Skip to main content

Role of Immunosenescence in Coronary Artery Disease

  • Living reference work entry
  • First Online:
Handbook of Immunosenescence

Abstract

This chapter describes how previous infection with cytomegalovirus (CMV) leads to a senescent phenotype of the adaptive immune system, mainly inflating the CD8 T-cell compartment, and how this is linked to vascular disease. CMV-seropositive octogenarians are 40% more likely to have coronary artery disease. In addition, a higher percentage of senescent-like CD4 and CD8 T cells predisposes them for cardiovascular death. Patients with previous myocardial infarction have shorter leukocyte telomere length than age-adjusted healthy controls. The telomere length difference (500 base pairs) is the same for all leukocyte subsets, except for a much larger gap (1 kbp) in the CD8 compartment. This is mainly driven by previous infection with CMV, indicating a special role of these cells in patients with coronary artery disease. In patients with acute myocardial infarction, senescent-like T cells decrease in the circulating blood during ischemia and reperfusion strongest, possibly mediated by the chemokine receptor CX3CR1 (receptor for fractalkine). CMV-specific cells also undergo programmed cell death via PD-1 following reperfusion. Finally, fractalkine is thought to mediate the cytotoxic effect of CMV-specific T cells on the endothelium. Together, we attempt to show how coronary artery disease could be linked with a senescent phenotype of the adaptive immune system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Appay V, Dunbar PR, Callan M et al (2002) Memory CD8+ T cells vary in differentiation phenotype in different persistent virus infections. Nat Med 8(4):379–385

    Article  CAS  PubMed  Google Scholar 

  • Bazan JF, Bacon KB, Hardiman G et al (1997) A new class of membrane-bound chemokine with a CX3C motif. Nature 385(6617):640–644

    Article  CAS  PubMed  Google Scholar 

  • Blackman MA, Woodland DL (2011) The narrowing of the CD8 T cell repertoire in old age. Curr Opin Immunol 23(4):537–542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blankenberg S, Rupprecht HJ, Bickel C et al (2001) Cytomegalovirus infection with interleukin-6 response predicts cardiac mortality in patients with coronary artery disease. Circulation 103(24):2915–2921

    Article  CAS  PubMed  Google Scholar 

  • Boag SE, Das R, Shmeleva EV et al (2015) T lymphocytes and fractalkine contribute to myocardial ischemia/reperfusion injury in patients. J Clin Invest 125(8):3063–3076

    Article  PubMed  PubMed Central  Google Scholar 

  • Bolovan-Fritts CA, Spector SA (2008) Endothelial damage from cytomegalovirus-specific host immune response can be prevented by targeted disruption of fractalkine-CX3CR1 interaction. Blood 111(1):175–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolovan-Fritts CA, Trout RN, Spector SA (2004) Human cytomegalovirus-specific CD4+-T-cell cytokine response induces fractalkine in endothelial cells. J Virol 78(23):13173–13181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolovan-Fritts CA, Trout RN, Spector SA (2007) High T-cell response to human cytomegalovirus induces chemokine-mediated endothelial cell damage. Blood 110(6):1857–1863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Böttcher JP, Beyer M, Meissner F et al (2015) Functional classification of memory CD8(+) T cells by CX3CR1 expression. Nat Commun 6:8306

    Article  PubMed  PubMed Central  Google Scholar 

  • Chidrawar S, Khan N, Wei W et al (2009) Cytomegalovirus-seropositivity has a profound influence on the magnitude of major lymphoid subsets within healthy individuals. Clin Exp Immunol 155(3):423–432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Combadiere C, Potteaux S, Gao JL et al (2003) Decreased atherosclerotic lesion formation in CX3CR1/apolipoprotein E double knockout mice. Circulation 107(7):1009–1016

    Article  CAS  PubMed  Google Scholar 

  • Crough T, Khanna R (2009) Immunobiology of human cytomegalovirus: from bench to bedside. Clin Microbiol Rev 22(1):76–98. Table of Contents

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Damas JK, Boullier A, Waehre T et al (2005) Expression of fractalkine (CX3CL1) and its receptor, CX3CR1, is elevated in coronary artery disease and is reduced during statin therapy. Arterioscler Thromb Vasc Biol 25(12):2567–2572

    Article  CAS  PubMed  Google Scholar 

  • Derhovanessian E, Maier AB, Beck R et al (2010) Hallmark features of immunosenescence are absent in familial longevity. J Immunol 185(8):4618–4624

    Article  CAS  PubMed  Google Scholar 

  • Dumitriu IE, Baruah P, Finlayson CJ et al (2012) High levels of costimulatory receptors OX40 and 4-1BB characterize CD4+CD28null T cells in patients with acute coronary syndrome. Circ Res 110(6):857–869

    Article  CAS  PubMed  Google Scholar 

  • Duraiswamy J, Ibegbu CC, Masopust D et al (2011) Phenotype, function, and gene expression profiles of programmed death-1(hi) CD8 T cells in healthy human adults. J Immunol 186(7):4200–4212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frangogiannis NG, Entman ML (2005) Chemokines in myocardial ischemia. Trends Cardiovasc Med 15(5):163–169

    Article  CAS  PubMed  Google Scholar 

  • Freeman GJ, Long AJ, Iwai Y et al (2000) Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med 192(7):1027–1034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garton KJ, Gough PJ, Blobel CP et al (2001) Tumor necrosis factor-alpha-converting enzyme (ADAM17) mediates the cleavage and shedding of fractalkine (CX3CL1). J Biol Chem 276(41):37993–38001

    CAS  PubMed  Google Scholar 

  • Goda S, Imai T, Yoshie O et al (2000) CX3C-chemokine, fractalkine-enhanced adhesion of THP-1 cells to endothelial cells through integrin-dependent and -independent mechanisms. J Immunol 164(8):4313–4320

    Article  CAS  PubMed  Google Scholar 

  • Gredmark S, Jonasson L, Van Gosliga D et al (2007) Active cytomegalovirus replication in patients with coronary disease. Scand Cardiovasc J 41(4):230–234

    Article  CAS  PubMed  Google Scholar 

  • Griffiths P, Baraniak I, Reeves M (2015) The pathogenesis of human cytomegalovirus. J Pathol 235(2):288–297

    Article  CAS  PubMed  Google Scholar 

  • Hansson GK, Libby P (2006) The immune response in atherosclerosis: a double-edged sword. Nat Rev Immunol 6(7):508–519

    Article  CAS  PubMed  Google Scholar 

  • Henson SM, Franzese O, Macaulay R et al (2009) KLRG1 signaling induces defective Akt (ser473) phosphorylation and proliferative dysfunction of highly differentiated CD8+ T cells. Blood 113(26):6619–6628

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann J, Shmeleva EV, Boag SE et al (2015) Myocardial ischemia and reperfusion leads to transient CD8 immune deficiency and accelerated immunosenescence in CMV-seropositive patients. Circ Res 116(1):87–98

    Article  CAS  PubMed  Google Scholar 

  • Imai T, Hieshima K, Haskell C et al (1997) Identification and molecular characterization of fractalkine receptor CX3CR1, which mediates both leukocyte migration and adhesion. Cell 91(4):521–530

    Article  CAS  PubMed  Google Scholar 

  • Ishida Y, Agata Y, Shibahara K et al (1992) Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J 11(11):3887–3895

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jonasson L, Tompa A, Wikby A (2003) Expansion of peripheral CD8+ T cells in patients with coronary artery disease: relation to cytomegalovirus infection. J Intern Med 254(5):472–478

    Article  CAS  PubMed  Google Scholar 

  • Jurk D, Wilson C, Passos JF et al (2014) Chronic inflammation induces telomere dysfunction and accelerates ageing in mice. Nat Commun 2:4172

    Article  PubMed  PubMed Central  Google Scholar 

  • Khan N, Shariff N, Cobbold M et al (2002a) Cytomegalovirus seropositivity drives the CD8 T cell repertoire toward greater clonality in healthy elderly individuals. J Immunol 169(4):1984–1992

    Article  CAS  PubMed  Google Scholar 

  • Khan N, Cobbold M, Keenan R et al (2002b) Comparative analysis of CD8+ T cell responses against human cytomegalovirus proteins pp65 and immediate early 1 shows similarities in precursor frequency, oligoclonality, and phenotype. J Infect Dis 185(8):1025–1034

    Article  CAS  PubMed  Google Scholar 

  • Klenerman P, Hill A (2005) T cells and viral persistence: lessons from diverse infections. Nat Immunol 6(9):873–879

    Article  CAS  PubMed  Google Scholar 

  • Koch S, Larbi A, Derhovanessian E et al (2008) Multiparameter flow cytometric analysis of CD4 and CD8 T cell subsets in young and old people. Immun Ageing 5:6

    Article  PubMed  PubMed Central  Google Scholar 

  • Kostis JB, Turkevich D, Sharp J (1984) Association between leukocyte count and the presence and extent of coronary atherosclerosis as determined by coronary arteriography. Am J Cardiol 53(8):997–999

    Article  CAS  PubMed  Google Scholar 

  • Kuijpers TW, Vossen MT, Gent MR et al (2003) Frequencies of circulating cytolytic, CD45RA+CD27−, CD8+ T lymphocytes depend on infection with CMV. J Immunol 170(8):4342–4348

    Article  CAS  PubMed  Google Scholar 

  • Kyto V, Vuorinen T, Saukko P et al (2005) Cytomegalovirus infection of the heart is common in patients with fatal myocarditis. Clin Infect Dis 40(5):683–688

    Article  PubMed  Google Scholar 

  • Lanna A, Coutavas E, Levati L et al (2013) IFN-alpha inhibits telomerase in human CD8+ T cells by both hTERT downregulation and induction of p38 MAPK signaling. J Immunol 191(7):3744–3752

    Article  CAS  PubMed  Google Scholar 

  • Lesnik P, Haskell CA, Charo IF (2003) Decreased atherosclerosis in CX3CR1-/- mice reveals a role for fractalkine in atherogenesis. J Clin Invest 111(3):333–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Libby P, Lichtman AH, Hansson GK (2013) Immune effector mechanisms implicated in atherosclerosis: from mice to humans. Immunity 38(6):1092–1104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liuzzo G, Kopecky SL, Frye RL et al (1999) Perturbation of the T-cell repertoire in patients with unstable angina. Circulation 100(21):2135–2139

    Article  CAS  PubMed  Google Scholar 

  • Ludwig A, Weber C (2007) Transmembrane chemokines: versatile ‘special agents’ in vascular inflammation. Thromb Haemost 97(5):694–703

    CAS  PubMed  Google Scholar 

  • Melnick JL, Petrie BL, Dreesman GR et al (1983) Cytomegalovirus antigen within human arterial smooth muscle cells. Lancet 2(8351):644–647

    Article  CAS  PubMed  Google Scholar 

  • Moss P (2010) The emerging role of cytomegalovirus in driving immune senescence: a novel therapeutic opportunity for improving health in the elderly. Curr Opin Immunol 22(4):529–534

    Article  CAS  PubMed  Google Scholar 

  • Muhlestein JB, Horne BD, Carlquist JF et al (2000) Cytomegalovirus seropositivity and C-reactive protein have independent and combined predictive value for mortality in patients with angiographically demonstrated coronary artery disease. Circulation 102(16):1917–1923

    Article  CAS  PubMed  Google Scholar 

  • Nieto FJ, Adam E, Sorlie P et al (1996) Cohort study of cytomegalovirus infection as a risk factor for carotid intimal-medial thickening, a measure of subclinical atherosclerosis. Circulation 94(5):922–927

    Article  CAS  PubMed  Google Scholar 

  • Nieto FJ, Szklo M, Sorlie PD (1999) Cytomegalovirus infection and coronary heart disease. Circulation 100(25):e139

    Article  CAS  PubMed  Google Scholar 

  • Nilsson BO, Ernerudh J, Johansson B et al (2003) Morbidity does not influence the T-cell immune risk phenotype in the elderly: findings in the Swedish NONA Immune Study using sample selection protocols. Mech Ageing Dev 124(4):469–476

    Article  PubMed  Google Scholar 

  • Nishimura M, Umehara H, Nakayama T et al (2002) Dual functions of fractalkine/CX3C ligand 1 in trafficking of perforin+/granzyme B+ cytotoxic effector lymphocytes that are defined by CX3CR1 expression. J Immunol 168(12):6173–6180

    Article  CAS  PubMed  Google Scholar 

  • Njerve IU, Solheim S, Lunde K et al (2014) Fractalkine levels are elevated early after PCI-treated ST-elevation myocardial infarction; no influence of autologous bone marrow derived stem cell injection. Cytokine 69(1):131–135

    Article  CAS  PubMed  Google Scholar 

  • Pourgheysari B, Khan N, Best D et al (2007) The cytomegalovirus-specific CD4+ T-cell response expands with age and markedly alters the CD4+ T-cell repertoire. J Virol 81(14):7759–7765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prosch S, Wendt CE, Reinke P et al (2000) A novel link between stress and human cytomegalovirus (HCMV) infection: sympathetic hyperactivity stimulates HCMV activation. Virology 272(2):357–365

    Article  CAS  PubMed  Google Scholar 

  • Pucci S, Mazzarelli P, Zonetti MJ et al (2013) CX3CR1 receptor polymorphisms, Th1 cell recruitment, and acute myocardial infarction outcome: looking for a link. Biomed Res Int 2013:451349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ridker PM, Hennekens CH, Stampfer MJ et al (1998) Prospective study of herpes simplex virus, cytomegalovirus, and the risk of future myocardial infarction and stroke. Circulation 98(25):2796–2799

    Article  CAS  PubMed  Google Scholar 

  • Rupprecht HJ, Blankenberg S, Bickel C et al (2001) Impact of viral and bacterial infectious burden on long-term prognosis in patients with coronary artery disease. Circulation 104(1):25–31

    Article  CAS  PubMed  Google Scholar 

  • Saederup N, Chan L, Lira SA et al (2008) Fractalkine deficiency markedly reduces macrophage accumulation and atherosclerotic lesion formation in CCR2-/- mice: evidence for independent chemokine functions in atherogenesis. Circulation 117(13):1642–1648

    Article  CAS  PubMed  Google Scholar 

  • Savva GM, Pachnio A, Kaul B et al (2013) Cytomegalovirus infection is associated with increased mortality in the older population. Aging Cell 12(3):381–387

    Article  CAS  PubMed  Google Scholar 

  • Simanek AM, Dowd JB, Aiello AE (2009) Persistent pathogens linking socioeconomic position and cardiovascular disease in the US. Int J Epidemiol 38(3):775–787

    Article  PubMed  Google Scholar 

  • Solana R, Tarazona R, Aiello AE et al (2012) CMV and immunosenescence: from basics to clinics. Immun Ageing 9(1):23

    Article  PubMed  PubMed Central  Google Scholar 

  • Sorlie PD, Nieto FJ, Adam E et al (2000) A prospective study of cytomegalovirus, herpes simplex virus 1, and coronary heart disease: the atherosclerosis risk in communities (ARIC) study. Arch Intern Med 160(13):2027–2032

    Article  CAS  PubMed  Google Scholar 

  • Spyridopoulos I, Hoffmann J, Aicher A et al (2009) Accelerated telomere shortening in leukocyte subpopulations of patients with coronary heart disease: role of cytomegalovirus seropositivity. Circulation 120(14):1364–1372

    Article  PubMed  Google Scholar 

  • Spyridopoulos, I, Martin-Ruiz, C, Hilkens, C, Yadegarfar, ME, Isaacs, J, Jagger, C, Kirkwood, T, von Zglinicki, T. CMV seropositivity and T-cell senescence predict increased cardiovascular mortality in octogenarians: results from the Newcastle 85+ study. Aging Cell 2016;15(2):389–92

    Google Scholar 

  • Stassen FR, Vainas T, Bruggeman CA (2008) Infection and atherosclerosis. An alternative view on an outdated hypothesis. Pharmacol Rep 60(1):85–92

    CAS  PubMed  Google Scholar 

  • Strindhall J, Nilsson BO, Lofgren S et al (2007) No immune risk profile among individuals who reach 100 years of age: findings from the Swedish NONA immune longitudinal study. Exp Gerontol 42(8):753–761

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Pei W, Welte T et al (2005) Cytomegalovirus infection is associated with elevated interleukin-10 in coronary artery disease. Atherosclerosis 179(1):133–137

    Article  CAS  PubMed  Google Scholar 

  • Sylwester AW, Mitchell BL, Edgar JB et al (2005) Broadly targeted human cytomegalovirus-specific CD4+ and CD8+ T cells dominate the memory compartments of exposed subjects. J Exp Med 202(5):673–685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szklo M, Ding J, Tsai MY et al (2009) Individual pathogens, pathogen burden and markers of subclinical atherosclerosis: the Multi-Ethnic Study of Atherosclerosis. J Cardiovasc Med (Hagerstown) 10(10):747–751

    Article  Google Scholar 

  • van de Berg PJ, Griffiths SJ, Yong SL et al (2010) Cytomegalovirus infection reduces telomere length of the circulating T cell pool. J Immunol 184(7):3417–3423

    Article  PubMed  Google Scholar 

  • Wang JC, Bennett M (2012) Aging and atherosclerosis: mechanisms, functional consequences, and potential therapeutics for cellular senescence. Circ Res 111(2):245–259

    Article  CAS  PubMed  Google Scholar 

  • Weber C, Noels H (2011) Atherosclerosis: current pathogenesis and therapeutic options. Nat Med 17(11):1410–1422

    Article  CAS  PubMed  Google Scholar 

  • Wikby A, Maxson P, Olsson J et al (1998) Changes in CD8 and CD4 lymphocyte subsets, T cell proliferation responses and non-survival in the very old: the Swedish longitudinal OCTO-immune study. Mech Ageing Dev 102(2–3):187–198

    Article  CAS  PubMed  Google Scholar 

  • Wikby A, Johansson B, Olsson J et al (2002) Expansions of peripheral blood CD8 T-lymphocyte subpopulations and an association with cytomegalovirus seropositivity in the elderly: the Swedish NONA immune study. Exp Gerontol 37(2–3):445–453

    Article  CAS  PubMed  Google Scholar 

  • Wong BW, Wong D, McManus BM (2002) Characterization of fractalkine (CX3CL1) and CX3CR1 in human coronary arteries with native atherosclerosis, diabetes mellitus, and transplant vascular disease. Cardiovasc Pathol 11(6):332–338

    Article  CAS  PubMed  Google Scholar 

  • Yoneda O, Imai T, Goda S et al (2000) Fractalkine-mediated endothelial cell injury by NK cells. J Immunol 164(8):4055–4062

    Article  CAS  PubMed  Google Scholar 

  • Yoneda O, Imai T, Nishimura M et al (2003) Membrane-bound form of fractalkine induces IFN-gamma production by NK cells. Eur J Immunol 33(1):53–58

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioakim Spyridopoulos .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Cite this entry

Boag, S., Andreano, E., Martin-Ruiz, C., Spyridopoulos, I. (2018). Role of Immunosenescence in Coronary Artery Disease. In: Fulop, T., Franceschi, C., Hirokawa, K., Pawelec, G. (eds) Handbook of Immunosenescence. Springer, Cham. https://doi.org/10.1007/978-3-319-64597-1_129-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64597-1_129-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64597-1

  • Online ISBN: 978-3-319-64597-1

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics