Skip to main content

The PAULING FILE Project and Materials Platform for Data Science: From Big Data Toward Materials Genome

Handbook of Materials Modeling

Abstract

One of the oldest initiatives in materials informatics, the PAULING FILE project, is described. It includes the comprehensive database for inorganic crystalline compounds, their atomic structures, intrinsic physical properties and phase diagrams. On top of that, the powerful online retrieval software is introduced, called MPDS, the Materials Platform for Data Science. The practical recipes of storage, exchange and analysis of the large amounts of materials data are given. The focus is made on the modern information technologies and software engineering. As a result, from the large heterogeneous data, holistic conclusions about the entire set of known materials are drawn. They can be regarded as a guideline for the systematic large-scale predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Baader F, Horrocks I, Sattler U (2007) Description logics, Chapter 3. In: Handbook of knowledge representation. Elsevier, Amsterdam

    Google Scholar 

  • Bazhirov T, Mohammadi M, Ding K, Barabash S (2017) Large-scale high-throughput computer-aided discovery of advanced materials using cloud computing. Bull Am Phys Soc 62. https://adsabs.harvard.edu/abs/2017APS..MAR.C1007B

  • Bornmann L, Mutz R (2015) Growth rates of modern science: a bibliometric analysis based on the number of publications and cited references. J Assoc Inf Sci Technol 66(11):2215–2222

    Article  Google Scholar 

  • Breiman (2001) Random forests. Mach Learn 45:5

    Article  Google Scholar 

  • Brunner GO, Schwarzenbach D (1971) Zur Abgrenzung der Koordinationssphäre und Ermittlung der Koordinationszahl in Kristallstrukturen. Z Kristallogr 133:127–133

    Google Scholar 

  • Cenzual K, Berndt M, Brandenburg K, Luong V, Flack E, Villars P (2000) ESDD software package, copyright: Japan Science and Technology Corporation, updates by O. Shcherban. Structure-Properties Company, Lviv

    Google Scholar 

  • Christensen M et al (2017) Software platforms for electronic/atomistic/mesoscopic modeling: status and perspectives. Integr Mater Manuf Innov 6(1):92

    Article  Google Scholar 

  • Cuel R, Young R (eds) (2015) Formal ontologies meet industry. In: 7th international workshop proceedings, Springer

    Google Scholar 

  • Daams JLC, van Vucht IHN, Villars P (1992) Atomic-environment classification of the cubic “intermetallic” structure types. J Alloys Compd 182:1–33

    Article  Google Scholar 

  • DuCharme B (2013) Learning SPARQL, 2nd edn. O’Reilly Media, Sebastopol, CA

    Google Scholar 

  • Ewald PP, Hermann C (eds) (1931) Strukturbericht. Akad. Verlagsgesellschaft M.B.H, Leipzig

    Google Scholar 

  • Fielding R (2000) Architectural styles and the design of network-based software architectures. Doctoral dissertation, University of California, Irvine

    Google Scholar 

  • Gasteiger J, Engel T (2003) Chemoinformatics: a textbook. Wiley, Weinheim

    Book  Google Scholar 

  • Gelato L, Parthé E (1987) STRUCTURE TIDY- a computer program to standardize crystal structure data. J Appl Crystallogr 20:139–143

    Article  Google Scholar 

  • Ghiringhelli LM, Vybiral J, Ahmetcik E, Ouyan R, Levchenko SV, Draxl C, Scheffler M (2017) Learning physical descriptors for materials science by compressed sensing. New J Phys 19:023017

    Article  Google Scholar 

  • Hahn T (ed) (1983) International tables for crystallography, vol A. In: D. Reidel (ed) Dordrecht, Springer

    Google Scholar 

  • Hall SR, Allen FH, Brown ID (1991) The Crystallographic Information File (CIF): a new standard archive file for crystallography. Acta Crystallogr A47(6):655–685

    Article  Google Scholar 

  • Jones MT (2008) Artificial intelligence: a systems approach. Jones & Bartlett Learning, Sudbury

    Google Scholar 

  • Kong C, Villars P, Iwata S, Rajan K (2012) Mapping the materials gene for binary intermetallic compounds–a visualization schema for crystallographic databases. Comput Sci Discov 5:1

    Google Scholar 

  • Lide D, editor-in-chief (1997–1998), CRC handbook of chemistry and physics, Boca Raton, CRC Press.

    Google Scholar 

  • Massalski TB, Okamoto H, Subramanian PR, Kacprzak L (eds) (1990) Binary alloy phase diagrams, 2nd edn. ASM International, Materials Park

    Google Scholar 

  • McKinney W (2010) Data structures for statistical computing in Python. In: Proceedings of the 9-th python in science conference, p 51

    Google Scholar 

  • Michael M, Moreira J, Shiloach D, Wisniewski R (2007) Scale-up x scale-out: a case study using Nutch/Lucene. In: 2007 IEEE international parallel and distributed processing symposium, p 1

    Google Scholar 

  • Michel K, Meredig B (2016) Beyond bulk single crystals: a data format for all materials structure–property–processing relationships. MRS Bull 41(8):617–623

    Article  Google Scholar 

  • Miles R, Hamilton R (2008) Learning UML 2.0: a pragmatic introduction to UML. O’Reilly Media

    Google Scholar 

  • Murray-Rust P (2013) Personal communications and online blog. https://blogs.ch.cam.ac.uk/pmr

  • O’Mara J, Meredig B, Michel K (2016) Materials data infrastructure: a case study of the Citrination platform to examine data import, storage, and access. J Miner, Met Mater Soc 68:2031

    Article  Google Scholar 

  • Obama B (2011) Materials genome initiative of the US Government. https://obamawhitehouse.archives.gov/mgi

  • Petzow G, Effenberg G (1988–1995) Ternary alloys: a comprehensive compendium of evaluated constitutional data and phase diagrams, 15 vols. Wiley-VCH, Weinheim

    Google Scholar 

  • Pizzi G, Cepellotti A, Sabatini R, Marzari N, Kozinsky B (2016) AiiDA: automated interactive infrastructure and database for computational science. Comput Mater Sci 111:218–230

    Article  Google Scholar 

  • Rajan K (2015) Materials informatics. Mater Today 15:470

    Article  Google Scholar 

  • Schmutz J, Wheeler J et al (2004) Quality assessment of the human genome sequence. Nature 429:365

    Article  ADS  Google Scholar 

  • Teorey T, Lightstone S, Nadeau T, Jagadish H (2005) Database modeling & design, 4th edn. Elsevier, Amsterdam

    MATH  Google Scholar 

  • Villars P (1994) In: Westbrook JH, Fleischer RL (eds) Intermetallic compounds, principles and practice, vol 1. Wiley, New York, pp 227–275

    Google Scholar 

  • Villars P, Cenzual K, Daams J, Chen Y, Iwata S (2004) Data-driven atomic environment prediction for binaries using the Mendeleev number: Part 1. Composition AB. J Alloys Compd 367(1–2):167–175. https://doi.org/10.1016/j.jallcom.2003.08.060

    Article  Google Scholar 

  • Villars P, Daams J, Shikata Y, Chen Y, Iwata S (2008) Data-driven generalized atomic environment prediction for binary and multinary inorganic compounds using the periodic number. Chem Met Alloys 1:210–226

    Google Scholar 

  • Villars P, Iwata S (2013) PAULING FILE verifies/reveals 12 principles in materials science supporting four cornerstones given by nature. Chem Met Alloys 6:81–108

    Google Scholar 

  • Villars P, Cenzual K, Gladyshevskii R, Iwata S (2018) PAULING FILE – towards a holistic view. In: Materials informatics. Wiley

    Google Scholar 

  • Xu Y, Yamazaki M, Villars P (2011) Inorganic materials database for exploring the nature of material. Jpn J Appl Phys 50:11S

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge funding support from NIH Grant U01HL114476.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evgeny Blokhin .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Blokhin, E., Villars, P. (2018). The PAULING FILE Project and Materials Platform for Data Science: From Big Data Toward Materials Genome. In: Andreoni, W., Yip, S. (eds) Handbook of Materials Modeling . Springer, Cham. https://doi.org/10.1007/978-3-319-42913-7_62-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42913-7_62-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42913-7

  • Online ISBN: 978-3-319-42913-7

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    The PAULING FILE Project and Materials Platform for Data Science: From Big Data Toward Materials Genome
    Published:
    05 September 2019

    DOI: https://doi.org/10.1007/978-3-319-42913-7_62-2

  2. Original

    The PAULING FILE Project and Materials Platform for Data Science: From Big Data Toward Materials Genome
    Published:
    10 August 2018

    DOI: https://doi.org/10.1007/978-3-319-42913-7_62-1