Skip to main content

Mantle Geochemistry

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Encyclopedia of Geochemistry

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

  • 291 Accesses

Definition

Mantle Geochemistry: The study of Earth’s mantle by investigating its chemical and isotopic composition.

Basic Facts About Earth’s Mantle

Earth’s mantle extends from the core-mantle boundary at 2900 km depth, the Gutenberg discontinuity, to the base of Earth’s crust, the Mohorovičić discontinuity, at <10 km depth beneath the oceans and ~40–70 km beneath the continents. With about two thirds of Earth’s mass, the mantle is the largest silicate reservoir of our planet. Oxygen (O), Mg, Si, Fe, Ca, and Al are its main constituents (Palme and O’Neill, 2014). The mantle is mostly peridotitic in composition, with varying mineral assemblage that adapts to the large range of pressure-temperature conditions in the mantle. At upper mantle pressures, a typical mantle peridotite with a density of 3300 kg m−3and a temperature of ca. 1600–1700 K is made up of about 55 % olivine, 35 % ortho- and clinopyroxene, and up to 10 % of an Al-bearing phase, i.e., plagioclase, spinel, or garnet....

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Agranier, A., Blichert-Toft, J., Graham, D., Debaille, V., Schiano, P., and Albarède, F., 2005. The spectra of isotopic heterogeneities along the Mid-Atlantic ridge. Earth and Planetary Science Letters, 238, 96–109.

    Article  Google Scholar 

  • Allègre, C. J., Ben Othman, D., Polve, M., and Richard, P., 1979. The Nd-Sr isotopic correlation in mantle materials and geodynamic consequences. Physics of the Earth and Planetary Interiors, 19, 293–306.

    Article  Google Scholar 

  • Allègre, C. J., Hart, S. R., and Minster, J. F., 1983. Chemical structure and evolution of the mantle and the continents determined by inversion of Nd and Sr isotopic data. II. Numerical experiments and discussion. Earth and Planetary Science Letters, 66, 191–213.

    Article  Google Scholar 

  • Allègre, C. J., Hamelin, B., and Dupré, B., 1984. Statistical analysis of isotopic ratios in MORB: the mantle blob cluster model and the convective regime of the mantle. Earth and Planetary Science Letters, 71, 71–84.

    Article  Google Scholar 

  • Arndt, N. T., and Goldstein, S. L., 1989. An open boundary between lower continental crust and mantle: its role in crust formation and crustal recycling. Tectonophysics, 161, 201–212.

    Article  Google Scholar 

  • Bebout, G. E., 2014. 4.20 – Chemical and isotopic cycling in subduction zones. In Turekian, H. D. H. K. (ed.), Treatise on Geochemistry, 2nd edn. Oxford: Elsevier, pp. 703–747.

    Chapter  Google Scholar 

  • Bodinier, J. L., and Godard, M., 2014. 3.4 – Orogenic, ophiolitic, and abyssal peridotites. In Turekian, H. D. H. K. (ed.), Treatise on Geochemistry, 2nd edn. Oxford: Elsevier, pp. 103–167.

    Chapter  Google Scholar 

  • Boyet, M., and Carlson, R. W., 2005. 142Nd evidence for early (>4.53 Ga) global differentiation of the silicate Earth. Science, 309, 576–581.

    Article  Google Scholar 

  • Boyet, M., and Carlson, R. W., 2006. A new geochemical model for the Earth’s mantle inferred from 146Sm-142Nd systematics. Earth and Planetary Science Letters, 262, 505–516.

    Article  Google Scholar 

  • Chauvel, C., Hofmann, A. W., and Vidal, P., 1992. HIMU-EM: the French-Polynesian connection. Earth and Planetary Science Letters, 110, 99–119.

    Article  Google Scholar 

  • Chauvel, C., Lewin, E., Carpentier, M., Arndt, N. T., and Marini, J.-C., 2008. Role of recycled oceanic basalt and sediment in generating the Hf-Nd mantle array. Nature Geoscience, 1, 64–67.

    Article  Google Scholar 

  • Christensen, U., 1989. Mixing by time-dependent convection. Earth and Planetary Science Letters, 95, 382–394.

    Article  Google Scholar 

  • Christensen, U. R., and Hofmann, A. W., 1994. Segregation of subducted ceanic crust in the convecting mantle. Journal of Geophysical Research, 99, 19,867–819,884.

    Article  Google Scholar 

  • Clift, P. D., Vannucchi, P., and Morgan, J. P., 2009. Crustal redistribution, crust-mantle recycling and Phanerozoic evolution of the continental crust. Earth-Science Reviews, 97, 80–104.

    Article  Google Scholar 

  • Cobden, L., Thomas, C., and Trampert, J., 2015. Seismic detection of post-perovskite inside the Earth. In Khan, A., and Deschamps, F. (eds.), The Earth’s Heterogeneous Mantle. Springer International Publishing, pp. 391–440.

    Google Scholar 

  • Condie, K. C., and Kröner, A., 2008. When did plate tectonics begin? Evidence from the geologic record. In Condie, K. C., and Pease, V. (eds.), When Did Plate Tectonics Begin on Planet Earth? Boulder, CO: Geological Society of America. Geological Society of America Special Papers, Vol. 440, pp. 281–294.

    Chapter  Google Scholar 

  • Davies, G. F., 1992. On the emergence of plate-tectonics. Geology, 20, 963–966.

    Article  Google Scholar 

  • DePaolo, D. J., 1980. Crustal growth and mantle evolution: inferences from models of element transport and Nd and Sr isotopes. Geochimica et Cosmochimica Acta, 44, 1185–1196.

    Article  Google Scholar 

  • DePaolo, D. J., and Wasserburg, G. J., 1976. Nd isotopic variations and petrogenetic models. Geophysical Research Letters, 3, 249–252.

    Article  Google Scholar 

  • Deschamps, F., et al., 2015. Large-scale thermo-chemical structure of the deep mantle: observations and models. In Khan, A., and Deschamps, F. (eds.), The Earth’s Heterogeneous Mantle. Springer International Publishing, pp. 479–515.

    Google Scholar 

  • Donnelly, K. E., Goldstein, S. L., Langmuir, C. H., and Spiegelman, M., 2004. Origin of enriched ocean ridge basalts and implications for mantle dynamics. Earth and Planetary Science Letters, 226, 347–366.

    Article  Google Scholar 

  • Douglass, J., and Schilling, J. G., 2000. Systematics of three-component, pseudo-binary mixing lines in 2D isotope ratio space representations and implications for mantle plume-ridge interaction. Chemical Geology, 163, 1–23.

    Article  Google Scholar 

  • Dupré, B., and Allègre, C. J., 1983. Pb-Sr isotope variation in Indian Ocean basalts and mixing phenomena. Nature, 303, 142–146.

    Article  Google Scholar 

  • Foley, B. J., Bercovici, D., and Elkins-Tanton, L. T., 2014. Initiation of plate tectonics from post-magma ocean thermochemical convection. Journal of Geophysical Research, 119, 8538–8561.

    Google Scholar 

  • Forsyth, D., and Uyeda, S., 1975. On the relative importance of the driving forces of plate motion. Geophysical Journal International, 43, 163–200.

    Article  Google Scholar 

  • French, S. W., and Romanowicz, B., 2015. Broad plumes rooted at the base of the Earth’s mantle beneath major hotspots. Nature, 525, 95–99.

    Article  Google Scholar 

  • Fukao, Y., and Obayashi, M., 2015. 1.20 – Deep Earth structure – subduction zone structure in the mantle transition zone. In Schubert, G. (ed.), Treatise on Geophysics, 2nd edn. Oxford: Elsevier, pp. 641–654.

    Chapter  Google Scholar 

  • Fukao, Y., Obayashi, M., Inoue, H., and Nenbai, M., 1992. Subducting slabs stagnant in the mantle transition zone. Journal of Geophysical Research, 97, 4809–4822.

    Article  Google Scholar 

  • Garnero, E. J., et al., 2011. Earth’s structure – lower mantle. In Gupta, H. K. (ed.), Encyclopedia of Solid Earth Geophysics, 2nd edn. Dordrecht: Springer, Vol. 1, pp. 154–159.

    Chapter  Google Scholar 

  • Garnero, E.J., McNamara, A.K., Shim, S.-H., 2016. Continent-sized anomalous zones with low seismic velocity at the base of Earth’s mantle. Nature Geoscience 9, 481–489.

    Google Scholar 

  • Gast, P. W., Tilton, G. R., and Hedge, C., 1964. Isotopic composition of lead and strontium from Ascension and Gough Islands. Science, 145, 1181–1185.

    Article  Google Scholar 

  • Gerya, T., 2014. Precambrian geodynamics: concepts and models. Gondwana Research, 25, 442–463.

    Article  Google Scholar 

  • Graham, D. W., Blichert-Toft, J., Russo, C. J., Rubin, K. H., and Albarede, F., 2006. Cryptic striations in the upper mantle revealed by hafnium isotopes in southeast Indian ridge basalts. Nature, 440, 199–202.

    Article  Google Scholar 

  • Grand, S. P., 1994. Mantle shear structure beneath the Americas and surrounding oceans. Journal of Geophysical Research, 99, 11,591–11,621.

    Article  Google Scholar 

  • Gurnis, M., and Davies, G. F., 1986. Mixing in numerical models of mantle convection incorporating plate kinematics. Journal of Geophysical Research, 91, 6375–6395.

    Article  Google Scholar 

  • Hamelin, B., Dupré, B., and Allègre, C. J., 1986. Pb-Sr-Nd isotopic data of Indian Ocean Ridges: new evidence of large scale mapping of mantle heterogeneities. Earth and Planetary Science Letters, 76, 288–298.

    Article  Google Scholar 

  • Hanan, B. B., Kingsley, R. H., and Schilling, J.-G., 1986. Pb isotope evidence in the South Atlantic for migrating ridge-hotspot interactions. Nature, 322, 137–144.

    Article  Google Scholar 

  • Harrison, T.M., 2009. The Hadean Crust: Evidence from > 4 Ga Zircons. Annu. Rev. Earth Planet. Sci. 37, 479–505.

    Google Scholar 

  • Hart, S. R., 1984. A large-scale isotope anomaly in the southern-hemisphere mantle. Nature, 309, 753–757.

    Article  Google Scholar 

  • Hart, S. R., 1988. Heterogeneous mantle domains – signatures, genesis and mixing chronologies. Earth and Planetary Science Letters, 90, 273–296.

    Article  Google Scholar 

  • Hart, S. R., 1993. Equilibration during mantle melting – a fractal tree model. Proceedings of the National Academy of Sciences, 90, 11,914–11,918.

    Article  Google Scholar 

  • Hart, S. R., Schilling, J. G., and Powell, J. L., 1973. Basalts from Iceland and along the Reykjanes Ridge: Sr isotope geochemistry. Nature, 246, 104–107.

    Google Scholar 

  • Harvey, J., Gannoun, A., Burton, K. W., Rogers, N. W., Alard, O., and Parkinson, I. J., 2006. Ancient melt extraction from the oceanic upper mantle revealed by Re-Os isotopes in abyssal peridotites from the Mid-Atlantic ridge. Earth and Planetary Science Letters, 244, 606–621.

    Article  Google Scholar 

  • Herzberg, C., Condie, K., and Korenaga, J., 2010. Thermal history of the Earth and its petrological expression. Earth and Planetary Science Letters, 292, 79–88.

    Article  Google Scholar 

  • Hoffman, N. R. A., and McKenzie, D. P., 1985. The destruction of geochemical heterogeneities by differential fluid motions during mantle convection. Geophysical Journal of the Royal Astronomical Society, 82, 163–206.

    Article  Google Scholar 

  • Hofmann, A. W., 1988. Chemical differentiation of the Earth – the relationship between mantle, continental-crust, and oceanic-crust. Earth and Planetary Science Letters, 90, 297–314.

    Article  Google Scholar 

  • Hofmann, A. W., 2014. 3.3 – Sampling mantle heterogeneity through oceanic basalts: isotopes and trace elements. In Turekian, H. D. H. K. (ed.), Treatise on Geochemistry, 2nd edn. Oxford: Elsevier, pp. 67–101.

    Chapter  Google Scholar 

  • Hofmann, A. W., and Hart, S. R., 1978. An assessment of local and regional isotopic equilibrium in the mantle. Earth and Planetary Science Letters, 38, 44–62.

    Article  Google Scholar 

  • Hofmann, A. W., and White, W. M., 1982. Mantle plumes from ancient oceanic crust. Earth and Planetary Science Letters, 57, 421–436.

    Article  Google Scholar 

  • Houseman, G. A., McKenzie, D. P., and Molnar, P., 1981. Convective instability of a thickened boundary layer and its relevance for the thermal evolution of continental convergent belts. Journal of Geophysical Research, 86, 6115–6132.

    Article  Google Scholar 

  • Huang, J., and Davies, G. F., 2007. Geochemical processing in a three-dimensional regional spherical shell model of mantle convection. Geochemistry Geophysics Geosystems, 8, Q11006. doi:11010.11029/12007GC001625.

    Google Scholar 

  • Ito, G., Mahoney, J.J., 2005. Flow and melting of a heterogeneous mantle: 2. Implications for a chemically nonlayered mantle. Earth Planet. Sci. Lett. 230, 47.

    Google Scholar 

  • Jackson, M. G., Hart, S. R., Koppers, A. A. P., Staudigel, H., Konter, J., Blusztajn, J., Kurz, M., and Russell, J. A., 2007. The return of subducted continental crust in Samoan lavas. Nature, 448, 684–687.

    Article  Google Scholar 

  • Jacobsen, S. B., and Wasserburg, G. J., 1979. Mean age of mantle and crustal reservoirs. Journal of Geophysical Research, 84, 7411–7427.

    Article  Google Scholar 

  • Johnson, K. T. M., Dick, H. J. B., and Shimizu, N., 1990. Melting in the oceanic upper mantle – an ion microprobe study of diopsides in abyssal peridotites. Journal of Geophysical Research, 95, 2661–2678.

    Article  Google Scholar 

  • Jull, M., and Kelemen, P. B., 2001. On the conditions for lower crustal convective instability. Journal of Geophysical Research, 106, 6,423–6,446.

    Article  Google Scholar 

  • Kay, R. W., and Kay, S. M., 1991. Creation and destruction of lower continental crust. Geologische Rundschau, 80, 259–278.

    Article  Google Scholar 

  • Kay, R. W., and Kay, S. M., 1993. Delamination and delamination magmatism. Tectonophysics, 219, 177–189.

    Article  Google Scholar 

  • Kellogg, L., and Turcotte, D. L., 1990. Mixing and the distribution of heterogeneities in a chaotically convecting mantle. Journal of Geophysical Research, 95, 421–432.

    Article  Google Scholar 

  • Kellogg, J. B., Jacobsen, S. B., and O’Connell, R. J., 2007. Modeling lead isotopic heterogeneity in mid-ocean ridge basalts. Earth and Planetary Science Letters, 262, 328–342.

    Article  Google Scholar 

  • Kemp, A. I. S., Wilde, S. A., Hawkesworth, C. J., Coath, C. D., Nemchin, A., Pidgeon, R. T., Vervoort, J. D., and DuFrane, S. A., 2010. Hadean crustal evolution revisited: New constraints from Pb-Hf isotope systematics of the Jack Hills zircons. Earth and Planetary Science Letters, 296, 45–56.

    Article  Google Scholar 

  • Kind, R., and Li, X., 2015. 1.21 – Deep earth structure – transition zone and mantle discontinuities. In Schubert, G. (ed.), Treatise on Geophysics, 2nd edn. Oxford: Elsevier, pp. 655–682.

    Chapter  Google Scholar 

  • Labrosse, S., Hernlund, J. W., and Coltice, N., 2007. A crystallizing dense magma ocean at the base of the Earth’s mantle. Nature, 450, 866–869.

    Article  Google Scholar 

  • Lay, T., 2015. 1.22 – Deep Earth structure: lower mantle and D”. In Schubert, G. (ed.), Treatise on Geophysics, 2nd edn. Oxford: Elsevier, pp. 683–723.

    Chapter  Google Scholar 

  • Lay, T., and Garnero, E. J., 2004. Core-mantle boundary structures and processes. In Sparks, R. S. J., and Hawkesworth, C. J. (eds.), The State of the Planet: Frontiers and Challenges in Geophysics. Washington, DC: AGU. Geophysics Monograph, Vol. 150, pp. 25–41.

    Chapter  Google Scholar 

  • Lay, T., Hernlund, J., Garnero, E. J., and Thorne, M. S., 2006. A post-perovskite lens and D” heat flux beneath the Central Pacific. Science, 314, 1272–1276.

    Article  Google Scholar 

  • Lithgow-Bertelloni, C., and Richards, M. A., 1998. The dynamics of cenozoic and mesozoic plate motions. Reviews of Geophysics, 36, 27–78.

    Article  Google Scholar 

  • Liu, C.Z., Snow, J.E., Hellebrand, E., Brügmann, G., von der Handt, A., Büchl, A., Hofmann, A.W., 2008. Ancient, highly depleted heterogeneous mantle beneath Gakkel ridge, Arctic ocean. Nature 452, 311–316.

    Article  Google Scholar 

  • Mallick, S., Dick, H. J. B., Sachi-Kocher, A., and Salters, V. J. M., 2014. Isotope and trace element insights into heterogeneity of subridge mantle. Geochemistry Geophysics Geosystems, 15, 2438–2453. doi:2410.1002/2014GC005314.

    Article  Google Scholar 

  • McKenzie, D., and Bickle, M. J., 1988. The volume and composition of melt generated by extension of the lithosphere. Journal of Petrology, 29, 625–679.

    Article  Google Scholar 

  • McKenzie, D. P., and O’Nions, R. K., 1983. Mantle reservoirs and ocean island basalts. Nature, 301, 229–231.

    Article  Google Scholar 

  • McKenzie, D., and O’Nions, R. K., 1995. The source regions of ocean island basalts. Journal of Petrology, 36, 133–159.

    Article  Google Scholar 

  • Meibom, A., and Anderson, D. L., 2003. The statistical upper mantle assemblage. Earth and Planetary Science Letters, 217, 123–139.

    Article  Google Scholar 

  • Menzies, M. A., Rogers, N., Tindle, A., and Hawkesworth, C., 1987. Metasomatic enrichment processes in lithospheric peridotites, an effect of asthenospheric-lithospheric interaction. In Menzies, M. A., and Hawkesworth, C. (eds.), Mantle Metasomatism. London: Academic, pp. 313–361.

    Google Scholar 

  • Moore, W. B., and Webb, A. A. G., 2013. Heat-pipe Earth. Nature, 501, 501–505.

    Article  Google Scholar 

  • Moreira, M., 2013. Noble gas constraints on the origin and evolution of Earth’s volatiles. Geochemical Perspectives, 2, 229–230.

    Article  Google Scholar 

  • Moresi, L.N., Solomatov, V.S., 1995. Numerical investigation of 2D convection with extremely large viscosity variations. Physics of Fluids 7, 2154–2162.

    Article  Google Scholar 

  • Moresi, L., Solomatov, V., 1998. Mantle convection with a brittle lithosphere: thoughts on the global tectonic styles of the Earth and Venus. Geophysical Journal International 133, 669–682.

    Article  Google Scholar 

  • Morgan, W. J., 1971. Convection plumes in the lower mantle. Nature, 230, 42–43.

    Article  Google Scholar 

  • Morgan, J. P., 1999. Isotope topology of individual hotspot basalt arrays: mixing curves or melt extraction trajectories. Geochemistry Geophysics Geosystems, 1, 1003, doi:10.1029/1999GC000004.

    Google Scholar 

  • Moyen, J.-F., and van Hunen, J., 2012. Short-term episodicity of Archaean plate tectonics. Geology, 40, 451–454.

    Article  Google Scholar 

  • Niu, Y. L., and O’Hara, M. J., 2003. Origin of ocean island basalts: a new perspective from petrology, geochemistry, and mineral physics considerations. Journal of Geophysical Research, 108, 2209. doi:2210.1029/2002JB002048.

    Google Scholar 

  • O’Neill, C., Jellinek, A. M., and Lenardic, A., 2007. Conditions for the onset of plate tectonics on terrestrial planets and moons. Earth and Planetary Science Letters, 261, 20–32.

    Article  Google Scholar 

  • O’Nions, R. K., Evensen, N. M., and Hamilton, P. J., 1979. Geochemical modeling of mantle differentiation and crustal growth. Journal of Geophysical Research, 84, 6091–6101.

    Article  Google Scholar 

  • Olson, P., Yuen, D. A., and Balsiger, D., 1984a. Convective mixing and the fine structure of mantle heterogeneity. Physics of the Earth and Planetary Interiors, 36, 291–304.

    Article  Google Scholar 

  • Olson, P., Yuen, D. A., and Balsiger, D., 1984b. Mixing of passive heterogeneities by mantle convection. Journal of Geophysical Research, 89, 425–436.

    Article  Google Scholar 

  • Palme, H., and O’Neill, H. S. C., 2014. 3.1 – Cosmochemical estimates of mantle composition. In Turekian, H. D. H. K. (ed.), Treatise on Geochemistry, 2nd edn. Oxford: Elsevier, pp. 1–39.

    Chapter  Google Scholar 

  • Pilet, S., Baker, M. B., and Stolper, E. M., 2008. Metasomatized lithosphere and the origin of alkaline lavas. Science, 320, 916–919.

    Article  Google Scholar 

  • Plank, T., 2014. 4.17 – The chemical composition of subducting sediments. In Turekian, H. D. H. K. (ed.), Treatise on Geochemistry, 2nd edn. Oxford: Elsevier, pp. 607–629.

    Chapter  Google Scholar 

  • Rey, P. F., Coltice, N., and Flament, N., 2014. Spreading continents kick-started plate tectonics. Nature, 513, 405–408.

    Article  Google Scholar 

  • Ricard, Y., 2015. 7.02 – Physics of mantle convection. In Schubert, G. (ed.), Treatise on Geophysics, 2nd edn. Oxford: Elsevier, pp. 23–71.

    Chapter  Google Scholar 

  • Ricolleau, A., Perrillat, J.-P., Fiquet, G., Daniel, I., Matas, J., Addad, A., Menguy, N., Cardon, H., Mezouar, M., and Guignot, N., 2010. Phase relations and equation of state of a natural MORB: Implications for the density profile of subducted oceanic crust in the Earth’s lower mantle. Journal of Geophysical Research, 115, B08202.

    Article  Google Scholar 

  • Rubin, K. H., Sinton, J. M., Maclennan, J., and Hellebrand, E., 2009. Magmatic filtering of mantle compositions at mid-ocean-ridge volcanoes. Nature Geoscience, 2, 321–328.

    Article  Google Scholar 

  • Rudge, J. F., 2006. Mantle pseudo-isochrons revisited. Earth and Planetary Science Letters, 249, 494–513.

    Article  Google Scholar 

  • Rudge, J., McKenzie, D., and Haynes, P. H., 2005. A theoretical approach to understanding the isotopic heterogeneity of mid-ocean ridge basalt. Geochimica et Cosmochimica Acta, 69, 3873–3887.

    Article  Google Scholar 

  • Rudge, J. F., Maclennan, J., and Stracke, A., 2013. The geochemical consequences of mixing melts from a heterogeneous mantle. Geochimica et Cosmochimica Acta, 114, 112–143.

    Article  Google Scholar 

  • Rudnick, R. L., 1995. Making continental crust. Nature, 378, 571–578.

    Article  Google Scholar 

  • Rudnick, R. L., and Gao, S., 2014. 4.1 – Composition of the continental crust. In Turekian, H. D. H. K. (ed.), Treatise on Geochemistry, 2nd edn. Oxford: Elsevier, pp. 1–51.

    Chapter  Google Scholar 

  • Ryan, J. G., and Chauvel, C., 2014. 3.13 – The subduction zone filter and the impact of recycled materials on the evolution of the mantle. In Turekian, H. D. H. K. (ed.), Treatise on Geochemistry, 2nd edn. Oxford: Elsevier, pp. 479–508.

    Chapter  Google Scholar 

  • Salters, V. J. M., Mallick, S., Hart, S. R., Langmuir, C. H., and Stracke, A., 2011. Domains of depleted mantle; new evidence from hafnium and neodymium isotopes. Geochemistry, Geophysics, Geosystems, 12, Q10017. doi:10010.11029/12011GC003874.

    Google Scholar 

  • Schilling, J. G., 1973. Iceland mantle plume: geochemical study of Reykjanes Ridge. Nature, 242, 565–571.

    Article  Google Scholar 

  • Shirey, S., Kamber, B., Whitehouse, M., Mueller, P.A., Basu, A., 2008. When Did Plate Tectonics Begin on Planet Earth?, in: Condie, K., Pease, V. (Eds.). Geological Society of America, pp. Special Paper 440, 441–429.

    Google Scholar 

  • Shirey, S. B., and Richardson, S. H., 2011. Start of the Wilson Cycle at 3 Ga shown by diamonds from subcontinental mantle. Science, 333, 434–436.

    Article  Google Scholar 

  • Silver, P. G., and Behn, M. D., 2008. Intermittent plate tectonics? Science, 319, 85–88.

    Article  Google Scholar 

  • Sizova, E., Gerya, T., Brown, M., and Perchuk, L. L., 2010. Subduction styles in the Precambrian: insight from numerical experiments. Lithos, 116, 209–229.

    Article  Google Scholar 

  • Staudigel, H., 2014. 4.16 – Chemical fluxes from hydrothermal alteration of the oceanic crust. In Turekian, H. D. H. K. (ed.), Treatise on Geochemistry, 2nd edn. Oxford: Elsevier, pp. 583–606.

    Chapter  Google Scholar 

  • Staudigel, H., Park, K. H., Pringle, M., Rubenstone, J. L., Smith, W. H. F., and Zindler, A., 1991. The longevity of the South-Pacific isotopic and thermal anomaly. Earth and Planetary Science Letters, 102, 24–44.

    Article  Google Scholar 

  • Steinberger, B., 2000. Plumes in a convecting mantle: models and observations for individual hotspots. Journal of Geophysical Research, 105, 11127–11152.

    Article  Google Scholar 

  • Stern, R. J., 2005. Evidence from ophiolites, blueschists, and ultrahigh-pressure metamorphic terranes that the modern episode of subduction tectonics began in Neoproterozoic time. Geology, 33, 557–560.

    Article  Google Scholar 

  • Stern, C. R., 2011. Subduction erosion: rates, mechanisms, and its role in arc magmatism and the evolution of the continental crust and mantle. Gondwana Research, 20, 284–308.

    Article  Google Scholar 

  • Stracke, A., 2012. Earth’s heterogeneous mantle: a product of convection-driven interaction between crust and mantle. Chemical Geology, 330–331, 274–299.

    Article  Google Scholar 

  • Stracke, A., Bizimis, M., and Salters, V. J. M., 2003a. Recycling of oceanic crust: quantitative constraints. Geochemistry Geophysics Geosystems, 4, 8003. doi:8010.1029/2001GC000223.

    Google Scholar 

  • Stracke, A., Zindler, A., Salters, V. J. M., McKenzie, D., Blichert-Toft, J., Albarède, F., and Grönvold, K., 2003b. Theistareykir revisited. Geochemistry Geophysics Geosystems, 4, 8507. doi:8510.1029/2001GC000201, pp. 000249.

    Google Scholar 

  • Stracke, A., Hofmann, A. W., and Hart, S. R., 2005. FOZO, HIMU and the rest of the mantle zoo. Geochemistry Geophysics Geosystems, 6, Q05007. doi:05010.01029/02004GC000824.

    Article  Google Scholar 

  • Sun, S. S., Tatsumoto, M., and Schilling, J. G., 1975. Mantle plume mixing along the Reykjanes Ridge axis: lead isotopic evidence. Science, 190, 143–147.

    Article  Google Scholar 

  • Tackley, P. J., 2012. Dynamics and evolution of the deep mantle resulting from thermal, chemical, phase and melting effects. Earth-Science Reviews, 110, 1–25.

    Article  Google Scholar 

  • Tackley, P. J., 2015. 7.12 – Mantle geochemical geodynamics. In Schubert, G. (ed.), Treatise on Geophysics. Oxford: Elsevier, pp. 521–585.

    Chapter  Google Scholar 

  • Tatsumi, Y., Suzuki, T., Ozawa, H., Hirose, K., Hanyu, T., and Ohishi, Y., 2014. Accumulation of “anti-continent” at the base of the mantle and its recycling in mantle plumes. Geochimica et Cosmochimica Acta, 143, 23–33.

    Article  Google Scholar 

  • Tolstikhin, I. N., and Hofmann, A. W., 2005. Early crust on top of the Earth’s core. Physics of the Earth and Planetary Interiors, 148, 109–130.

    Article  Google Scholar 

  • van der Hilst, R., Widiyantoro, S., Engdahl, E.R., 1997. Evidence for deep mantle circulation from global tomography. Nature 386, 578–584.

    Google Scholar 

  • van Hunen, J., and Moyen, J.-F., 2012. Archean subduction: fact or fiction? Annual Review of Earth and Planetary Sciences, 40, 195–219.

    Article  Google Scholar 

  • van Hunen, J., and van den Berg, A. P., 2008. Plate tectonics on the early Earth: Limitations imposed by strength and buoyancy of subducted lithosphere. Lithos, 103, 217–235.

    Article  Google Scholar 

  • van Keken, P. E., Ballentine, C. J., and Hauri, E. H., 2014. 3.14 – Convective mixing in the Earth’s mantle. In Turekian, H. D. H. K. (ed.), Treatise on Geochemistry, 2nd edn. Oxford: Elsevier, pp. 509–525.

    Chapter  Google Scholar 

  • van Thienen, P., Vlaar, N. J., and van den Berg, A. P., 2004. Plate tectonics on the terrestrial planets. Physics of the Earth and Planetary Interiors, 142, 61–74.

    Article  Google Scholar 

  • White, W. M., 1985. Sources of oceanic basalts – radiogenic isotopic evidence. Geology, 13, 115–118.

    Article  Google Scholar 

  • White, W. M., 2010. Oceanic island basalts and mantle plumes: the geochemical perspective. Annual Review of Earth and Planetary Sciences, 38, 133–160.

    Article  Google Scholar 

  • White, W. M., 2015a. Isotopes, DUPAL, LLSVPs, and Anekantavada. Chemical Geology, 419, 10–28.

    Article  Google Scholar 

  • White, W. M., 2015b. Probing the Earth’s deep interior through geochemistry. Geochemical Perspectives, 4, 95–251.

    Article  Google Scholar 

  • White, W. M., and Klein, E. M., 2014. 4.13 – Composition of the oceanic crust. In Turekian, H. D. H. K. (ed.), Treatise on Geochemistry, 2nd edn. Oxford: Elsevier, pp. 457–496.

    Chapter  Google Scholar 

  • Willbold, M., and Stracke, A., 2006. Trace element composition of mantle end-members: implications for recycling of oceanic and upper and lower continental crust. Geochemistry Geophysics Geosystems, 7, Q04004. doi:04010.01029/02005GC001005.

    Article  Google Scholar 

  • Willbold, M., and Stracke, A., 2010. Formation of enriched mantle components by recycling of upper and lower continental crust. Chemical Geology, 276, 188–197.

    Article  Google Scholar 

  • Williams, Q., and Garnero, E. J., 1996. Seismic evidence for partial melt at the base of Earth’s mantle. Science, 273, 1528–1530.

    Article  Google Scholar 

  • Zhou, H., and Dick, H. J. B., 2013. Thin crust as evidence for depleted mantle supporting the Marion Rise. Nature, 494, 195–200.

    Article  Google Scholar 

  • Zindler, A., and Hart, S., 1986. Chemical geodynamics. Annual Review of Earth and Planetary Sciences, 14, 493–571.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Stracke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this entry

Cite this entry

Stracke, A. (2016). Mantle Geochemistry. In: White, W. (eds) Encyclopedia of Geochemistry. Encyclopedia of Earth Sciences Series. Springer, Cham. https://doi.org/10.1007/978-3-319-39193-9_286-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39193-9_286-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-39193-9

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Mantle Geochemistry
    Published:
    24 November 2016

    DOI: https://doi.org/10.1007/978-3-319-39193-9_286-2

  2. Original

    Mantle Geochemistry
    Published:
    24 September 2016

    DOI: https://doi.org/10.1007/978-3-319-39193-9_286-1