Skip to main content

Eco-polymer and Carbon Nanotube Composite: Safe Technology

Handbook of Ecomaterials
  • 713 Accesses

Abstract

Ecology-friendly or eco-friendly polymers are also known as green polymeric materials. Interest in green polymers is continually growing due to the increasing environmental concerns. Eco-friendly polymers are either biodegradable or obtained from renewable resources. Polyesters (polyhydroxyalkanoates), polycarprolactone, polylactic acid, polyglycols, polyvinyl alcohol, etc. form important classes of green polymers. Inherent advantages of these advanced materials have been enhanced by developing composite and nanocomposite to attain the properties as needed to target specific applications. Carbon nanotube (CNT) is important nanofiller frequently used in eco-friendly polymeric composite (green bio-composite) and nanocomposite (green bio-nanocomposite). By varying the type, functionalization, and CNT content, composite properties have been tailored to match the desired property requirement. Solution-casting, melt compounding, and in situ polymerization of eco-polymer in presence of CNT have been employed as processing techniques. Improved interfacial interaction between biodegradable polymer and nanofiller may provide enhanced physical properties for commercial and industrial relevance. Eco-polymers and polymer/CNT nanocomposites have found range of application in sensors, membranes, EMI shielding materials, and biomedical appliances. Undoubtedly, biodegradable eco-polymer/CNT green nanocomposite provides an attractive approach towards safe technology for environmental and health management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Reference

  1. Laycock B, Nikolić M, Colwell JM, Gauthier E, Halley P, Bottle S, George G (2017) Lifetime prediction of biodegradable polymers. Prog Poly Sci 71:144–189

    Article  Google Scholar 

  2. Hu C, Li Z, Wang Y, Gao J, Dai K, Zheng G, Liu C, Shen C, Song H, Guo Z (2017) Comparative assessment of the strain-sensing behaviors of polylactic acid nanocomposites: reduced graphene oxide or carbon nanotubes. J Mater Chem C 5:2318–2328

    Article  Google Scholar 

  3. Kaseem M, Hamad K, Deri F, Ko YG (2017) A review on recent researches on polylactic acid/carbon nanotube composites. Polym Bull 74:2921–2937

    Article  Google Scholar 

  4. Hubbe MA, Rojas OJ, Lucia LA, Sain M (2008) Cellulosic nanocomposites: a review. Bioresources 3:929–980

    Google Scholar 

  5. Kausar A, Ilyas H, Siddiq M (2017) Current research status and application of polymer/carbon nanofiller buckypaper: a review Polym-Plast Technol Eng 56:1–21

    Google Scholar 

  6. Kausar A, Ahmad S, Salman SM (2017) Effectiveness of polystyrene/carbon nanotube composite in electromagnetic interference shielding materials: a review. Polym-Plast Technol Engineer 56:1027–1042

    Article  Google Scholar 

  7. Liu I-C, Huang HM, Chang CY, Tsai HC, Hsu CH, Tsiang RCC (2004) Preparing a styrenic polymer composite containing well-dispersed carbon nanotubes: anionic polymerization of a nanotube-bound p-methylstyrene. Macromolecules 37:283–287

    Article  Google Scholar 

  8. Zeng H, Gao C, Yan D (2006) Poly (ϵ-caprolactone)-functionalized carbon nanotubes and their biodegradation properties. Adv Funct Mater 16:812–818

    Article  Google Scholar 

  9. Kaur T, Kulanthaivel S, Thirugnanam A, Banerjee I, Pramanik K (2017) Biological and mechanical evaluation of poly (lactic-co-glycolic acid)-based composites reinforced with 1D, 2D and 3D carbon biomaterials for bone tissue regeneration. Biomed Mater 12:025012

    Article  Google Scholar 

  10. Gonçalves C, Gonçalves IC, Magalhães FD, Pinto AM (2017) Poly(lactic acid) composites containing carbon-based nanomaterials: a review. Polymers 9:269

    Article  Google Scholar 

  11. Solaro R, Corti A, Chiellini E (1998) A new respirometric test simulating soil burial conditions for the evaluation of polymer biodegradation. J Polym Environ 6:203–208

    Article  Google Scholar 

  12. Mohanty AK, Misra M, Drzal LT (2001) Surface modifications of natural fibers and performance of the resulting biocomposites: an overview. Compos Interfac 8:313–343

    Article  Google Scholar 

  13. Tharanathan RN (2003) Biodegradable films and composite coatings: past, present and future. Trends in Food Sci Technol 14:71–78

    Article  Google Scholar 

  14. Lucas N, Bienaime C, Belloy C, Queneudec M, Silvestre F, Nava-Saucedo JE (2008) Polymer biodegradation: mechanisms and estimation techniques–a review. Chemosphere 73:429–442

    Article  Google Scholar 

  15. Leja K, Lewandowicz G (2010) Polymer biodegradation and biodegradable polymers-a review. Polish J Environ Studies 19:255–266

    Google Scholar 

  16. Huda MS, Mohanty AK, Drzal LT, Schut E, Misra M (2005) “Green” composites from recycled cellulose and poly(lactic acid): Physico-mechanical and morphological properties evaluation. J Mater Sci 40:4221–4229

    Article  Google Scholar 

  17. Wu XS, Wang N (2001) Synthesis, characterization, biodegradation, and drug delivery application of biodegradable lactic/glycolic acid polymers. Part II: biodegrad. J Biomater Sci Polym Ed 12:21–34

    Article  Google Scholar 

  18. Galgali P, Varma AJ, Puntambekar US, Gokhale DV (2002) Towards biodegradable polyolefins: strategy of anchoring minute quantities of monosaccharides and disaccharides onto functionalized polystyrene, and their effect on facilitating polymer biodegradation. Chem Communicat 23:2884–2885

    Article  Google Scholar 

  19. Tsui A, Wright ZC, Frank CW (2013) Biodegradable polyesters from renewable resources. Ann rev Chem Biomolecul. Engineer 4:143–170

    Google Scholar 

  20. Adeosun SO, Lawal GI, Balogun SA, Akpan EI (2012) Review of green polymer nanocomposites. J Miner Mater Characterizat Engineer 11:385

    Article  Google Scholar 

  21. Shah A, Hasan F, Hameed A, Ahmed S (2008) Niological degradation of plastics: a comprehensive review. Biotechnol Adv 2008(26):246–265

    Article  Google Scholar 

  22. Hema R, Ng PN, Amirul AA (2013) Green Nanobiocomposite: reinforcement effect of montmorillonite clays on physical and biological advancement of various Polyhydroxyalkanoates. Polym Bull 70:755–771

    Article  Google Scholar 

  23. Mohanty A, Misra M, Drzal L (2002) Sustainable bio-composites from renewable resources: opportunities and challenges in the green materials world. J Polym Environ 10:19–26

    Article  Google Scholar 

  24. Javadi A, Srithep Y, Lee J, Pilla S, Clemons C, Gong S (2010) Processing and characterization of solid and microcellular PHBV/PBAT blend and its RWF/nanoclay composites. Compos Part A: Appl S 41:982–990

    Article  Google Scholar 

  25. Ten E, Turtle J, Bahr D, Jiang L, Wolcott M (2010) Thermal and mechanical properties of poly (3- hydroxybutyrate-co-3-hydroxyvalerate)/cellulose nanowhiskers composites. Polymer 51:2652–2620

    Article  Google Scholar 

  26. Srithep Y, Turng LS, Sabo R, Clemons C (2012) Nanofibrillated cellulose (NFC) reinforced polyvinyl alcohol (PVOH) nanocomposites: properties, solubility of carbon dioxide, and foaming. Cellulose 19:1–15

    Google Scholar 

  27. Srithep Y, Ellingham T, Peng J, Sabo R, Clemons C, Turng LS, Pilla S (2013) Melt compounding of poly (3-hydroxybutyrate-co-3-hydroxyvalerate)/nanofibrillated cellulose nanocomposites. Polym Degrad Stab 98:1439–1449

    Article  Google Scholar 

  28. Karthikeyan M, Kumar KS, Elango KP (2011) Batch sorption studies on the removal of fluoride ions from water using eco-friendly conducting polymer/bio-polymer composites. Desalination 267:49–56

    Article  Google Scholar 

  29. Janaki V, BT O, Shanthi K, Lee KJ, Ramasamy AK, Kamala-Kannan S (2012) Polyaniline/chitosan composite: an eco-friendly polymer for enhanced removal of dyes from aqueous solution. Synth Met 162:974–980

    Article  Google Scholar 

  30. Guigo N, Mija A, Vincent L, Sbirrazzuoli N (2010) Eco-friendly composite resins based on renewable biomass resources: Polyfurfuryl alcohol/lignin thermosets. European. Polym J 46:1016–1023

    Google Scholar 

  31. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  Google Scholar 

  32. Balasubramanian K, Burghard M (2005) Chemically functionalized carbon nanotubes. Small 1:180–192

    Article  Google Scholar 

  33. Eklund P, Holden JM, Jishi RA (1995) Vibrational modes of carbon nanotubes spectroscopy and theory. Carbon 33:959–972

    Article  Google Scholar 

  34. Baughman R, Zakhidov A, Heer W (2002) Carbon nanotubes-the route toward applications. Science 297:787–792

    Article  Google Scholar 

  35. Kausar A (2017) Design of poly (1-hexadecene-sulfone)/poly (1, 4-phenylene sulfide) membrane containing nano-zeolite and carbon nanotube for gas separation. Int J Plast Technol 21:96–107

    Article  Google Scholar 

  36. Kausar A, Rafique I, Muhammad B (2017) Significance of carbon nanotube in flame-retardant polymer/CNT composite: a review. Polym-Plast Technol Engineer 56:470–487

    Article  Google Scholar 

  37. Kausar A (2014) Polyamide-grafted-multi-walled carbon nanotube electrospun nanofibers/epoxy composites. Fiber Polym 15:2564

    Article  Google Scholar 

  38. Kausar A, Hussain ST (2014) Azo-polymer based hybrids reinforced with carbon nanotubes and silver nanoparticles: solution and melt processing. Int J Polym Mater Polym Biomater 63:207–212

    Article  Google Scholar 

  39. Dong S, Tu J, Zhang X (2001) An investigation of the sliding wear behavior of cu-matrix composite reinforced by carbon nanotubes. Mater Sci Eng A 313:83–87

    Article  Google Scholar 

  40. Ando Y, Zhao X, Shimoyama H, Sakai G, Kaneto K (1999) Physical properties of multiwalled carbon nanotubes. Int J Inorg Mater 1:77–82

    Article  Google Scholar 

  41. Xiaohong W, Zhou J, Li L (2007) Multiple melting behavior of poly (butylene succinate). Eur Polym J 43:3163–3170

    Article  Google Scholar 

  42. Li Y, Shimizu H (2007) High-shear processing induced homogenous dispersion of pristine multiwalled carbon nanotubes in a thermoplastic elastomer. Polymer 48:2203–2207

    Article  Google Scholar 

  43. Wu C, Liao H (2007) Study on the preparation and characterization of biodegradable polylactide/multi-walled carbon nanotubes nanocomposites. Polymer 48:4449–4458

    Article  Google Scholar 

  44. Sinha Ray S, Vaudreuil S, Maazouz A, Bousmina M (2006) Dispersion of multi-walled carbon nanotubes in biodegradable poly(butylene succinate) matrix. J Nanosci Nanotechnol 6:2191–2195

    Article  Google Scholar 

  45. Song L, Qiu Z (2009) Crystallization behavior and thermal property of biodegradable poly (butylene succinate)/functional multi-walled carbon nanotubes nanocomposite. Polym Degrad Stab 94:632–637

    Article  Google Scholar 

  46. Mitchell CA, Krishnamoorti R (2005) Non-isothermal crystallization of in situ polymerized poly (ε-caprolactone) functionalized-SWNT nanocomposites. Polymer 46:8796–8804

    Article  Google Scholar 

  47. Villmow T, Pötschke P, Pegel S, Häussler L, Kretzschmar B (2008) Influence of twin-screw extrusion conditions on the dispersion of multi-walled carbon nanotubes in a poly(lactic acid) matrix. Polymer 49:3500–3509

    Article  Google Scholar 

  48. Wu CS (2009) Antibacterial and static dissipating composites of poly (butylene adipate-co-terephthalate) and multi-walled carbon nanotubes. Carbon 47:3091–3098

    Article  Google Scholar 

  49. Oksman K, Skrifvars M, Selin JF (2003) Natural fibres as reinforcement in polylactic acid (PLA) composites. Compos Sci Technol 63:1317–1324

    Article  Google Scholar 

  50. Rasal RM, Janorkar AV, Hirt DE (2010) Poly (lactic acid) modifications. Prog Polym Sci 35:338–356

    Article  Google Scholar 

  51. Zribi K, Feller JF, Elleuch K, Bourmaud A, Elleuch B (2006) Conductive polymer composites obtained from recycled poly (carbonate) and rubber blends for heating and sensing applications. Polym Adv Technol 17:727–731

    Article  Google Scholar 

  52. Su PG, Huang SC (2006) Electrical and humidity sensing properties of carbon nanotubes-SiO 2-poly (2-acrylamido-2-methylpropane sulfonate) composite material. Sens Actuat B: Chem 113:142–149

    Article  Google Scholar 

  53. Pumera M, Sanchez S, Ichinose I, Tang J (2007) Electrochemical nanobiosensors. Sens Actuat B: Chem 123:1195–1205

    Article  Google Scholar 

  54. Castro M, Lu J, Bruzaud S, Kumar B, Feller JF (2009) Carbon nanotubes/poly(ε-caprolactone) composite vapour sensors. Carbon 47:1930–1942

    Article  Google Scholar 

  55. Yang Y, Gupta MC, Dudley KL, Lawrence RW (2005) A comparative study of EMI shielding properties of carbon nanofiber and multi-walled carbon nanotube filled polymer composites. J Nanosci Nanotechnol 5:927–931

    Article  Google Scholar 

  56. Thomassin JM, Lou X, Pagnoulle C, Saib A, Bednarz L, Huynen I, Jerome R, Detrembleur C (2007) Multiwalled carbon nanotube/poly (ε-caprolactone) nanocomposites with exceptional electromagnetic interference shielding properties. J Phys Chem C 111:11186–11192

    Article  Google Scholar 

  57. Ong YT, Ahmad AL, Zein SHS, Sudesh K, Tan SH (2011) Poly (3-hydroxybutyrate)-functionalised multi-walled carbon nanotubes/chitosan green nanocomposite membranes and their application in pervaporation. Separat Purificat Technol 76:419–427

    Article  Google Scholar 

  58. Misra SK, Ansari TI, Valappil SP, Mohn D, Philip SE, Stark WJ, Roy I, Knowles JC, Salih V, Boccaccini AR (2010) Poly(3-hydroxybutyrate) multifunctional composite scaffolds for tissue engineering applications. Biomaterials 31:2806–2815

    Article  Google Scholar 

  59. Misra SK, Ohashi F, Valappil SP, Knowles JC, Roy I, Silva SRP, Salih V, Boccaccini AR (2010) Characterization of carbon nanotube (MWCNT) containing P (3HB)/bioactive glass composites for tissue engineering applications. Acta Biomater 6:735–742

    Article  Google Scholar 

  60. Rodrigues BV, Razzino CA, de Carvalho Oliveira F, Marciano FR, Lobo AO (2017) On the design and properties of scaffolds based on vertically aligned carbon nanotubes transferred onto electrospun poly (lactic acid) fibers. Mater Des 127:183–192

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayesha Kausar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kausar, A. (2018). Eco-polymer and Carbon Nanotube Composite: Safe Technology. In: Martínez, L., Kharissova, O., Kharisov, B. (eds) Handbook of Ecomaterials. Springer, Cham. https://doi.org/10.1007/978-3-319-48281-1_171-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48281-1_171-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48281-1

  • Online ISBN: 978-3-319-48281-1

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Eco-polymer and Carbon Nanotube Composite: Safe Technology
    Published:
    08 February 2018

    DOI: https://doi.org/10.1007/978-3-319-48281-1_171-2

  2. Original

    Eco-polymer and Carbon Nanotube Composite: Safe Technology
    Published:
    01 December 2017

    DOI: https://doi.org/10.1007/978-3-319-48281-1_171-1