gut microbiota community and its assembly associated with age and din Chinese centenarians. J Microbiol Biotechnol 25(8):1195–1204

    Article  CAS  PubMed  Google Scholar 

  • White MC et al (2014) Age and cancer risk: a potentially modifiable relationship. Am J Prev Med 46(3 0 1):S7–15

    Article  PubMed  PubMed Central  Google Scholar 

  • Wilson CJ, Finch CE, Cohen HJ (2002) Cytokines and cognition – the case for a head-to-toe inflammatory paradigm. J Am Geriatr Soc 50(12):2041–2056

    Article  PubMed  Google Scholar 

  • Woodmansey EJ et al (2004) Comparison of compositions and metabolic activities of fecal microbiotas in young adults and in antibiotic-treated and non-antibiotic-treated elderly subjects. Appl Environ Microbiol 70(10):6113–6122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu N et al (2013) Dysbiosis signature of fecal microbiota in colorectal cancer patients. Microb Ecol 66(2):462–470

    Article  CAS  PubMed  Google Scholar 

  • Yoo D-H et al (2014) Gut microbiota-mediated drug interactions between lovastatin and antibiotics. Drug Metab Dispos 42(9):1508–1513

    Article  PubMed  CAS  Google Scholar 

  • You J, Yaqoob P (2012) Evidence of immunomodulatory effects of a novel probiotic, Bifidobacterium longum bv. infantis CCUG 52486. FEMS Immunol Med Microbiol 66(3):353–362

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y-J et al (2015) Impacts of gut bacteria on human health and diseases. Int J Mol Sci 16(4):7493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Maria Carmen Collado or Gaspar Perez-Martinez .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Cite this entry

Bäuerl, C., Selma-Royo, M., Mera-Balseca, A.G., Collado, M.C., Perez-Martinez, G. (2018). Gut Microbiota in Elderly’s Health. In: Fulop, T., Franceschi, C., Hirokawa, K., Pawelec, G. (eds) Handbook of Immunosenescence. Springer, Cham. https://doi.org/10.1007/978-3-319-64597-1_163-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64597-1_163-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64597-1

  • Online ISBN: 978-3-319-64597-1

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics