Encyclopedia of Big Data Technologies

Living Edition
| Editors: Sherif Sakr, Albert Zomaya

Hybrid OLTP and OLAP

  • Jana Giceva
  • Mohammad Sadoghi
Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-63962-8_179-1

Synonyms

Definitions

Hybrid transactional and analytical processing (HTAP) refers to system architectures and techniques that enable modern database management systems (DBMS) to perform real-time analytics on data that is ingested and modified in the transactional database engine. It is a term that was originally coined by Gartner where Pezzini et al. (2014) highlight the need of enterprises to close the gap between analytics and action for better business agility and trend awareness.

Overview

The goal of running transactions and analytics on the same data has been around for decades, but has not fully been realized due to technology limitations. Today, businesses can no longer afford to miss the real-time insights from data that is in their transactional system as they may lose competitive edge unless business decisions are made on latest data1 or fresh data2. As a result, in recent...

This is a preview of subscription content, log in to check access.

References

  1. Ailamaki A, DeWitt DJ, Hill MD, Skounakis M (2001) Weaving relations for cache performance. In: VLDB, pp 169–180Google Scholar
  2. Alagiannis I, Idreos S, Ailamaki A (2014) H2O: a hands-free adaptive store. In: SIGMOD, pp 1103–1114Google Scholar
  3. Appuswamy R, Karpathiotakis M, Porobic D, Ailamaki A (2017) The case for heterogeneous HTAP. In: CIDRGoogle Scholar
  4. Arulraj J, Pavlo A, Menon P (2016) Bridging the archipelago between row-stores and column-stores for hybrid workloads. In: SIGMOD, pp 583–598Google Scholar
  5. Barber R, Huras M, Lohman G, Mohan C, Mueller R, Özcan F, Pirahesh H, Raman V, Sidle R, Sidorkin O, Storm A, Tian Y, Tözun P (2016) Wildfire: concurrent blazing data ingest and analytics. In: SIGMOD’16, pp 2077–2080Google Scholar
  6. Barber R, Garcia-Arellano C, Grosman R, Müller R, Raman V, Sidle R, Spilchen M, Storm AJ, Tian Y, Tözün P, Zilio DC, Huras M, Lohman GM, Mohan C, Özcan F, Pirahesh H (2017) Evolving databases for new-gen big data applications. In: Online Proceedings of CIDRGoogle Scholar
  7. Dittrich J, Jindal A (2011) Towards a one size fits all database architecture. In: CIDRGoogle Scholar
  8. Duggan J, Elmore AJ, Stonebraker M, Balazinska M, Howe B, Kepner J, Madden S, Maier D, Mattson T, Zdonik S (2015) The BigDAWG polystore system. SIGMOD Rec 44(2):11–16Google Scholar
  9. Goel AK, Pound J, Auch N, Bumbulis P, MacLean S, Färber F, Gropengiesser F, Mathis C, Bodner T, Lehner W (2015) Towards scalable real-time analytics: an architecture for scale-out of OLxP workloads. PVLDB 8(12):1716–1727Google Scholar
  10. Grund M, Krüger J, Plattner H, Zeier A, Cudré-Mauroux P, Madden S (2010) HYRISE – a main memory hybrid storage engine. In: PVLDB, pp 105–116Google Scholar
  11. Hassan MS, Kuznetsova T, Jeong HC, Aref WG, Sadoghi M (2017) Empowering in-memory relational database engines with native graph processing. CoRR abs/1709.06715Google Scholar
  12. Lahiri T, Chavan S, Colgan M, Das D, Ganesh A, Gleeson M, Hase S, Holloway A, Kamp J, Lee TH, Loaiza J, Macnaughton N, Marwah V, Mukherjee N, Mullick A, Muthulingam S, Raja V, Roth M, Soylemez E, Zait M (2015) Oracle database in-memory: a dual format in-memory database. In: ICDE, pp 1253–1258.  https://doi.org/10.1109/ICDE.2015.7113373
  13. Larson PA, Birka A, Hanson EN, Huang W, Nowakiewicz M, Papadimos V (2015) Real-time analytical processing with SQL server. PVLDB 8(12):1740–1751Google Scholar
  14. Makreshanski D, Giceva J, Barthels C, Alonso G (2017) BatchDB: efficient isolated execution of hybrid OLTP+OLAP workloads for interactive applications. In: SIGMOD’17, pp 37–50Google Scholar
  15. Najafi M, Sadoghi M, Jacobsen H (2015) The FQP vision: flexible query processing on a reconfigurable computing fabric. SIGMOD Rec 44(2):5–10Google Scholar
  16. Najafi M, Zhang K, Sadoghi M, Jacobsen H (2017) Hardware acceleration landscape for distributed real-time analytics: virtues and limitations. In: ICDCS, pp 1938–1948Google Scholar
  17. Neumann T, Mühlbauer T, Kemper A (2015) Fast serializable multi-version concurrency control for main-memory database systems. In: SIGMOD, pp 677–689Google Scholar
  18. Pezzini M, Feinberg D, Rayner N, Edjali R (2014) Hybrid transaction/analytical porcessing will foster opportunities for dramatic business innovation. https:// www.gartner.com/doc/2657815/hybrid-transactionanal ytical-processing-foster-opportunities
  19. Pilman M, Bocksrocker K, Braun L, Marroquín R, Kossmann D (2017) Fast scans on key-value stores. PVLDB 10(11):1526–1537Google Scholar
  20. Pirk H, Funke F, Grund M, Neumann T, Leser U, Manegold S, Kemper A, Kersten ML (2013) CPU and cache efficient management of memory-resident databases. In: ICDE, pp 14–25Google Scholar
  21. Plattner H (2009) A common database approach for OLTP and OLAP using an in-memory column database. In: SIGMOD, pp 1–2Google Scholar
  22. Psaroudakis I, Wolf F, May N, Neumann T, Böhm A, Ailamaki A, Sattler KU (2014) Scaling up mixed workloads: a battle of data freshness, flexibility, and scheduling. In: TPCTC 2014, pp 97–112Google Scholar
  23. Ramamurthy R, DeWitt DJ, Su Q (2002) A case for fractured mirrors. In: VLDB’02, pp 430–441Google Scholar
  24. Sadoghi M, Ross KA, Canim M, Bhattacharjee B (2013) Making updates disk-I/O friendly using SSDs. PVLDB 6(11):997–1008Google Scholar
  25. Sadoghi M, Canim M, Bhattacharjee B, Nagel F, Ross KA (2014) Reducing database locking contention through multi-version concurrency. PVLDB 7(13):1331–1342Google Scholar
  26. Sadoghi M, Bhattacherjee S, Bhattacharjee B, Canim M (2016a) L-store: a real-time OLTP and OLAP system. CoRR abs/1601.04084Google Scholar
  27. Sadoghi M, Ross KA, Canim M, Bhattacharjee B (2016b) Exploiting SSDs in operational multiversion databases. VLDB J 25(5):651–672Google Scholar
  28. Sikka V, Färber F, Lehner W, Cha SK, Peh T, Bornhövd C (2012) Efficient transaction processing in SAP HANA database: the end of a column store myth. In: SIGMOD’12, pp 731–742Google Scholar
  29. Stonebraker M, Cetintemel U (2005) “One size fits all”: an idea whose time has come and gone. In: ICDE, pp 2–11Google Scholar
  30. Teubner J, Woods L (2013) Data processing on FPGAs. Synthesis lectures on data management. Morgan & Claypool Publishers, San RafaelGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of ComputingImperial College LondonLondonUK
  2. 2.University of CaliforniaDavisUSA

Section editors and affiliations

  • Mohammad Sadoghi

There are no affiliations available