Skip to main content

Accelerated Molecular Dynamics for Ab Initio Electronic Simulations

Handbook of Materials Modeling
  • 138 Accesses

Abstract

A recently proposed method for accelerating current molecular dynamics algorithms, used for the simulation of classical particles at finite temperatures, is reviewed (Mazzola and Sorella, Phys Rev Lett 118:015703, 2017). This method is based on an efficient implementation of a first- order Langevin dynamics modified in a way to reduce the autocorrelation times and the time step error for the integration of the stochastic equations of motion. This work represents an improvement upon previously known algorithms that, on one hand, are too much simplified to be used in realistic simulations and, on the other hand, are too much complicated and computationally demanding for their practical implementations. The details of the method are presented with few applications to standard test cases on Lennard-Jones models at various temperatures. In particular it is shown that this technique represents an ideal tool for ab initio molecular dynamics, when the Born-Oppenheimer energy surface is estimated by computationally demanding methods, such as, for instance, the quantum Monte Carlo stochastic approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Allen M, Tildesley D (1987) Computer simulation of liquids. Oxford University Press, Oxford

    MATH  Google Scholar 

  • Attaccalite C, Sorella S (2008) Stable liquid hydrogen at high pressure by a novel ab initio molecular-dynamics calculation. Phys Rev Lett 100:114501. https://doi.org/10.1103/PhysRevLett.100.114501

    Article  ADS  Google Scholar 

  • Bennett CH (1975) Mass tensor molecular dynamics. J Comput Phys 19:267

    Article  ADS  Google Scholar 

  • Ceriotti M, Bussi G, Parrinello M (2009) Langevin equation with colored noise for constant-temperature molecular dynamics simulations. Phys Rev Lett 102(2):20601

    Article  ADS  Google Scholar 

  • Ceriotti M, Parrinello M, Markland TE, Manolopoulos DE (2010) Efficient stochastic thermostatting of path integral molecular dynamics. J Chem Phys 133:124104

    Article  ADS  Google Scholar 

  • Dawson W, Gygi F (2018) Equilibration and analysis of first-principles molecular dynamics simulations of water. J Chem Phys 148(12):124501. https://doi.org/10.1063/1.5018116

    Article  ADS  Google Scholar 

  • Dykstra CE, Frenking G, Kim KS, Scuseria G (2005) Theory and applications of computational chemistry: the first forty years. Elsevier, Amsterdam

    Google Scholar 

  • Foulkes WMC, Mitas L, Needs RJ, Rajagopal G (2001) Quantum monte carlo simulations of solids. Rev Mod Phys 73(1):33–83. https://doi.org/10.1103/RevModPhys.73.33

    Article  ADS  Google Scholar 

  • Grossman JC, Schwegler E, Draeger EW, Gygi F, Galli G (2004) Towards an assessment of the accuracy of density functional theory for first principles simulations of water. J Chem Phys 120:300

    Article  ADS  Google Scholar 

  • Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140(4A):A1133–A1138. https://doi.org/10.1103/PhysRev.140.A1133

    Article  ADS  MathSciNet  Google Scholar 

  • Kühne TD, Krack M, Parrinello M (2009) Static and dynamical properties of liquid water from first principles by a novel car-parrinello-like approach. J Chem Theory Comput 5(2):235–241. https://doi.org/10.1021/ct800417q

    Article  Google Scholar 

  • Loubeyre P, LeToullec R, Hausermann D, Hanfland M, Hemley RJ, Mao HK, Finger LW (1996) X-ray diffraction and equation of state of hydrogen at megabar pressures. Nature 383:702 EP –. https://doi.org/10.1038/383702a0

    Article  ADS  Google Scholar 

  • Luo Y, Zen A, Sorella S (2014) Abinitio molecular dynamics with noisy forces: validating the quantum monte carlo approach with benchmark calculations of molecular vibrational properties. J Chem Phys 141(19):194112. https://doi.org/10.1063/1.4901430

    Article  Google Scholar 

  • Mazzola G, Sorella S (2017) Accelerating ab initio molecular dynamics and probing the weak dispersive forces in dense liquid hydrogen. Phys Rev Lett 118:015703. https://doi.org/10.1103/PhysRevLett.118.015703

    Article  ADS  Google Scholar 

  • Mazzola G, Zen A, Sorella S (2012) Finite-temperature electronic simulations without the born-oppenheimer constraint. J Chem Phys 137(13):134112. https://doi.org/10.1063/1.4755992

    Article  ADS  Google Scholar 

  • Mazzola G, Yunoki S, Sorella S (2014) Unexpectedly high pressure for molecular dissociation in liquid hydrogen by electronic simulation. Nat Commun 5:3487. https://doi.org/10.1038/ncomms4487

    Article  ADS  Google Scholar 

  • Mazzola G, Helled R, Sorella S (2018) Phase diagram of hydrogen and a hydrogen-helium mixture at planetary conditions by quantum monte carlo simulations. Phys Rev Lett 120:025701. https://doi.org/10.1103/PhysRevLett.120.025701

    Article  ADS  Google Scholar 

  • Mouhat F, Sorella S, Vuilleumier R, Saitta AM, Casula M (2017) Fully quantum description of the zundel ion: combining variational quantum monte carlo with path integral langevin dynamics. J Chem Theory Comput 13(6):2400–2417. pMID: 28441484. https://doi.org/10.1021/acs.jctc.7b00017

    Article  Google Scholar 

  • Parisi G (1984) Progress in Gauge field theory. NATO ASI series. Springer, Boston

    Google Scholar 

  • Risken H (1996) The Fokker-Planck equation: methods of solution and applications. Springer, Berlin

    Book  Google Scholar 

  • Scheraga HA, Khalili M, Liwo A (2007) Protein-folding dynamics: overview of molecular simulation techniques. Annu Rev Phys Chem 58:57–83

    Article  ADS  Google Scholar 

  • Sorella S, Seki K, Brovko OO, Shirakawa T, Miyakoshi S, Yunoki S, Tosatti E (2018) Structural dimerization, electron correlations, and topological gap opening in isotropically strained graphene. ArXiv e-prints 1804.04479

    Google Scholar 

  • Tassone F, Mauri F, Car R (1994) Acceleration schemes for ab initio molecular-dynamics simulations and electronic structure calculations. Phys Rev B 50:10561

    Article  ADS  Google Scholar 

  • Tsuchida E (2015) Ab initio mass tensor molecular dynamics. J Chem Phys 134:044112

    Article  ADS  Google Scholar 

  • Tuckerman M (2010) Statistical mechanics: theory and molecular simulation. Oxford University Press, Oxford

    MATH  Google Scholar 

  • Tuckerman ME, Berne BJ, Martyna GJ, Klein ML (1993) Efficient molecular dynamics and hybrid monte carlo algorithms for path integrals. J Chem Phys 99(4):2796–2808

    Article  ADS  Google Scholar 

  • Varsano D, Sorella S, Sangalli D, Barborini M, Corni S, Molinari E, Rontani M (2017) Carbon nanotubes as excitonic insulators. arXiv preprint arXiv:170309235

    Google Scholar 

  • Zen A, Luo Y, Mazzola G, Guidoni L, Sorella S (2015) Ab initio molecular dynamics simulation of liquid water by quantum monte carlo. J Chem Phys 142(14):144111

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Computational resources were provided by AICS projects hp170308 and hp170328 and PRACE project PRA15 3936.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandro Sorella .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Mazzola, G., Sorella, S. (2018). Accelerated Molecular Dynamics for Ab Initio Electronic Simulations. In: Andreoni, W., Yip, S. (eds) Handbook of Materials Modeling . Springer, Cham. https://doi.org/10.1007/978-3-319-42913-7_46-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42913-7_46-1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42913-7

  • Online ISBN: 978-3-319-42913-7

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Accelerated Molecular Dynamics for Ab Initio Electronic Simulations
    Published:
    19 April 2019

    DOI: https://doi.org/10.1007/978-3-319-42913-7_46-2

  2. Original

    Accelerated Molecular Dynamics for Ab Initio Electronic Simulations
    Published:
    10 August 2018

    DOI: https://doi.org/10.1007/978-3-319-42913-7_46-1