Skip to main content

Age-Associated Alterations on Natural Killer Cells in Acute Myeloid Leukemia Patients

  • Living reference work entry
  • First Online:
Handbook of Immunosenescence

Abstract

Natural killer (NK) cells were originally defined as lymphocytes characterized by their natural capacity to kill tumor cells and virus-infected cells without the requirement of prior sensitization. NK cells produce cytotoxic molecules such as perforin and granzymes and secrete several cytokines and chemokines that regulate immune function. Aging is associated with alterations in the immune system, a process termed immunosenescence that affects both innate and adaptive immunity. Immunosenescence affects tumor immunosurveillance and consequently may be partly responsible of the age-related increase in cancer incidence. Age is associated with changes in the frequency, phenotype, and distribution of human NK cell subsets. Acute myeloid leukemia (AML) is a hematologic disease that generally affects older adults. NK cells in AML patients show diminished expression of several activating receptors that contribute to impaired NK cell function and, in consequence, to AML blast escape from NK cell immunosurveillance. In AML, NK cell phenotype resembles that found in healthy elderly individuals supporting that NK cells from young AML patients are immunosenescent cells probably as consequence of chronic stimulation with activating ligands on leukemic blasts. Therefore, phenotypic changes in NK cells have been correlated with disease progression and survival. NK cell-based immunotherapy has emerged as a possibility for the treatment of AML patients. Further understanding of age-associated defects of NK cell function is necessary to define adequate therapeutic strategies in older AML patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

ADCC:

Antibody-dependent cell cytotoxicity

AML:

Acute myeloid leukemia

CAR:

Chimeric antigen receptor

DNAM-1:

DNAX accessory molecule-1

HLA:

Human leukocyte antigen

HMGB-1:

High mobility group protein B1

HSCT:

Allogeneic hematopoietic stem cell transplantation

IFN:

Interferon

IL:

Interleukin

ILC:

Innate lymphoid cells

KIR:

Killer cell immunoglobulin-like receptors

LAG-3:

Lymphocyte activation gene 3 protein

MHC:

Major histocompatibility complex

MLL5:

Mixed-lineage leukemia-5

NCRs:

Natural cytotoxicity receptors

NEACT:

Non-engrafting alloreactive cellular therapy

NK:

Natural killer

PD-1:

Programmed death protein 1

TIGIT:

T-cell immunoreceptor with Ig and ITIM domains

TIM3:

T-cell immunoglobulin domain and mucin domain 3

TNF-α:

Tumor necrosis factor-α

References

  • Almeida-Oliveira, Smith-Carvalho M, Porto LC, Cardoso-Oliveira J, Ribeiro AS, Falcao RR, Abdelhay E, Bouzas LF, Thuler LC, Ornellas MH, Diamond HR (2011) Age-related changes in natural killer cell receptors from childhood through old age. Hum Immunol 72:319–329

    Article  CAS  PubMed  Google Scholar 

  • Anderson AC, Joller N, Kuchroo VK (2016) Lag-3, Tim-3, and TIGIT: co-inhibitory receptors with specialized functions in immune regulation. Immunity 44:989–1004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Appelbaum FR, Gundacker H, Head DR, Slovak ML, Willman CL, Godwin JE, Anderson JE, Petersdorf SH (2006) Age and acute myeloid leukemia. Blood 107:3481–3485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bachanova V, Miller JS (2014) NK cells in therapy of cancer. Crit Rev Oncog 19:133–141

    Article  PubMed  PubMed Central  Google Scholar 

  • Baychelier F, Sennepin A, Ermonval M, Dorgham K, Debre P, Vieillard V (2013) Identification of a cellular ligand for the natural cytotoxicity receptor NKp44. Blood 122:2935–2942

    Article  CAS  PubMed  Google Scholar 

  • Biassoni R (2009) Human natural killer receptors, co-receptors, and their ligands. Curr Protoc Immunol Chapter 14:Unit

    Google Scholar 

  • Borrego F, Ulbrecht M, Weiss EH, Coligan JE, Brooks AG (1998) Recognition of human histocompatibility leukocyte antigen (HLA)-E complexed with HLA class I signal sequence-derived peptides by CD94/NKG2 confers protection from natural killer cell-mediated lysis. J Exp Med 187:813–818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borrego F, Alonso MC, Galiani MD, Carracedo J, Ramirez R, Ostos B, Pena J, Solana R (1999) NK phenotypic markers and IL2 response in NK cells from elderly people. Exp Gerontol 34:253–265

    Article  CAS  PubMed  Google Scholar 

  • Borrego F, Larrucea S, Solana R, Tarazona R (2016) Editorial: NK cell-based cancer immunotherapy. Front Immunol 7:249

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bottino C, Moretta L, Pende D, Vitale M, Moretta A (2004) Learning how to discriminate between friends and enemies, a lesson from natural killer cells. Mol Immunol 41:569–575

    Article  CAS  PubMed  Google Scholar 

  • Bracci L, Schiavoni G, Sistigu A, Belardelli F (2014) Immune-based mechanisms of cytotoxic chemotherapy: implications for the design of novel and rationale-based combined treatments against cancer. Cell Death Differ 21:15–25

    Article  CAS  PubMed  Google Scholar 

  • Brandt CS, Baratin M, Yi EC, Kennedy J, Gao Z, Fox B, Haldeman B, Ostrander CD, Kaifu T, Chabannon C, Moretta A, West R, Xu W, Vivier E, Levin SD (2009) The B7 family member B7-H6 is a tumor cell ligand for the activating natural killer cell receptor NKp30 in humans. J Exp Med 206:1495–1503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campos C, Pera A, Lopez-Fernandez I, Alonso C, Tarazona R, Solana R (2014a) Proinflammatory status influences NK cells subsets in the elderly. Immunol Lett 162:298–302

    Article  CAS  PubMed  Google Scholar 

  • Campos C, Pera A, Sanchez-Correa B, Alonso C, Lopez-Fernandez I, Morgado S, Tarazona R, Solana R (2014b) Effect of age and CMV on NK cell subpopulations. Exp Gerontol 54:130–137

    Article  CAS  PubMed  Google Scholar 

  • Cantoni C, Bottino C, Vitale M, Pessino A, Augugliaro R, Malaspina A, Parolini S, Moretta L, Moretta A, Biassoni R (1999) NKp44, a triggering receptor involved in tumor cell lysis by activated human natural killer cells, is a novel member of the immunoglobulin superfamily. J Exp Med 189:787–796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Champsaur M, Lanier LL (2010) Effect of NKG2D ligand expression on host immune responses. Immunol Rev 235:267–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chester C, Fritsch K, Kohrt HE (2015) Natural killer cell immunomodulation: targeting activating, inhibitory, and co-stimulatory receptor signaling for cancer immunotherapy. Front Immunol 6:601

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chidrawar SM, Khan N, Chan YL, Nayak L, Moss PA (2006) Ageing is associated with a decline in peripheral blood CD56bright NK cells. Immun Ageing 3:10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Childs RW, Carlsten M (2015) Therapeutic approaches to enhance natural killer cell cytotoxicity against cancer: the force awakens. Nat Rev Drug Discov 14:487–498

    Article  CAS  PubMed  Google Scholar 

  • Cooper MA, Fehniger TA, Caligiuri MA (2001) The biology of human natural killer-cell subsets. Trends Immunol 22:633–640

    Article  CAS  PubMed  Google Scholar 

  • Costello RT, Sivori S, Marcenaro E, Lafage-Pochitaloff M, Mozziconacci MJ, Reviron D, Gastaut JA, Pende D, Olive D, Moretta A (2002) Defective expression and function of natural killer cell-triggering receptors in patients with acute myeloid leukemia. Blood 99:3661–3667

    Article  CAS  PubMed  Google Scholar 

  • Curti A, Ruggeri L, D’Addio A, Bontadini A, Dan E, Motta MR, Trabanelli S, Giudice V, Urbani E, Martinelli G, Paolini S, Fruet F, Isidori A, Parisi S, Bandini G, Baccarani M, Velardi A, Lemoli RM (2011) Successful transfer of alloreactive haploidentical KIR ligand-mismatched natural killer cells after infusion in elderly high risk acute myeloid leukemia patients. Blood 118:3273–3279

    Article  CAS  PubMed  Google Scholar 

  • Curti A, Ruggeri L, Parisi S, Bontadini A, Dan E, Motta MR, Rizzi S, Trabanelli S, Ocadlikova D, Lecciso M, Giudice V, Fruet F, Urbani E, Papayannidis C, Martinelli G, Bandini G, Bonifazi F, Lewis RE, Cavo M, Velardi A, Lemoli RM (2016) Larger size of donor alloreactive NK cell repertoire correlates with better response to NK cell immunotherapy in elderly acute myeloid leukemia patients. Clin Cancer Res 22:1914–1921

    Article  CAS  PubMed  Google Scholar 

  • Da RF, Engelberts PJ, Taylor RP, Breij EC, Gritti G, Rambaldi A, Introna M, Parren PW, Beurskens FJ, Golay J (2015) Ibrutinib interferes with the cell-mediated anti-tumor activities of therapeutic CD20 antibodies: implications for combination therapy. Haematologica 100:77–86

    Article  CAS  Google Scholar 

  • de Andrade LF, Smyth MJ, Martinet L (2014) DNAM-1 control of natural killer cells functions through nectin and nectin-like proteins. Immunol Cell Biol 92:237–244

    Article  PubMed  CAS  Google Scholar 

  • Diermayr S, Himmelreich H, Durovic B, Mathys-Schneeberger A, Siegler U, Langenkamp U, Hofsteenge J, Gratwohl A, Tichelli A, Paluszewska M, Wiktor-Jedrzejczak W, Kalberer CP, Wodnar-Filipowicz A (2008) NKG2D ligand expression in AML increases in response to HDAC inhibitor valproic acid and contributes to allorecognition by NK-cell lines with single KIR-HLA class I specificities. Blood 111:1428–1436

    Article  CAS  PubMed  Google Scholar 

  • Dulphy N, Chretien AS, Khaznadar Z, Fauriat C, Nanbakhsh A, Caignard A, Chouaib S, Olive D, Toubert A (2016) Underground adaptation to a hostile environment: acute myeloid leukemia vs. natural killer cells. Front Immunol 7:94

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ershler WB (2005) The influence of advanced age on cancer occurrence and growth. Cancer Treat Res 124:75–87

    Article  PubMed  Google Scholar 

  • Fauriat C, Just-Landi S, Mallet F, Arnoulet C, Sainty D, Olive D, Costello RT (2007) Deficient expression of NCR in NK cells from acute myeloid leukemia: evolution during leukemia treatment and impact of leukemia cells in NCRdull phenotype induction. Blood 109:323–330

    Article  CAS  PubMed  Google Scholar 

  • Franceschi C, Campisi J (2014) Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J Gerontol A Biol Sci Med Sci 69(Suppl 1):S4–S9

    Article  PubMed  Google Scholar 

  • Fulop T, Kotb R, Fortin CF, Pawelec G, de Angelis F, Larbi A (2010) Potential role of immunosenescence in cancer development. Ann N Y Acad Sci 1197:158–165

    Article  CAS  PubMed  Google Scholar 

  • Garber K (2016) Natural killer cells blaze into immuno-oncology. Nat Biotechnol 34:219–220

    Article  CAS  PubMed  Google Scholar 

  • Gayoso I, Sanchez-Correa B, Campos C, Alonso C, Pera A, Casado JG, Morgado S, Tarazona R, Solana R (2011) Immunosenescence of human natural killer cells. J Innate Immun 3:337–343

    Article  CAS  PubMed  Google Scholar 

  • Geiger TL, Rubnitz JE (2015) New approaches for the immunotherapy of acute myeloid leukemia. Discov Med 19:275–284

    PubMed  PubMed Central  Google Scholar 

  • Glasner A, Zurunic A, Meningher T, Lenac RT, Tsukerman P, Bar-On Y, Yamin R, Meyers AF, Mandeboim M, Jonjic S, Mandelboim O (2012) Elucidating the mechanisms of influenza virus recognition by Ncr1. PLoS One 7:e36837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gleason MK, Lenvik TR, McCullar V, Felices M, O’Brien MS, Cooley SA, Verneris MR, Cichocki F, Holman CJ, Panoskaltsis-Mortari A, Niki T, Hirashima M, Blazar BR, Miller JS (2012) Tim-3 is an inducible human natural killer cell receptor that enhances interferon gamma production in response to galectin-9. Blood 119:3064–3072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glienke W, Esser R, Priesner C, Suerth JD, Schambach A, Wels WS, Grez M, Kloess S, Arseniev L, Koehl U (2015) Advantages and applications of CAR-expressing natural killer cells. Front Pharmacol 6:21

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gonzalez VD, Falconer K, Bjorkstrom NK, Blom KG, Weiland O, Ljunggren HG, Alaeus A, Sandberg JK (2009) Expansion of functionally skewed CD56-negative NK cells in chronic hepatitis C virus infection: correlation with outcome of pegylated IFN-alpha and ribavirin treatment. J Immunol 183:6612–6618

    Article  CAS  PubMed  Google Scholar 

  • Hayhoe RP, Henson SM, Akbar AN, Palmer DB (2010) Variation of human natural killer cell phenotypes with age: identification of a unique KLRG1-negative subset. Hum Immunol 71:676–681

    Article  CAS  PubMed  Google Scholar 

  • Isidori A, Venditti A, Maurillo L, Buccisano F, Loscocco F, Manduzio P, Sparaventi G, Amadori S, Visani G (2013) Alternative novel therapies for the treatment of elderly acute myeloid leukemia patients. Expert Rev Hematol 6:767–784

    Article  CAS  PubMed  Google Scholar 

  • Jabbour EJ, Estey E, Kantarjian HM (2006) Adult acute myeloid leukemia. Mayo Clin Proc 81:247–260

    Article  PubMed  Google Scholar 

  • Kaifu T, Escaliere B, Gastinel LN, Vivier E, Baratin M (2011) B7-H6/NKp30 interaction: a mechanism of alerting NK cells against tumors. Cell Mol Life Sci 68:3531–3539

    Article  CAS  PubMed  Google Scholar 

  • Kasahara M, Yoshida S (2012) Immunogenetics of the NKG2D ligand gene family. Immunogenetics 64:855–867

    Article  CAS  PubMed  Google Scholar 

  • Khaled S, Al MM, Marcucci G (2016) Acute myeloid leukemia: biologic, prognostic, and therapeutic insights. Oncology (Williston Park) 30:318–329

    Google Scholar 

  • Khaznadar Z, Henry G, Setterblad N, Agaugue S, Raffoux E, Boissel N, Dombret H, Toubert A, Dulphy N (2014) Acute myeloid leukemia impairs natural killer cells through the formation of a deficient cytotoxic immunological synapse. Eur J Immunol 44:3068–3080

    Article  CAS  PubMed  Google Scholar 

  • Klepin HD, Rao AV, Pardee TS (2014) Acute myeloid leukemia and myelodysplastic syndromes in older adults. J Clin Oncol 32:2541–2552

    Article  PubMed  PubMed Central  Google Scholar 

  • Klingemann H (2015) Challenges of cancer therapy with natural killer cells. Cytotherapy 17:245–249

    Article  CAS  PubMed  Google Scholar 

  • Kohrt HE, Sagiv-Barfi I, Rafiq S, Herman SE, Butchar JP, Cheney C, Zhang X, Buggy JJ, Muthusamy N, Levy R, Johnson AJ, Byrd JC (2014) Ibrutinib antagonizes rituximab-dependent NK cell-mediated cytotoxicity. Blood 123:1957–1960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kong Y, Zhu L, Schell TD, Zhang J, Claxton DF, Ehmann WC, Rybka WB, George MR, Zeng H, Zheng H (2016) T-cell immunoglobulin and ITIM domain (TIGIT) associates with CD8+ T-cell exhaustion and poor clinical outcome in AML patients. Clin Cancer Res 22:3057–3066

    Article  CAS  PubMed  Google Scholar 

  • Krakow EF, Bergeron J, Lachance S, Roy DC, Delisle JS (2014) Harnessing the power of alloreactivity without triggering graft-versus-host disease: how non-engrafting alloreactive cellular therapy might change the landscape of acute myeloid leukemia treatment. Blood Rev 28:249–261

    Article  PubMed  Google Scholar 

  • Le Garff-Tavernier M, Beziat V, Decocq J, Siguret V, Gandjbakhch F, Pautas E, Debre P, Merle-Beral H, Vieillard V (2010) Human NK cells display major phenotypic and functional changes over the life span. Aging Cell 9:527–535

    Article  PubMed  CAS  Google Scholar 

  • Leung W, Campana D, Yang J, Pei D, Coustan-Smith E, Gan K, Rubnitz JE, Sandlund JT, Ribeiro RC, Srinivasan A, Hartford C, Triplett BM, Dallas M, Pillai A, Handgretinger R, Laver JH, Pui CH (2011) High success rate of hematopoietic cell transplantation regardless of donor source in children with very high-risk leukemia. Blood 118:223–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lieberman J (2003) The ABCs of granule-mediated cytotoxicity: new weapons in the arsenal. Nat Rev Immunol 3:361–370

    Article  CAS  PubMed  Google Scholar 

  • Locatelli F, Moretta F, Brescia L, Merli P (2014) Natural killer cells in the treatment of high-risk acute leukaemia. Semin Immunol 26:173–179

    Article  CAS  PubMed  Google Scholar 

  • Lutz CT, Moore MB, Bradley S, Shelton BJ, Lutgendorf SK (2005) Reciprocal age related change in natural killer cell receptors for MHC class I. Mech Ageing Dev 126:722–731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lutz CT, Karapetyan A, Al-Attar A, Shelton BJ, Holt KJ, Tucker JH, Presnell SR (2011) Human NK cells proliferate and die in vivo more rapidly than T cells in healthy young and elderly adults. J Immunol 186:4590–4598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mariani E, Meneghetti A, Neri S, Ravaglia G, Forti P, Cattini L, Facchini A (2002) Chemokine production by natural killer cells from nonagenarians. Eur J Immunol 32:1524–1529

    Article  CAS  PubMed  Google Scholar 

  • Mavilio D, Lombardo G, Benjamin J, Kim D, Follman D, Marcenaro E, O’Shea MA, Kinter A, Kovacs C, Moretta A, Fauci AS (2005) Characterization of CD56−/CD16+ natural killer (NK) cells: a highly dysfunctional NK subset expanded in HIV-infected viremic individuals. Proc Natl Acad Sci U S A 102:2886–2891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller JS, Soignier Y, Panoskaltsis-Mortari A, McNearney SA, Yun GH, Fautsch SK, McKenna D, Le C, Defor TE, Burns LJ, Orchard PJ, Blazar BR, Wagner JE, Slungaard A, Weisdorf DJ, Okazaki IJ, McGlave PB (2005) Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood 105:3051–3057

    Article  CAS  PubMed  Google Scholar 

  • Mocchegiani E, Malavolta M (2004) NK and NKT cell functions in immunosenescence. Aging Cell 3:177–184

    Article  CAS  PubMed  Google Scholar 

  • Moretta L, Bottino C, Pende D, Vitale M, Mingari MC, Moretta A (2004) Different checkpoints in human NK-cell activation. Trends Immunol 25:670–676

    Article  CAS  PubMed  Google Scholar 

  • Moretta L, Bottino C, Pende D, Castriconi R, Mingari MC, Moretta A (2006) Surface NK receptors and their ligands on tumor cells. Semin Immunol 18:151–158

    Article  CAS  PubMed  Google Scholar 

  • Moretta L, Montaldo E, Vacca P, Del ZG, Moretta F, Merli P, Locatelli F, Mingari MC (2014) Human natural killer cells: origin, receptors, function, and clinical applications. Int Arch Allergy Immunol 164:253–264

    Article  CAS  PubMed  Google Scholar 

  • Ndhlovu LC, Lopez-Verges S, Barbour JD, Jones RB, Jha AR, Long BR, Schoeffler EC, Fujita T, Nixon DF, Lanier LL (2012) Tim-3 marks human natural killer cell maturation and suppresses cell-mediated cytotoxicity. Blood 119:3734–3743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niewerth D, Creutzig U, Bierings MB, Kaspers GJ (2010) A review on allogeneic stem cell transplantation for newly diagnosed pediatric acute myeloid leukemia. Blood 116:2205–2214

    Article  CAS  PubMed  Google Scholar 

  • Nowbakht P, Ionescu MC, Rohner A, Kalberer CP, Rossy E, Mori L, Cosman D, De LG, Wodnar-Filipowicz A (2005) Ligands for natural killer cell-activating receptors are expressed upon the maturation of normal myelomonocytic cells but at low levels in acute myeloid leukemias. Blood 105:3615–3622

    Article  CAS  PubMed  Google Scholar 

  • Oyer JL, Igarashi RY, Kulikowski AR, Colosimo DA, Solh MM, Zakari A, Khaled YA, Altomare DA, Copik AJ (2015) Generation of highly cytotoxic natural killer cells for treatment of acute myelogenous leukemia using a feeder-free, particle-based approach. Biol Blood Marrow Transplant 21:632–639

    Article  CAS  PubMed  Google Scholar 

  • Pende D, Parolini S, Pessino A, Sivori S, Augugliaro R, Morelli L, Marcenaro E, Accame L, Malaspina A, Biassoni R, Bottino C, Moretta L, Moretta A (1999) Identification and molecular characterization of NKp30, a novel triggering receptor involved in natural cytotoxicity mediated by human natural killer cells. J Exp Med 190:1505–1516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pende D, Bottino C, Castriconi R, Cantoni C, Marcenaro S, Rivera P, Spaggiari GM, Dondero A, Carnemolla B, Reymond N, Mingari MC, Lopez M, Moretta L, Moretta A (2005a) PVR (CD155) and Nectin-2 (CD112) as ligands of the human DNAM-1 (CD226) activating receptor: involvement in tumor cell lysis. Mol Immunol 42:463–469

    Article  CAS  PubMed  Google Scholar 

  • Pende D, Spaggiari GM, Marcenaro S, Martini S, Rivera P, Capobianco A, Falco M, Lanino E, Pierri I, Zambello R, Bacigalupo A, Mingari MC, Moretta A, Moretta L (2005b) Analysis of the receptor-ligand interactions in the natural killer-mediated lysis of freshly isolated myeloid or lymphoblastic leukemias: evidence for the involvement of the Poliovirus receptor (CD155) and Nectin-2 (CD112). Blood 105:2066–2073

    Article  CAS  PubMed  Google Scholar 

  • Pera A, Campos C, Lopez N, Hassouneh F, Alonso C, Tarazona R, Solana R (2015) Immunosenescence: implications for response to infection and vaccination in older people. Maturitas 82:50–55

    Article  CAS  PubMed  Google Scholar 

  • Perez-Gracia JL, Labiano S, Rodriguez-Ruiz ME, Sanmamed MF, Melero I (2014) Orchestrating immune check-point blockade for cancer immunotherapy in combinations. Curr Opin Immunol 27:89–97

    Article  CAS  PubMed  Google Scholar 

  • Rambaldi A, Biagi E, Bonini C, Biondi A, Introna M (2015) Cell-based strategies to manage leukemia relapse: efficacy and feasibility of immunotherapy approaches. Leukemia 29:1–10

    Article  CAS  PubMed  Google Scholar 

  • Robert C, Schachter J, Long GV, Arance A, Grob JJ, Mortier L, Daud A, Carlino MS, McNeil C, Lotem M, Larkin J, Lorigan P, Neyns B, Blank CU, Hamid O, Mateus C, Shapira-Frommer R, Kosh M, Zhou H, Ibrahim N, Ebbinghaus S, Ribas A (2015) Pembrolizumab versus ipilimumab in advanced melanoma. N Engl J Med 372:2521–2532

    Article  CAS  PubMed  Google Scholar 

  • Romagnani C, Juelke K, Falco M, Morandi B, D’Agostino A, Costa R, Ratto G, Forte G, Carrega P, Lui G, Conte R, Strowig T, Moretta A, Munz C, Thiel A, Moretta L, Ferlazzo G (2007) CD56brightCD16- killer Ig-like receptor- NK cells display longer telomeres and acquire features of CD56dim NK cells upon activation. J Immunol 178:4947–4955

    Article  CAS  PubMed  Google Scholar 

  • Romagne F, Vivier E (2011) Natural killer cell-based therapies. F1000 Med Rep 3:9

    Article  PubMed  PubMed Central  Google Scholar 

  • Ruggeri L, Parisi S, Urbani E, Curti A (2015) Alloreactive natural killer cells for the treatment of acute myeloid leukemia: from stem cell transplantation to adoptive immunotherapy. Front Immunol 6:479

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ruggeri L, Urbani E, Andre P, Mancusi A, Tosti A, Topini F, Blery M, Animobono L, Romagne F, Wagtmann N, Velardi A (2016) Effects of anti-NKG2A antibody administration on leukemia and normal hematopoietic cells. Haematologica 101:626–633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salih HR, Antropius H, Gieseke F, Lutz SZ, Kanz L, Rammensee HG, Steinle A (2003) Functional expression and release of ligands for the activating immunoreceptor NKG2D in leukemia. Blood 102:1389–1396

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Correa B, Morgado S, Gayoso I, Bergua JM, Casado JG, Arcos MJ, Bengochea ML, Duran E, Solana R, Tarazona R (2011) Human NK cells in acute myeloid leukaemia patients: analysis of NK cell-activating receptors and their ligands. Cancer Immunol Immunother 60:1195–1205

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Correa B, Gayoso I, Bergua JM, Casado JG, Morgado S, Solana R, Tarazona R (2012) Decreased expression of DNAM-1 on NK cells from acute myeloid leukemia patients. Immunol Cell Biol 90:109–115

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Correa B, Campos C, Pera A, Bergua JM, Arcos MJ, Banas H, Casado JG, Morgado S, Duran E, Solana R, Tarazona R (2016) Natural killer cell immunosenescence in acute myeloid leukaemia patients: new targets for immunotherapeutic strategies? Cancer Immunol Immunother 65:453–463

    Article  CAS  PubMed  Google Scholar 

  • Schonberg K, Rudolph J, Vonnahme M, Parampalli YS, Cornez I, Hejazi M, Manser AR, Uhrberg M, Verbeek W, Koschmieder S, Brummendorf TH, Brossart P, Heine A, Wolf D (2015) JAK inhibition impairs NK cell function in myeloproliferative neoplasms. Cancer Res 75:2187–2199

    Article  PubMed  CAS  Google Scholar 

  • Screpanti V, Wallin RP, Grandien A, Ljunggren HG (2005) Impact of FASL-induced apoptosis in the elimination of tumor cells by NK cells. Mol Immunol 42:495–499

    Article  CAS  PubMed  Google Scholar 

  • Sehgal A, Whiteside TL, Boyiadzis M (2015) Programmed death-1 checkpoint blockade in acute myeloid leukemia. Expert Opin Biol Ther 15:1191–1203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shemesh A, Brusilovsky M, Hadad U, Teltsh O, Edri A, Rubin E, Campbell KS, Rosental B, Porgador A (2016) Survival in acute myeloid leukemia is associated with NKp44 splice variants. Oncotarget 7:32933–32945

    PubMed  PubMed Central  Google Scholar 

  • Shin DS, Ribas A (2015) The evolution of checkpoint blockade as a cancer therapy: what’s here, what’s next? Curr Opin Immunol 33:23–35

    Article  CAS  PubMed  Google Scholar 

  • Sivori S, Vitale M, Morelli L, Sanseverino L, Augugliaro R, Bottino C, Moretta L, Moretta A (1997) p46, a novel natural killer cell-specific surface molecule that mediates cell activation. J Exp Med 186:1129–1136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Solana R, Mariani E (2000) NK and NK/T cells in human senescence. Vaccine 18:1613–1620

    Article  CAS  PubMed  Google Scholar 

  • Solana R, Pawelec G, Tarazona R (2006) Aging and innate immunity. Immunity 24:491–494

    Article  CAS  PubMed  Google Scholar 

  • Solana R, Tarazona R, Gayoso I, Lesur O, Dupuis G, Fulop T (2012) Innate immunosenescence: effect of aging on cells and receptors of the innate immune system in humans. Semin Immunol 24:331–341

    Article  CAS  PubMed  Google Scholar 

  • Solana R, Campos C, Pera A, Tarazona R (2014) Shaping of NK cell subsets by aging. Curr Opin Immunol 29:56–61

    Article  CAS  PubMed  Google Scholar 

  • Spits H, Bernink JH, Lanier L (2016) NK cells and type 1 innate lymphoid cells: partners in host defense. Nat Immunol 17:758–764

    Article  CAS  PubMed  Google Scholar 

  • Stanietsky N, Mandelboim O (2010) Paired NK cell receptors controlling NK cytotoxicity. FEBS Lett 584:4895–4900

    Article  CAS  PubMed  Google Scholar 

  • Stanietsky N, Simic H, Arapovic J, Toporik A, Levy O, Novik A, Levine Z, Beiman M, Dassa L, Achdout H, Stern-Ginossar N, Tsukerman P, Jonjic S, Mandelboim O (2009) The interaction of TIGIT with PVR and PVRL2 inhibits human NK cell cytotoxicity. Proc Natl Acad Sci U S A 106:17858–17863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stringaris K, Sekine T, Khoder A, Alsuliman A, Razzaghi B, Sargeant R, Pavlu J, Brisley G, de Lavallade H, Sarvaria A, Marin D, Mielke S, Apperley JF, Shpall EJ, Barrett AJ, Rezvani K (2014) Leukemia-induced phenotypic and functional defects in natural killer cells predict failure to achieve remission in acute myeloid leukemia. Haematologica 99:836–847

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Talarico L, Chen G, Pazdur R (2004) Enrollment of elderly patients in clinical trials for cancer drug registration: a 7-year experience by the US Food and Drug Administration. J Clin Oncol 22:4626–4631

    Article  PubMed  Google Scholar 

  • Tarazona R, Casado JG, Delarosa O, Torre-Cisneros J, Villanueva JL, Sanchez B, Galiani MD, Gonzalez R, Solana R, Pena J (2002) Selective depletion of CD56(dim) NK cell subsets and maintenance of CD56(bright) NK cells in treatment-naive HIV-1-seropositive individuals. J Clin Immunol 22:176–183

    Article  CAS  PubMed  Google Scholar 

  • Tarazona R, Duran E, Solana R (2016) Natural killer cell recognition of melanoma: new clues for a more effective immunotherapy. Front Immunol 6:649

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tarazona R, Sanchez-Correa B, Casas-Aviles I, Campos C, Pera A, Morgado S, López-Sejas N, Hassouneh F, Bergua JM, Arcos MJ, Bañas H, Casado JG, Duran E, Labella F, Solana R (2017) Immunosenescence: limitation for natural killer cell-based cancer immunotherapy. Cancer Immunol Immunother 66:233–245

    Google Scholar 

  • Terme M, Ullrich E, Delahaye NF, Chaput N, Zitvogel L (2008) Natural killer cell-directed therapies: moving from unexpected results to successful strategies. Nat Immunol 9:486–494

    Article  CAS  PubMed  Google Scholar 

  • Thomas X (2015) Acute myeloid leukemia in the elderly patient: new strategies. Rare Cancers Ther 3:1–11

    Article  PubMed  PubMed Central  Google Scholar 

  • von Pogge SE, Simhadri VR, von Tresckow B, Sasse S, Reiners KS, Hansen HP, Rothe A, Boll B, Simhadri VL, Borchmann P, McKinnon PJ, Hallek M, Engert A (2007) Human leukocyte antigen-B-associated transcript 3 is released from tumor cells and engages the NKp30 receptor on natural killer cells. Immunity 27:965–974

    Article  CAS  Google Scholar 

  • Waldhauer I, Steinle A (2008) NK cells and cancer immunosurveillance. Oncogene 27:5932–5943

    Article  CAS  PubMed  Google Scholar 

  • Wiernik A, Foley B, Zhang B, Verneris MR, Warlick E, Gleason MK, Ross JA, Luo X, Weisdorf DJ, Walcheck B, Vallera DA, Miller JS (2013) Targeting natural killer cells to acute myeloid leukemia in vitro with a CD16 × 33 bispecific killer cell engager and ADAM17 inhibition. Clin Cancer Res 19:3844–3855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang B, Zhao W, Li H, Chen Y, Tian H, Li L, Zhang L, Gao C, Zheng J (2016) Immunoreceptor TIGIT inhibits the cytotoxicity of human cytokine-induced killer cells by interacting with CD155. Cancer Immunol Immunother 65:305–314

    Article  CAS  PubMed  Google Scholar 

  • Zhou Q, Gil-Krzewska A, Peruzzi G, Borrego F (2013) Matrix metalloproteinases inhibition promotes the polyfunctionality of human natural killer cells in therapeutic antibody-based anti-tumour immunotherapy. Clin Exp Immunol 173:131–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We apologize to our colleagues whose work was not cited due to space limitations. This work was supported by grants SAF2009-09711 and SAF2013-46161-R (to RT) from the Ministry of Economy and Competitiveness of Spain, PS09/00723, PI13/02691 and PI16/01615 (to RS) from Spanish Ministry of Health, and CTS-208 from Junta de Andalucia (to RS) and grants to INPATT research group (GR10104 and GR15183) and IB16164 from Junta de Extremadura and University of Extremadura (to RT) cofinanced by European Regional Development Funds (FEDER).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rafael Solana or Raquel Tarazona .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Cite this entry

Sánchez-Correa, B. et al. (2018). Age-Associated Alterations on Natural Killer Cells in Acute Myeloid Leukemia Patients. In: Fulop, T., Franceschi, C., Hirokawa, K., Pawelec, G. (eds) Handbook of Immunosenescence. Springer, Cham. https://doi.org/10.1007/978-3-319-64597-1_140-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64597-1_140-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64597-1

  • Online ISBN: 978-3-319-64597-1

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics