Skip to main content

Embryonic Stem Cells

  • Living reference work entry
  • First Online:
Cell Engineering and Regeneration

Part of the book series: Reference Series in Biomedical Engineering ((TIENRE))

Abstract

Embryonic stem cells (ESCs) are pluripotent stem cells derived from a preimplantation embryo. ESCs are distinguished by two major properties: their pluripotency (the ability to differentiate into all derivatives of the three primary germ layers) and their ability to replicate indefinitely under defined conditions. Human ESCs (hESCs) can be used to study early human development and genetic disease and for in vitro toxicology testing. Because of their plasticity and potentially unlimited capacity for self-renewal, clinical-grade hESC therapies have been proposed for tissue replacement after injury or disease. In this chapter we summarize the process of hESC derivation, discuss characterization (the standard tests that are performed during the cell culture process to check that the cells exhibit the fundamental properties that make them ESCs), and provide examples of protocols that are used to induce hESCs to differentiate into specific cell types.

Philip Lewis and Edina Silajdžić contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abeyta MJ, Clark AT, Rodriguez RT, Bodnar MS, Pera RA, Firpo MT (2004) Unique gene expression signatures of independently-derived human embryonic stem cell lines. Hum Mol Genet 13:601–608

    Article  Google Scholar 

  • Aggarwal VK, Goyal N, Deirmengian G, Rangavajulla A, Parvizi J, Austin MS (2014) Revision total knee arthroplasty in the young patient: is there trouble on the horizon? J Bone Joint Surg Am 96:536–542

    Article  Google Scholar 

  • Almutawaa W, Rohani L, Rancourt DE (2016) Expansion of human induced pluripotent stem cells in stirred suspension bioreactors. Methods Mol Biol 1502:53–61

    Article  Google Scholar 

  • Amit M, Itskovitz-Eldor J (2012) Atlas of human pluripotent stem cells: derivation and culturing, New York, Humana Press.

    Google Scholar 

  • Ang YS, Tsai SY, Lee DF, Monk J, Su J, Ratnakumar K, Ding J, Ge Y, Darr H, Chang B, Wang J, Rendl M, Bernstein E, Schaniel C, Lemischka IR (2011) Wdr5 mediates self-renewal and reprogramming via the embryonic stem cell core transcriptional network. Cell 145:183–197

    Article  Google Scholar 

  • Ausubel LJ, Lopez PM, Couture LA (2011) GMP scale-up and banking of pluripotent stem cells for cellular therapy applications. Methods Mol Biol 767:147–159

    Article  Google Scholar 

  • AUTOSTEM (n.d.) Available: http://www.autostem2020.eu/. Accessed 23 Jul 2017

  • Avior Y, Biancotti JC, Benvenisty N (2015) TeratoScore: assessing the differentiation potential of human pluripotent stem cells by quantitative expression analysis of teratomas. Stem Cell Rep 4:967–974

    Article  Google Scholar 

  • Badenes SM, Fernandes TG, Cordeiro CS, Boucher S, Kuninger D, Vemuri MC, Diogo MM, Cabral JM (2016) Defined essential 8 medium and vitronectin efficiently support scalable xeno-free expansion of human induced pluripotent stem cells in stirred microcarrier culture systems. PLoS One 11:e0151264

    Article  Google Scholar 

  • Barker RA (2014) Developing stem cell therapies for Parkinson’s disease: waiting until the time is right. Cell Stem Cell 15:539–542

    Article  Google Scholar 

  • Barker RA, Barrett J, Mason SL, Bjorklund A (2013) Fetal dopaminergic transplantation trials and the future of neural grafting in Parkinson’s disease. Lancet Neurol 12:84–91

    Article  Google Scholar 

  • Bar-Nur O, Russ HA, Efrat S, Benvenisty N (2011) Epigenetic memory and preferential lineage-specific differentiation in induced pluripotent stem cells derived from human pancreatic islet beta cells. Cell Stem Cell 9:17–23

    Article  Google Scholar 

  • Basford CL, Prentice KJ, Hardy AB, Sarangi F, Micallef SJ, Li X, Guo Q, Elefanty AG, Stanley EG, Keller G, Allister EM, Nostro MC, Wheeler MB (2012) The functional and molecular characterisation of human embryonic stem cell-derived insulin-positive cells compared with adult pancreatic beta cells. Diabetologia 55:358–371

    Article  Google Scholar 

  • Bauwens CL, Peerani R, Niebruegge S, Woodhouse KA, Kumacheva E, Husain M, Zandstra PW (2008) Control of human embryonic stem cell colony and aggregate size heterogeneity influences differentiation trajectories. Stem Cells 26:2300–2310

    Article  Google Scholar 

  • Becker JS, Nicetto D, Zaret KS (2016) H3K9me3-dependent heterochromatin: barrier to cell fate changes. Trends Genet 32:29–41

    Article  Google Scholar 

  • Beers J, Gulbranson DR, George N, Siniscalchi LI, Jones J, Thomson JA, Chen G (2012) Passaging and colony expansion of human pluripotent stem cells by enzyme-free dissociation in chemically defined culture conditions. Nat Protoc 7:2029–2040

    Article  Google Scholar 

  • Bissell DM, Arenson DM, Maher JJ, Roll FJ (1987) Support of cultured hepatocytes by a laminin-rich gel. Evidence for a functionally significant subendothelial matrix in normal rat liver. J Clin Invest 79:801–812

    Article  Google Scholar 

  • Bjorklund A, Lindvall O (2000) Cell replacement therapies for central nervous system disorders. Nat Neurosci 3:537–544

    Article  Google Scholar 

  • Bock C, Kiskinis E, Verstappen G, Gu H, Boulting G, Smith ZD, Ziller M, Croft GF, Amoroso MW, Oakley DH, Gnirke A, Eggan K, Meissner A (2011) Reference maps of human ES and iPS cell variation enable high-throughput characterization of pluripotent cell lines. Cell 144:439–452

    Article  Google Scholar 

  • Borger AK, Eicke D, Wolf C, Gras C, Aufderbeck S, Schulze K, Engels L, Eiz-Vesper B, Schambach A, Guzman CA, Lachmann N, Moritz T, Martin U, Blasczyk R, Figueiredo C (2016) Generation of HLA-universal iPSCs-derived megakaryocytes and platelets for survival under refractoriness conditions. Mol Med 22:274–285

    Google Scholar 

  • Borowiak M, Maehr R, Chen S, Chen AE, Tang W, Fox JL, Schreiber SL, Melton DA (2009) Small molecules efficiently direct endodermal differentiation of mouse and human embryonic stem cells. Cell Stem Cell 4:348–358

    Article  Google Scholar 

  • Boyer LA, Plath K, Zeitlinger J, Brambrink T, Medeiros LA, Lee TI, Levine SS, Wernig M, Tajonar A, Ray MK, Bell GW, Otte AP, Vidal M, Gifford DK, Young RA, Jaenisch R (2006) Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 441:349–353

    Article  Google Scholar 

  • Braam SR, Zeinstra L, Litjens S, Ward-Van Oostwaard D, Van Den Brink S, Van Laake L, Lebrin F, Kats P, Hochstenbach R, Passier R, Sonnenberg A, Mummery CL (2008) Recombinant vitronectin is a functionally defined substrate that supports human embryonic stem cell self-renewal via alphavbeta5 integrin. Stem Cells 26:2257–2265

    Article  Google Scholar 

  • Brimble SN, Zeng X, Weiler DA, Luo Y, Liu Y, Lyons IG, Freed WJ, Robins AJ, Rao MS, Schulz TC (2004) Karyotypic stability, genotyping, differentiation, feeder-free maintenance, and gene expression sampling in three human embryonic stem cell lines derived prior to August 9, 2001. Stem Cells Dev 13:585–597

    Article  Google Scholar 

  • Brons IG, Smithers LE, Trotter MW, Rugg-Gunn P, Sun B, Chuva de Sousa Lopes SM, Howlett SK, Clarkson A, Ahrlund-Richter L, Pedersen RA, Vallier L (2007) Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature 448:191–195

    Article  Google Scholar 

  • Buecker C, Wysocka J (2012) Enhancers as information integration hubs in development: lessons from genomics. Trends Genet 28:276–284

    Article  Google Scholar 

  • Buecker C, Chen HH, Polo JM, Daheron L, Bu L, Barakat TS, Okwieka P, Porter A, Gribnau J, Hochedlinger K, Geijsen N (2010) A murine ESC-like state facilitates transgenesis and homologous recombination in human pluripotent stem cells. Cell Stem Cell 6:535–546

    Article  Google Scholar 

  • Burridge PW, Zambidis ET (2013) Highly efficient directed differentiation of human induced pluripotent stem cells into cardiomyocytes. Methods Mol Biol 997:149–161

    Article  Google Scholar 

  • Burridge PW, Anderson D, Priddle H, Barbadillo Munoz MD, Chamberlain S, Allegrucci C, Young LE, Denning C (2007) Improved human embryonic stem cell embryoid body homogeneity and cardiomyocyte differentiation from a novel V-96 plate aggregation system highlights interline variability. Stem Cells 25:929–938

    Article  Google Scholar 

  • Buta C, David R, Dressel R, Emgard M, Fuchs C, Gross U, Healy L, Hescheler J, Kolar R, Martin U, Mikkers H, Muller FJ, Schneider RK, Seiler AE, Spielmann H, Weitzer G (2013) Reconsidering pluripotency tests: do we still need teratoma assays? Stem Cell Res 11:552–562

    Article  Google Scholar 

  • Cai J, Zhao Y, Liu Y, Ye F, Song Z, Qin H, Meng S, Chen Y, Zhou R, Song X, Guo Y, Ding M, Deng H (2007) Directed differentiation of human embryonic stem cells into functional hepatic cells. Hepatology 45:1229–1239

    Article  Google Scholar 

  • Camarasa MV, Galvez VM, Brison DR, Bachiller D (2012) Optimized protocol for derivation of human embryonic stem cell lines. Stem Cell Rev 8:1011–1020

    Article  Google Scholar 

  • Canham MA, Van Deusen A, Brison DR, De Sousa PA, Downie J, Devito L, Hewitt ZA, Ilic D, Kimber SJ, Moore HD, Murray H, Kunath T (2015) The molecular karyotype of 25 clinical-grade human embryonic stem cell lines. Sci Rep 5:17258

    Article  Google Scholar 

  • Chambers I, Colby D, Robertson M, Nichols J, Lee S, Tweedie S, Smith A (2003) Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 113:643–655

    Article  Google Scholar 

  • Chambers SM, Fasano CA, Papapetrou EP, Tomishima M, Sadelain M, Studer L (2009) Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol 27:275–280

    Article  Google Scholar 

  • Chen S, Borowiak M, Fox JL, Maehr R, Osafune K, Davidow L, Lam K, Peng LF, Schreiber SL, Rubin LL, Melton D (2009) A small molecule that directs differentiation of human ESCs into the pancreatic lineage. Nat Chem Biol 5:258–265

    Article  Google Scholar 

  • Chen G, Hou Z, Gulbranson DR, Thomson JA (2010) Actin-myosin contractility is responsible for the reduced viability of dissociated human embryonic stem cells. Cell Stem Cell 7:240–248

    Article  Google Scholar 

  • Chen G, Gulbranson DR, Hou Z, Bolin JM, Ruotti V, Probasco MD, Smuga-Otto K, Howden SE, Diol NR, Propson NE, Wagner R, Lee GO, Antosiewicz-Bourget J, Teng JM, Thomson JA (2011) Chemically defined conditions for human iPSC derivation and culture. Nat Methods 8:424–429

    Article  Google Scholar 

  • Chen VC, Couture SM, Ye J, Lin Z, Hua G, Huang HI, Wu J, Hsu D, Carpenter MK, Couture LA (2012) Scalable GMP compliant suspension culture system for human ES cells. Stem Cell Res 8:388–402

    Article  Google Scholar 

  • Cheng A, Kapacee Z, Peng J, Lu S, Lucas RJ, Hardingham TE, Kimber SJ (2014) Cartilage repair using human embryonic stem cell-derived chondroprogenitors. Stem Cells Transl Med 3:1287–1294

    Article  Google Scholar 

  • Chin AC, Fong WJ, Goh LT, Philp R, Oh SK, Choo AB (2007) Identification of proteins from feeder conditioned medium that support human embryonic stem cells. J Biotechnol 130:320–328

    Article  Google Scholar 

  • Chung Y, Klimanskaya I, Becker S, Li T, Maserati M, Lu SJ, Zdravkovic T, Ilic D, Genbacev O, Fisher S, Krtolica A, Lanza R (2008) Human embryonic stem cell lines generated without embryo destruction. Cell Stem Cell 2:113–117

    Article  Google Scholar 

  • Cohen DE, Melton D (2011) Turning straw into gold: directing cell fate for regenerative medicine. Nat Rev Genet 12:243–252

    Article  Google Scholar 

  • Craft AM, Rockel JS, Nartiss Y, Kandel RA, Alman BA, Keller GM (2015) Generation of articular chondrocytes from human pluripotent stem cells. Nat Biotechnol 33:638–645

    Article  Google Scholar 

  • Crocco MC, Fratnz N, Bos-Mikich A (2013) Substrates and supplements for hESCs: a critical review. J Assist Reprod Genet 30:315–323

    Article  Google Scholar 

  • Curtis A, Riehle M (2001) Tissue engineering: the biophysical background. Phys Med Biol 46:R47–R65

    Article  Google Scholar 

  • D’Amour KA, Agulnick AD, Eliazer S, Kelly OG, Kroon E, Baetge EE (2005) Efficient differentiation of human embryonic stem cells to definitive endoderm. Nat Biotechnol 23:1534–1541

    Article  Google Scholar 

  • D’Amour KA, Bang AG, Eliazer S, Kelly OG, Agulnick AD, Smart NG, Moorman MA, Kroon E, Carpenter MK, Baetge EE (2006) Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat Biotechnol 24:1392–1401

    Article  Google Scholar 

  • Daley GQ, Hyun I, Apperley JF, Barker RA, Benvenisty N, Bredenoord AL, Breuer CK, Caulfield T, Cedars MI, Frey-Vasconcells J, Heslop HE, Jin Y, Lee RT, Mccabe C, Munsie M, Murry CE, Piantadosi S, Rao M, Rooke HM, Sipp D, Studer L, Sugarman J, Takahashi M, Zimmerman M, Kimmelman J (2016) Setting global standards for stem cell research and clinical translation: the 2016 ISSCR guidelines. Stem Cell Rep 6:787–797

    Article  Google Scholar 

  • Damjanov I, Andrews PW (2016) Teratomas produced from human pluripotent stem cells xenografted into immunodeficient mice – a histopathology atlas. Int J Dev Biol 60:337–419

    Article  Google Scholar 

  • Datta I, Ganapathy K, Tattikota SM, Bhonde R (2013) Directed differentiation of human embryonic stem cell-line HUES9 to dopaminergic neurons in a serum-free defined culture niche. Cell Biol Int 37:54–64

    Article  Google Scholar 

  • De los Angeles A, Ferrari F, Xi R, Fujiwara Y, Benvenisty N, Deng H, Hochedlinger K, Jaenisch R, Lee S, Leitch HG, Lensch MW, Lujan E, Pei D, Rossant J, Wernig M, Park PJ, Daley GQ (2015) Hallmarks of pluripotency. Nature 525:469–478

    Article  Google Scholar 

  • De Peppo GM, Marolt D (2013) Modulating the biochemical and biophysical culture environment to enhance osteogenic differentiation and maturation of human pluripotent stem cell-derived mesenchymal progenitors. Stem Cell Res Ther 4:106

    Google Scholar 

  • De Sousa PA, Gardner J, Sneddon S, Pells S, Tye BJ, Dand P, Collins DM, Stewart K, Shaw L, Przyborski S, Cooke M, Mclaughlin KJ, Kimber SJ, Lieberman BA, Wilmut I, Brison DR (2009) Clinically failed eggs as a source of normal human embryo stem cells. Stem Cell Res 2:188–197

    Article  Google Scholar 

  • Ding S, Schultz PG (2004) A role for chemistry in stem cell biology. Nat Biotechnol 22:833–840

    Article  Google Scholar 

  • Draper JS, Pigott C, Thomson JA, Andrews PW (2002) Surface antigens of human embryonic stem cells: changes upon differentiation in culture. J Anat 200:249–258

    Article  Google Scholar 

  • Draper JS, Smith K, Gokhale P, Moore HD, Maltby E, Johnson J, Meisner L, Zwaka TP, Thomson JA, Andrews PW (2004) Recurrent gain of chromosomes 17q and 12 in cultured human embryonic stem cells. Nat Biotechnol 22:53–54

    Article  Google Scholar 

  • Duggal G, Warrier S, Ghimire S, Broekaert D, Van Der Jeught M, Lierman S, Deroo T, Peelman L, Van Soom A, Cornelissen R, Menten B, Mestdagh P, Vandesompele J, Roost M, Slieker RC, Heijmans BT, Deforce D, De Sutter P, De Sousa Lopes SC, Heindryckx B (2015) Alternative routes to induce naive pluripotency in human embryonic stem cells. Stem Cells 33:2686–2698

    Article  Google Scholar 

  • Dvash T, Mayshar Y, Darr H, Mcelhaney M, Barker D, Yanuka O, Kotkow KJ, Rubin LL, Benvenisty N, Eiges R (2004) Temporal gene expression during differentiation of human embryonic stem cells and embryoid bodies. Hum Reprod 19:2875–2883

    Article  Google Scholar 

  • Efthymiou AG, Chen G, Rao M, Chen G, Boehm M (2014) Self-renewal and cell lineage differentiation strategies in human embryonic stem cells and induced pluripotent stem cells. Expert Opin Biol Ther 14:1333–1344

    Article  Google Scholar 

  • Ellerstrom C, Strehl R, Noaksson K, Hyllner J, Semb H (2007) Facilitated expansion of human embryonic stem cells by single-cell enzymatic dissociation. Stem Cells 25:1690–1696

    Article  Google Scholar 

  • Elliott AM, Elliott KA, Kammesheidt A (2010) High resolution array-CGH characterization of human stem cells using a stem cell focused microarray. Mol Biotechnol 46:234–242

    Article  Google Scholar 

  • Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126:677–689

    Article  Google Scholar 

  • Enver T, Soneji S, Joshi C, Brown J, Iborra F, Orntoft T, Thykjaer T, Maltby E, Smith K, Abu Dawud R, Jones M, Matin M, Gokhale P, Draper J, Andrews PW (2005) Cellular differentiation hierarchies in normal and culture-adapted human embryonic stem cells. Hum Mol Genet 14:3129–3140

    Article  Google Scholar 

  • Evseenko D, Zhu Y, Schenke-Layland K, Kuo J, Latour B, Ge S, Scholes J, Dravid G, Li X, Maclellan WR, Crooks GM (2010) Mapping the first stages of mesoderm commitment during differentiation of human embryonic stem cells. Proc Natl Acad Sci U S A 107:13742–13747

    Article  Google Scholar 

  • Fasano CA, Chambers SM, Lee G, Tomishima MJ, Studer L (2010) Efficient derivation of functional floor plate tissue from human embryonic stem cells. Cell Stem Cell 6:336–347

    Article  Google Scholar 

  • Figueiredo C, Blasczyk R (2015) A future with less HLA: potential clinical applications of HLA-universal cells. Tissue Antigens 85:443–449

    Article  Google Scholar 

  • Fong H, Hohenstein KA, Donovan PJ (2008) Regulation of self-renewal and pluripotency by Sox2 in human embryonic stem cells. Stem Cells 26:1931–1938

    Article  Google Scholar 

  • Frank-Kamenetsky M, Zhang XM, Bottega S, Guicherit O, Wichterle H, Dudek H, Bumcrot D, Wang FY, Jones S, Shulok J, Rubin LL, Porter JA (2002) Small-molecule modulators of hedgehog signaling: identification and characterization of smoothened agonists and antagonists. J Biol 1:10

    Article  Google Scholar 

  • French A, Bravery C, Smith J, Chandra A, Archibald P, Gold JD, Artzi N, Kim HW, Barker RW, Meissner A, Wu JC, Knowles JC, Williams D, Garcia-Cardena G, Sipp D, Oh S, Loring JF, Rao MS, Reeve B, Wall I, Carr AJ, Bure K, Stacey G, Karp JM, Snyder EY, Brindley DA (2015) Enabling consistency in pluripotent stem cell-derived products for research and development and clinical applications through material standards. Stem Cells Transl Med 4:217–223

    Article  Google Scholar 

  • Gavrilov S, Marolt D, Douglas NC, Prosser RW, Khalid I, Sauer MV, Landry DW, Vunjak-Novakovic G, Papaioannou VE (2011) Derivation of two new human embryonic stem cell lines from nonviable human embryos. Stem Cells Int 2011:765378

    Article  Google Scholar 

  • Geens M, Mateizel I, Sermon K, De Rycke M, Spits C, Cauffman G, Devroey P, Tournaye H, Liebaers I, Van De Velde H (2009) Human embryonic stem cell lines derived from single blastomeres of two 4-cell stage embryos. Hum Reprod 24:2709–2717

    Article  Google Scholar 

  • Geraghty RJ, Capes-Davis A, Davis JM, Downward J, Freshney RI, Knezevic I, Lovell-Badge R, Masters JR, Meredith J, Stacey GN, Thraves P, Vias M, Cancer Research, U. K (2014) Guidelines for the use of cell lines in biomedical research. Br J Cancer 111:1021–1046

    Article  Google Scholar 

  • Gertow K, Wolbank S, Rozell B, Sugars R, Andang M, Parish CL, Imreh MP, Wendel M, Ahrlund-Richter L (2004) Organized development from human embryonic stem cells after injection into immunodeficient mice. Stem Cells Dev 13:421–435

    Article  Google Scholar 

  • Gertow K, Przyborski S, Loring JF, Auerbach JM, Epifano O, Otonkoski T, Damjanov I, Ahrlund-Richter L (2007) Isolation of human embryonic stem cell-derived teratomas for the assessment of pluripotency. Curr Protoc Stem Cell Biol. Chapter 1, Unit1B 4. 3:1B.4.1–1B.4.29

    Google Scholar 

  • Gertow K, Cedervall J, Jamil S, Ali R, Imreh MP, Gulyas M, Sandstedt B, Ahrlund-Richter L (2011) Early events in xenograft development from the human embryonic stem cell line HS181 – resemblance with an initial multiple epiblast formation. PLoS One 6:e27741

    Article  Google Scholar 

  • Gifford CA, Ziller MJ, Gu H, Trapnell C, Donaghey J, Tsankov A, Shalek AK, Kelley DR, Shishkin AA, Issner R, Zhang X, Coyne M, Fostel JL, Holmes L, Meldrim J, Guttman M, Epstein C, Park H, Kohlbacher O, Rinn J, Gnirke A, Lander ES, Bernstein BE, Meissner A (2013) Transcriptional and epigenetic dynamics during specification of human embryonic stem cells. Cell 153:1149–1163

    Article  Google Scholar 

  • Gokhale PJ, Au-Young JK, Dadi S, Keys DN, Harrison NJ, Jones M, Soneji S, Enver T, Sherlock JK, Andrews PW (2015) Culture adaptation alters transcriptional hierarchies among single human embryonic stem cells reflecting altered patterns of differentiation. PLoS One 10:e0123467

    Article  Google Scholar 

  • Goldring MB, Goldring SR (2007) Osteoarthritis. J Cell Physiol 213:626–634

    Article  Google Scholar 

  • Gornalusse GG, Hirata RK, Funk SE, Riolobos L, Lopes VS, Manske G, Prunkard D, Colunga AG, Hanafi LA, Clegg DO, Turtle C, Russell DW (2017) HLA-E-expressing pluripotent stem cells escape allogeneic responses and lysis by NK cells. Nat Biotechnol 35:765–772

    Article  Google Scholar 

  • Graham V, Khudyakov J, Ellis P, Pevny L (2003) SOX2 functions to maintain neural progenitor identity. Neuron 39:749–765

    Article  Google Scholar 

  • Grealish S, Diguet E, Kirkeby A, Mattsson B, Heuer A, Bramoulle Y, Van Camp N, Perrier AL, Hantraye P, Bjorklund A, Parmar M (2014) Human ESC-derived dopamine neurons show similar preclinical efficacy and potency to fetal neurons when grafted in a rat model of Parkinson’s disease. Cell Stem Cell 15:653–665

    Article  Google Scholar 

  • Grigoriadis AE, Kennedy M, Bozec A, Brunton F, Stenbeck G, Park IH, Wagner EF, Keller GM (2010) Directed differentiation of hematopoietic precursors and functional osteoclasts from human ES and iPS cells. Blood 115:2769–2776

    Article  Google Scholar 

  • Guo G, Von Meyenn F, Santos F, Chen Y, Reik W, Bertone P, Smith A, Nichols J (2016) Naive pluripotent stem cells derived directly from isolated cells of the human inner cell mass. Stem Cell Rep 6:437–446

    Article  Google Scholar 

  • Hackett JA, Surani MA (2014) Regulatory principles of pluripotency: from the ground state up. Cell Stem Cell 15:416–430

    Article  Google Scholar 

  • Harper JC, Pergament E, Delhanty JD (2004) Genetics of gametes and embryos. Eur J Obstet Gynecol Reprod Biol 115(Suppl 1):S80–S84

    Article  Google Scholar 

  • Healy L, Ruban L (2014) Atlas of human pluripotent stem cells in culture. Springer, New York

    Google Scholar 

  • Heins N, Englund MC, Sjoblom C, Dahl U, Tonning A, Bergh C, Lindahl A, Hanson C, Semb H (2004) Derivation, characterization, and differentiation of human embryonic stem cells. Stem Cells 22:367–376

    Article  Google Scholar 

  • Henderson JK, Draper JS, Baillie HS, Fishel S, Thomson JA, Moore H, Andrews PW (2002) Preimplantation human embryos and embryonic stem cells show comparable expression of stage-specific embryonic antigens. Stem Cells 20:329–337

    Article  Google Scholar 

  • Hewitson H, Wood V, Kadeva N, Cornwell G, Codognotto S, Stephenson E, Ilic D (2016) Generation of KCL035 research grade human embryonic stem cell line carrying a mutation in HBB gene. Stem Cell Res 16:210–212

    Article  Google Scholar 

  • Hikabe O, Hamazaki N, Nagamatsu G, Obata Y, Hirao Y, Hamada N, Shimamoto S, Imamura T, Nakashima K, Saitou M, Hayashi K (2016) Reconstitution in vitro of the entire cycle of the mouse female germ line. Nature 539:299–303

    Google Scholar 

  • Hochedlinger K, Plath K (2009) Epigenetic reprogramming and induced pluripotency. Development 136:509–523

    Article  Google Scholar 

  • Houbaviy HB, Murray MF, Sharp PA (2003) Embryonic stem cell-specific MicroRNAs. Dev Cell 5:351–358

    Article  Google Scholar 

  • Huang SX, Islam MN, O’Neill J, Hu Z, Yang YG, Chen YW, Mumau M, Green MD, Vunjak-Novakovic G, Bhattacharya J, Snoeck HW (2014) Efficient generation of lung and airway epithelial cells from human pluripotent stem cells. Nat Biotechnol 32:84–91

    Article  Google Scholar 

  • Hunziker EB, Lippuner K, Keel MJ, Shintani N (2015) An educational review of cartilage repair: precepts & practice – myths & misconceptions – progress & prospects. Osteoarthr Cartil 23:334–350

    Article  Google Scholar 

  • Hwang NS, Varghese S, Elisseeff J (2008) Derivation of chondrogenically-committed cells from human embryonic cells for cartilage tissue regeneration. PLoS One 3:e2498

    Article  Google Scholar 

  • Hwang Y, Suk S, Lin S, Tierney M, Du B, Seo T, Mitchell A, Sacco A, Varghese S (2013) Directed in vitro myogenesis of human embryonic stem cells and their in vivo engraftment. PLoS One 8:e72023

    Article  Google Scholar 

  • Ilic D, Stephenson E, Wood V, Jacquet L, Stevenson D, Petrova A, Kadeva N, Codognotto S, Patel H, Semple M, Cornwell G, Ogilvie C, Braude P (2012) Derivation and feeder-free propagation of human embryonic stem cells under xeno-free conditions. Cytotherapy 14:122–128

    Article  Google Scholar 

  • Ilic D, Ogilvie C (2017) Concise review: human embryonic stem cells-what have we done? What are we doing? Where are we going? Stem Cells 35:17–25

    Article  Google Scholar 

  • International Stem Cell Banking Initiative, C (2009) Consensus guidance for banking and supply of human embryonic stem cell lines for research purposes. Stem Cell Rev 5:301–314

    Article  Google Scholar 

  • International Stem Cell Banking Initiative, C, Adewumi O, Aflatoonian B, Ahrlund-Richter L, Amit M, Andrews PW, Beighton G, Bello PA, Benvenisty N, Berry LS, Bevan S, Blum B, Brooking J, Chen KG, Choo AB, Churchill GA, Corbel M, Damjanov I, Draper JS, Dvorak P, Emanuelsson K, Fleck RA, Ford A, Gertow K, Gertsenstein M, Gokhale PJ, Hamilton RS, Hampl A, Healy LE, Hovatta O, Hyllner J, Imreh MP, Itskovitz-Eldor J, Jackson J, Johnson JL, Jones M, Kee K, King BL, Knowles BB, Lako M, Lebrin F, Mallon BS, Manning D, Mayshar Y, Mckay RD, Michalska AE, Mikkola M, Mileikovsky M, Minger SL, Moore HD, Mummery CL, Nagy A, Nakatsuji N, O’Brien CM, Oh SK, Olsson C, Otonkoski T, Park KY, Passier R, Patel H, Patel M, Pedersen R, Pera MF, Piekarczyk MS, Pera RA, Reubinoff BE, Robins AJ, Possant J, Rugg-Gunn P, Schulz TC, Semb H, Sherrer ES, Siemen H, Stacey GN, Stojkovic M, Suemori H, Szatkiewicz J, Turetsky T, Tuuri T, van den Brink S, Vintersten K, Vuoristo S, Ward D, Weaver TA, Young LA, Zhang W (2007) Characterization of human embryonic stem cell lines by the international stem cell initiative. Nat Biotechnol 25:803–816

    Article  Google Scholar 

  • International Stem Cell Initiative, C, Akopian V, Andrews PW, Beil S, Benvenisty N, Brehm J, Christie M, Ford A, Fox V, Gokhale PJ, Healy L, Holm F, Hovatta O, Knowles BB, Ludwig TE, Mckay RD, Miyazaki T, Nakatsuji N, Oh SK, Pera MF, Rossant J, Stacey GN, Suemori H (2010) Comparison of defined culture systems for feeder cell free propagation of human embryonic stem cells. In Vitro Cell Dev Biol Anim 46:247–258

    Article  Google Scholar 

  • International Stem Cell Initiative, C, Amps K, Andrews PW, Anyfantis G, Armstrong L, Avery S, Baharvand H, Baker J, Baker D, Munoz MB, Beil S, Benvenisty N, Ben-Yosef D, Biancotti JC, Bosman A, Brena RM, Brison D, Caisander G, Camarasa MV, Chen J, Chiao E, Choi YM, Choo AB, Collins D, Colman A, Crook JM, Daley GQ, Dalton A, De Sousa PA, Denning C, Downie J, Dvorak P, Montgomery KD, Feki A, Ford A, Fox V, Fraga AM, Frumkin T, Ge L, Gokhale PJ, Golan-Lev T, Gourabi H, Gropp M, Lu G, Hampl A, Harron K, Healy L, Herath W, Holm F, Hovatta O, Hyllner J, Inamdar MS, Irwanto AK, Ishii T, Jaconi M, Jin Y, Kimber S, Kiselev S, Knowles BB, Kopper O, Kukharenko V, Kuliev A, Lagarkova MA, Laird PW, Lako M, Laslett AL, Lavon N, Lee DR, Lee JE, Li C, Lim LS, Ludwig TE, Ma Y, Maltby E, Mateizel I, Mayshar Y, Mileikovsky M, Minger SL, Miyazaki T, Moon SY, Moore H, Mummery C, Nagy A, Nakatsuji N, Narwani K, Oh SK, Oh SK, Olson C, Otonkoski T, Pan F, Park IH, Pells S, Pera MF, Pereira LV, Qi O, Raj GS, Reubinoff B, Robins A, Robson P, Rossant J et al (2011) Screening ethnically diverse human embryonic stem cells identifies a chromosome 20 minimal amplicon conferring growth advantage. Nat Biotechnol 29:1132–1144

    Article  Google Scholar 

  • Inzunza J, Gertow K, Stromberg MA, Matilainen E, Blennow E, Skottman H, Wolbank S, Ahrlund-Richter L, Hovatta O (2005) Derivation of human embryonic stem cell lines in serum replacement medium using postnatal human fibroblasts as feeder cells. Stem Cells 23:544–549

    Article  Google Scholar 

  • Itskovitz-Eldor J, Schuldiner M, Karsenti D, Eden A, Yanuka O, Amit M, Soreq H, Benvenisty N (2000) Differentiation of human embryonic stem cells into embryoid bodies compromising the three embryonic germ layers. Mol Med 6:88–95

    Google Scholar 

  • Joannides AJ, Fiore-Heriche C, Battersby AA, Athauda-Arachchi P, Bouhon IA, Williams L, Westmore K, Kemp PJ, Compston A, Allen ND, Chandran S (2007) A scaleable and defined system for generating neural stem cells from human embryonic stem cells. Stem Cells 25:731–737

    Article  Google Scholar 

  • Jones CA, Pohar S (2012) Health-related quality of life after total joint arthroplasty: a scoping review. Clin Geriatr Med 28:395–429

    Article  Google Scholar 

  • Kadzik RS, Morrisey EE (2012) Directing lung endoderm differentiation in pluripotent stem cells. Cell Stem Cell 10:355–361

    Article  Google Scholar 

  • Kalia LV, Lang AE (2015) Parkinson’s disease. Lancet 386:896–912

    Article  Google Scholar 

  • Karwacki-Neisius V, Goke J, Osorno R, Halbritter F, Ng JH, Weisse AY, Wong FC, Gagliardi A, Mullin NP, Festuccia N, Colby D, Tomlinson SR, Ng HH, Chambers I (2013) Reduced Oct4 expression directs a robust pluripotent state with distinct signaling activity and increased enhancer occupancy by Oct4 and Nanog. Cell Stem Cell 12:531–545

    Article  Google Scholar 

  • Kashyap V, Rezende NC, Scotland KB, Shaffer SM, Persson JL, Gudas LJ, Mongan NP (2009) Regulation of stem cell pluripotency and differentiation involves a mutual regulatory circuit of the NANOG, OCT4, and SOX2 pluripotency transcription factors with polycomb repressive complexes and stem cell microRNAs. Stem Cells Dev 18:1093–1108

    Article  Google Scholar 

  • Katsetos CD, Legido A, Perentes E, Mork SJ (2003) Class III beta-tubulin isotype: a key cytoskeletal protein at the crossroads of developmental neurobiology and tumor neuropathology. J Child Neurol 18:851–866. discussion 867

    Article  Google Scholar 

  • Kaur J, Tilkins ML (2013) Methods for culturing human embryonic stem cells on feeders. Methods Mol Biol 997:93–113

    Article  Google Scholar 

  • Kearns NA, Genga RM, Ziller M, Kapinas K, Peters H, Brehm MA, Meissner A, Maehr R (2013) Generation of organized anterior foregut epithelia from pluripotent stem cells using small molecules. Stem Cell Res 11:1003–1012

    Article  Google Scholar 

  • Kefalopoulou Z, Politis M, Piccini P, Mencacci N, Bhatia K, Jahanshahi M, Widner H, Rehncrona S, Brundin P, Bjorklund A, Lindvall O, Limousin P, Quinn N, Foltynie T (2014) Long-term clinical outcome of fetal cell transplantation for Parkinson disease: two case reports. JAMA Neurol 71:83–87

    Article  Google Scholar 

  • Kehoe DE, Jing D, Lock LT, Tzanakakis ES (2010) Scalable stirred-suspension bioreactor culture of human pluripotent stem cells. Tissue Eng Part A 16:405–421

    Article  Google Scholar 

  • Kerz M, Folarin A, Meleckyte R, Watt FM, Dobson RJ, Danovi D (2016) A novel automated high-content analysis workflow capturing cell population dynamics from induced pluripotent stem cell live imaging data. J Biomol Screen 21:887–896

    Article  Google Scholar 

  • Kim JH, Auerbach JM, Rodriguez-Gomez JA, Velasco I, Gavin D, Lumelsky N, Lee SH, Nguyen J, Sanchez-Pernaute R, Bankiewicz K, Mckay R (2002) Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson’s disease. Nature 418:50–56

    Article  Google Scholar 

  • Kim DS, Kim JY, Kang M, Cho MS, Kim DW (2007) Derivation of functional dopamine neurons from embryonic stem cells. Cell Transplant 16:117–123

    Google Scholar 

  • Kim K, Doi A, Wen B, Ng K, Zhao R, Cahan P, Kim J, Aryee MJ, Ji H, Ehrlich LI, Yabuuchi A, Takeuchi A, Cunniff KC, Hongguang H, Mckinney-Freeman S, Naveiras O, Yoon TJ, Irizarry RA, Jung N, Seita J, Hanna J, Murakami P, Jaenisch R, Weissleder R, Orkin SH, Weissman IL, Feinberg AP, Daley GQ (2010) Epigenetic memory in induced pluripotent stem cells. Nature 467:285–290

    Article  Google Scholar 

  • King FW, Liszewski W, Ritner C, Bernstein HS (2011) High-throughput tracking of pluripotent human embryonic stem cells with dual fluorescence resonance energy transfer molecular beacons. Stem Cells Dev 20:475–484

    Article  Google Scholar 

  • Kirkeby A, Grealish S, Wolf DA, Nelander J, Wood J, Lundblad M, Lindvall O, Parmar M (2012) Generation of regionally specified neural progenitors and functional neurons from human embryonic stem cells under defined conditions. Cell Rep 1:703–714

    Article  Google Scholar 

  • Kleinman HK, Mcgarvey ML, Liotta LA, Robey PG, Tryggvason K, Martin GR (1982) Isolation and characterization of type IV procollagen, laminin, and heparan sulfate proteoglycan from the EHS sarcoma. Biochemistry 21:6188–6193

    Article  Google Scholar 

  • Klimanskaya I, Chung Y, Becker S, Lu SJ, Lanza R (2006) Human embryonic stem cell lines derived from single blastomeres. Nature 444:481–485

    Article  Google Scholar 

  • Klimanskaya I, Chung Y, Becker S, Lu SJ, Lanza R (2007) Derivation of human embryonic stem cells from single blastomeres. Nat Protoc 2:1963–1972

    Article  Google Scholar 

  • Koay EJ, Hoben GM, Athanasiou KA (2007) Tissue engineering with chondrogenically differentiated human embryonic stem cells. Stem Cells 25:2183–2190

    Article  Google Scholar 

  • Kopp JL, Ormsbee BD, Desler M, Rizzino A (2008) Small increases in the level of Sox2 trigger the differentiation of mouse embryonic stem cells. Stem Cells 26:903–911

    Article  Google Scholar 

  • Krawetz RJ, Li X, Rancourt DE (2009) Human embryonic stem cells: caught between a ROCK inhibitor and a hard place. BioEssays 31:336–343

    Article  Google Scholar 

  • Krawetz R, Taiani JT, Liu S, Meng G, Li X, Kallos MS, Rancourt DE (2010) Large-scale expansion of pluripotent human embryonic stem cells in stirred-suspension bioreactors. Tissue Eng Part C Methods 16:573–582

    Article  Google Scholar 

  • Kriks S, Shim JW, Piao J, Ganat YM, Wakeman DR, Xie Z, Carrillo-Reid L, Auyeung G, Antonacci C, Buch A, Yang L, Beal MF, Surmeier DJ, Kordower JH, Tabar V, Studer L (2011) Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson’s disease. Nature 480:547–551

    Google Scholar 

  • Krishnakumar R, Blelloch RH (2013) Epigenetics of cellular reprogramming. Curr Opin Genet Dev 23:548–555

    Article  Google Scholar 

  • Kroon E, Martinson LA, Kadoya K, Bang AG, Kelly OG, Eliazer S, Young H, Richardson M, Smart NG, Cunningham J, Agulnick AD, D’amour KA, Carpenter MK, Baetge EE (2008) Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat Biotechnol 26:443–452

    Article  Google Scholar 

  • Kshitiz PJ, Kim P, Helen W, Engler AJ, Levchenko A, Kim DH (2012) Control of stem cell fate and function by engineering physical microenvironments. Integr Biol (Camb) 4:1008–1018

    Article  Google Scholar 

  • Kurosawa H (2007) Methods for inducing embryoid body formation: in vitro differentiation system of embryonic stem cells. J Biosci Bioeng 103:389–398

    Article  Google Scholar 

  • Kurpinski K, Chu J, Hashi C, LI S (2006) Anisotropic mechanosensing by mesenchymal stem cells. Proc Natl Acad Sci U S A 103:16095–16100

    Article  Google Scholar 

  • Kwon GS, Fraser ST, Eakin GS, Mangano M, Isern J, Sahr KE, Hadjantonakis AK, Baron MH (2006) Tg(Afp-GFP) expression marks primitive and definitive endoderm lineages during mouse development. Dev Dyn 235:2549–2558

    Article  Google Scholar 

  • Lakshmipathy U, Love B, Goff LA, Jornsten R, Graichen R, Hart RP, Chesnut JD (2007) MicroRNA expression pattern of undifferentiated and differentiated human embryonic stem cells. Stem Cells Dev 16:1003–1016

    Article  Google Scholar 

  • Lamba DA, Karl MO, Ware CB, Reh TA (2006) Efficient generation of retinal progenitor cells from human embryonic stem cells. Proc Natl Acad Sci U S A 103:12769–12774

    Article  Google Scholar 

  • Lancaster MA, Renner M, Martin CA, Wenzel D, Bicknell LS, Hurles ME, Homfray T, Penninger JM, Jackson AP, Knoblich JA (2013) Cerebral organoids model human brain development and microcephaly. Nature 501:373–379

    Article  Google Scholar 

  • Laping NJ, Grygielko E, Mathur A, Butter S, Bomberger J, Tweed C, Martin W, Fornwald J, Lehr R, Harling J, Gaster L, Callahan JF, Olson BA (2002) Inhibition of transforming growth factor (TGF)-beta1-induced extracellular matrix with a novel inhibitor of the TGF-beta type I receptor kinase activity: SB-431542. Mol Pharmacol 62:58–64

    Article  Google Scholar 

  • Laurent LC, Ulitsky I, Slavin I, Tran H, Schork A, Morey R, Lynch C, Harness JV, Lee S, Barrero MJ, Ku S, Martynova M, Semechkin R, Galat V, Gottesfeld J, Izpisua Belmonte JC, Murry C, Keirstead HS, Park HS, Schmidt U, Laslett AL, Muller FJ, Nievergelt CM, Shamir R, Loring JF (2011) Dynamic changes in the copy number of pluripotency and cell proliferation genes in human ESCs and iPSCs during reprogramming and time in culture. Cell Stem Cell 8:106–118

    Article  Google Scholar 

  • Lee ST, Oh SW, Kim DY, Han JY, Moon SY, Lim JM (2006) Serum replacement with a growth factor-free synthetic substance in culture medium contributes to effective establishment of mouse embryonic stem cells of various origins. Fertil Steril 86:1137–1145

    Article  Google Scholar 

  • Lee J, Taylor SE, Smeriglio P, Lai J, Maloney WJ, Yang F, Bhutani N (2015) Early induction of a prechondrogenic population allows efficient generation of stable chondrocytes from human induced pluripotent stem cells. FASEB J 29:3399–3410

    Article  Google Scholar 

  • Leitch HG, Mcewen KR, Turp A, Encheva V, Carroll T, Grabole N, Mansfield W, Nashun B, Knezovich JG, Smith A, Surani MA, Hajkova P (2013) Naive pluripotency is associated with global DNA hypomethylation. Nat Struct Mol Biol 20:311–316

    Article  Google Scholar 

  • Lerou PH, Yabuuchi A, Huo H, Takeuchi A, Shea J, Cimini T, Ince TA, Ginsburg E, Racowsky C, Daley GQ (2008) Human embryonic stem cell derivation from poor-quality embryos. Nat Biotechnol 26:212–214

    Article  Google Scholar 

  • Li M, Izpisua Belmonte JC (2016) Looking to the future following 10 years of induced pluripotent stem cell technologies. Nat Protoc 11:1579–1585

    Article  Google Scholar 

  • Lian X, Zhang J, Azarin SM, Zhu K, Hazeltine LB, Bao X, Hsiao C, Kamp TJ, Palecek SP (2013) Directed cardiomyocyte differentiation from human pluripotent stem cells by modulating Wnt/beta-catenin signaling under fully defined conditions. Nat Protoc 8:162–175

    Article  Google Scholar 

  • Lim JW, Bodnar A (2002) Proteome analysis of conditioned medium from mouse embryonic fibroblast feeder layers which support the growth of human embryonic stem cells. Proteomics 2:1187–1203

    Article  Google Scholar 

  • Lim CY, Solter D, Knowles BB, Damjanov I (2015) Development of teratocarcinomas and teratomas in severely immunodeficient NOD.Cg-Prkdc(scid) Il2rg(tm1Wjl)/Szj (NSG) mice. Stem Cells Dev 24:1515–1520

    Article  Google Scholar 

  • Lin Y, Chen G (2014) Embryoid body formation from human pluripotent stem cells in chemically defined E8 media (June 1, 2014). In: Stembook E (ed) The stem cell research community, StemBook

    Google Scholar 

  • Lindvall O, Bjorklund A (2004) Cell therapy in Parkinson’s disease. NeuroRx 1:382–393

    Article  Google Scholar 

  • Lindvall O, Kokaia Z (2009) Prospects of stem cell therapy for replacing dopamine neurons in Parkinson’s disease. Trends Pharmacol Sci 30:260–267

    Article  Google Scholar 

  • Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, Tonti-Filippini J, Nery JR, Lee L, Ye Z, Ngo QM, Edsall L, Antosiewicz-Bourget J, Stewart R, Ruotti V, Millar AH, Thomson JA, Ren B, Ecker JR (2009) Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462:315–322

    Article  Google Scholar 

  • Liu Y, Liu H, Sauvey C, Yao L, Zarnowska ED, Zhang SC (2013) Directed differentiation of forebrain GABA interneurons from human pluripotent stem cells. Nat Protoc 8:1670–1679

    Article  Google Scholar 

  • Loh KM, Chen A, Koh PW, Deng TZ, Sinha R, Tsai JM, Barkal AA, Shen KY, Jain R, Morganti RM, Shyh-Chang N, Fernhoff NB, George BM, Wernig G, Salomon RE, Chen Z, Vogel H, Epstein JA, Kundaje A, Talbot WS, Beachy PA, Ang LT, Weissman IL (2016) Mapping the pairwise choices leading from pluripotency to human bone, heart, and other mesoderm cell types. Cell 166:451–467

    Article  Google Scholar 

  • Ludwig TE, Bergendahl V, Levenstein ME, Yu J, Probasco MD, Thomson JA (2006a) Feeder-independent culture of human embryonic stem cells. Nat Methods 3:637–646

    Article  Google Scholar 

  • Ludwig TE, Levenstein ME, Jones JM, Berggren WT, Mitchen ER, Frane JL, Crandall LJ, Daigh CA, Conard KR, Piekarczyk MS, Llanas RA, Thomson JA (2006b) Derivation of human embryonic stem cells in defined conditions. Nat Biotechnol 24:185–187

    Article  Google Scholar 

  • Lukovic D, Diez Lloret A, Stojkovic P, Rodriguez-Martinez D, Perez Arago MA, Rodriguez-Jimenez FJ, Gonzalez-Rodriguez P, Lopez-Barneo J, Sykova E, Jendelova P, Kostic J, Moreno-Manzano V, Stojkovic M, Bhattacharya SS, Erceg S (2017) Highly efficient neural conversion of human pluripotent stem cells in adherent and animal-free conditions. Stem Cells Transl Med 6:1217–1226

    Article  Google Scholar 

  • Maherali N, Sridharan R, Xie W, Utikal J, Eminli S, Arnold K, Stadtfeld M, Yachechko R, Tchieu J, Jaenisch R, Plath K, Hochedlinger K (2007) Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell 1:55–70

    Article  Google Scholar 

  • Maroof AM, Keros S, Tyson JA, Ying SW, Ganat YM, Merkle FT, Liu B, Goulburn A, Stanley EG, Elefanty AG, Widmer HR, Eggan K, Goldstein PA, Anderson SA, Studer L (2013) Directed differentiation and functional maturation of cortical interneurons from human embryonic stem cells. Cell Stem Cell 12:559–572

    Article  Google Scholar 

  • Marti M, Mulero L, Pardo C, Morera C, Carrio M, Laricchia-Robbio L, Esteban CR, Izpisua Belmonte JC (2013) Characterization of pluripotent stem cells. Nat Protoc 8:223–253

    Article  Google Scholar 

  • Martin MJ, Muotri A, Gage F, Varki A (2005) Human embryonic stem cells express an immunogenic nonhuman sialic acid. Nat Med 11:228–232

    Article  Google Scholar 

  • Martinat C, Bacci JJ, Leete T, Kim J, Vanti WB, Newman AH, Cha JH, Gether U, Wang H, Abeliovich A (2006) Cooperative transcription activation by Nurr1 and Pitx3 induces embryonic stem cell maturation to the midbrain dopamine neuron phenotype. Proc Natl Acad Sci U S A 103:2874–2879

    Article  Google Scholar 

  • Mascetti VL, Pedersen RA (2016) Human-mouse chimerism validates human stem cell pluripotency. Cell Stem Cell 18:67–72

    Article  Google Scholar 

  • Masters JR, Stacey GN (2007) Changing medium and passaging cell lines. Nat Protoc 2:2276–2284

    Article  Google Scholar 

  • Mccracken KW, Howell JC, Wells JM, Spence JR (2011) Generating human intestinal tissue from pluripotent stem cells in vitro. Nat Protoc 6:1920–1928

    Article  Google Scholar 

  • Mckay TR, Camarasa MV, Iskender B, Ye J, Bates N, Miller D, Fitzsimmons JC, Foxler D, Mee M, Sharp TV, Aplin J, Brison DR, Kimber SJ (2011) Human feeder cell line for derivation and culture of hESc/hiPSc. Stem Cell Res 7:154–162

    Article  Google Scholar 

  • Mehta A, Mathew S, Viswanathan C, Sen Majumdar A (2010) Intrinsic properties and external factors determine the differentiation bias of human embryonic stem cell lines. Cell Biol Int 34:1021–1031

    Article  Google Scholar 

  • Menasche P, Vanneaux V, Hagege A, Bel A, Cholley B, Cacciapuoti I, Parouchev A, Benhamouda N, Tachdjian G, Tosca L, Trouvin JH, Fabreguettes JR, Bellamy V, Guillemain R, Suberbielle Boissel C, Tartour E, Desnos M, Larghero J (2015) Human embryonic stem cell-derived cardiac progenitors for severe heart failure treatment: first clinical case report. Eur Heart J 36:2011–2017

    Article  Google Scholar 

  • Meng G, Liu S, Rancourt DE (2012) Synergistic effect of medium, matrix, and exogenous factors on the adhesion and growth of human pluripotent stem cells under defined, xeno-free conditions. Stem Cells Dev 21:2036–2048

    Article  Google Scholar 

  • Mikkola M, Olsson C, Palgi J, Ustinov J, Palomaki T, Horelli-Kuitunen N, Knuutila S, Lundin K, Otonkoski T, Tuuri T (2006) Distinct differentiation characteristics of individual human embryonic stem cell lines. BMC Dev Biol 6:40

    Article  Google Scholar 

  • Miyazono M, Lee VM, Trojanowski JQ (1995) Proliferation, cell death, and neuronal differentiation in transplanted human embryonal carcinoma (NTera2) cells depend on the graft site in nude and severe combined immunodeficient mice. Lab Investig 73:273–283

    Google Scholar 

  • Moustakas A, Heldin CH (2009) The regulation of TGFbeta signal transduction. Development 136:3699–3714

    Article  Google Scholar 

  • Muller FJ, Brandl B, Loring JF (2008) Assessment of human pluripotent stem cells with PluriTest. StemBook, Cambridge, MA

    Google Scholar 

  • Muller FJ, Goldmann J, Loser P, Loring JF (2010) A call to standardize teratoma assays used to define human pluripotent cell lines. Cell Stem Cell 6:412–414

    Article  Google Scholar 

  • Muller FJ, Schuldt BM, Williams R, Mason D, Altun G, Papapetrou EP, Danner S, Goldmann JE, Herbst A, Schmidt NO, Aldenhoff JB, Laurent LC, Loring JF (2011) A bioinformatic assay for pluripotency in human cells. Nat Methods 8:315–317

    Article  Google Scholar 

  • Murdoch A, Braude P, Courtney A, Brison D, Hunt C, Lawford-Davies J, Moore H, Stacey G, Sethe S, Procurement Working Group Of National Clinical H, E. S. C. F, National Clinical H, E. S. C. F (2012) The procurement of cells for the derivation of human embryonic stem cell lines for therapeutic use: recommendations for good practice. Stem Cell Rev 8:91–99

    Article  Google Scholar 

  • Na J, Baker D, Zhang J, Andrews PW, Barbaric I (2014) Aneuploidy in pluripotent stem cells and implications for cancerous transformation. Protein Cell 5:569–579

    Article  Google Scholar 

  • Nakazawa K, Yoshiura Y, Koga H, Sakai Y (2013) Characterization of mouse embryoid bodies cultured on microwell chips with different well sizes. J Biosci Bioeng 116:628–633

    Article  Google Scholar 

  • Ng ES, Davis RP, Hatzistavrou T, Stanley EG, Elefanty AG (2008) Directed differentiation of human embryonic stem cells as spin embryoid bodies and a description of the hematopoietic blast colony forming assay. Curr Protoc Stem Cell Biol, Chapter 1, Unit 1D 3. 4:1D.3.1-1D.3.23

    Google Scholar 

  • Nicholas CR, Chen J, Tang Y, Southwell DG, Chalmers N, Vogt D, Arnold CM, Chen YJ, Stanley EG, Elefanty AG, Sasai Y, Alvarez-Buylla A, Rubenstein JL, Kriegstein AR (2013) Functional maturation of hPSC-derived forebrain interneurons requires an extended timeline and mimics human neural development. Cell Stem Cell 12:573–586

    Article  Google Scholar 

  • Nostro MC, Sarangi F, Ogawa S, Holtzinger A, Corneo B, Li X, Micallef SJ, Park IH, Basford C, Wheeler MB, Daley GQ, Elefanty AG, Stanley EG, Keller G (2011) Stage-specific signaling through TGFbeta family members and WNT regulates patterning and pancreatic specification of human pluripotent stem cells. Development 138:861–871

    Article  Google Scholar 

  • Nukaya D, Minami K, Hoshikawa R, Yokoi N, Seino S (2015) Preferential gene expression and epigenetic memory of induced pluripotent stem cells derived from mouse pancreas. Genes Cells 20:367–381

    Article  Google Scholar 

  • Ohi Y, Qin H, Hong C, Blouin L, Polo JM, Guo T, Qi Z, Downey SL, Manos PD, Rossi DJ, Yu J, Hebrok M, Hochedlinger K, Costello JF, Song JS, Ramalho-Santos M (2011) Incomplete DNA methylation underlies a transcriptional memory of somatic cells in human iPS cells. Nat Cell Biol 13:541–549

    Article  Google Scholar 

  • Oldershaw RA, Baxter MA, Lowe ET, Bates N, Grady LM, Soncin F, Brison DR, Hardingham TE, Kimber SJ (2010) Directed differentiation of human embryonic stem cells toward chondrocytes. Nat Biotechnol 28:1187–1194

    Article  Google Scholar 

  • Osakada F, Jin ZB, Hirami Y, Ikeda H, Danjyo T, Watanabe K, Sasai Y, Takahashi M (2009) In vitro differentiation of retinal cells from human pluripotent stem cells by small-molecule induction. J Cell Sci 122:3169–3179

    Article  Google Scholar 

  • Oshima K, Shin K, Diensthuber M, Peng AW, Ricci AJ, Heller S (2010) Mechanosensitive hair cell-like cells from embryonic and induced pluripotent stem cells. Cell 141:704–716

    Article  Google Scholar 

  • Pagliuca FW, Melton DA (2013) How to make a functional beta-cell. Development 140:2472–2483

    Article  Google Scholar 

  • Pagliuca FW, Millman JR, Gurtler M, Segel M, Van Dervort A, Ryu JH, Peterson QP, Greiner D, Melton DA (2014) Generation of functional human pancreatic beta cells in vitro. Cell 159:428–439

    Article  Google Scholar 

  • Patterson M, Chan DN, Ha I, Case D, Cui Y, Van Handel B, Mikkola HK, Lowry WE (2012) Defining the nature of human pluripotent stem cell progeny. Cell Res 22:178–193

    Article  Google Scholar 

  • Perrier AL, Tabar V, Barberi T, Rubio ME, Bruses J, Topf N, Harrison NL, Studer L (2004) Derivation of midbrain dopamine neurons from human embryonic stem cells. Proc Natl Acad Sci U S A 101:12543–12548

    Article  Google Scholar 

  • Perestrelo T, Chen W, Correia M, Le C, Pereira S, Rodrigues AS, Sousa MI, Ramalhosantos J, Wirtz D (2017) Pluri-IQ: quantification of embryonic stem cell pluripotency through an image-based analysis software. Stem Cell Rep 9:697–709

    Article  Google Scholar 

  • Pesl M, Acimovic I, Pribyl J, Hezova R, Vilotic A, Fauconnier J, Vrbsky J, Kruzliak P, Skladal P, Kara T, Rotrekl V, Lacampagne A, Dvorak P, Meli AC (2014) Forced aggregation and defined factors allow highly uniform-sized embryoid bodies and functional cardiomyocytes from human embryonic and induced pluripotent stem cells. Heart Vessel 29:834–846

    Article  Google Scholar 

  • Peterson S, Loring JF (2012) Human stem cell manual: a laboratory guide. Academic Press

    Google Scholar 

  • Phillips BW, Hentze H, Rust WL, Chen QP, Chipperfield H, Tan EK, Abraham S, Sadasivam A, Soong PL, Wang ST, Lim R, Sun W, Colman A, Dunn NR (2007) Directed differentiation of human embryonic stem cells into the pancreatic endocrine lineage. Stem Cells Dev 16:561–578

    Article  Google Scholar 

  • Pijuan-Galito S, Tamm C, Schuster J, Sobol M, Forsberg L, Merry CL, Anneren C (2016) Human serum-derived protein removes the need for coating in defined human pluripotent stem cell culture. Nat Commun 7:12170

    Article  Google Scholar 

  • Pistollato F, Bremer-Hoffmann S, Healy L, Young L, Stacey G (2012) Standardization of pluripotent stem cell cultures for toxicity testing. Expert Opin Drug Metab Toxicol 8:239–257

    Article  Google Scholar 

  • Polo JM, Liu S, Figueroa ME, Kulalert W, Eminli S, Tan KY, Apostolou E, Stadtfeld M, Li Y, Shioda T, Natesan S, Wagers AJ, Melnick A, Evans T, Hochedlinger K (2010) Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells. Nat Biotechnol 28:848–855

    Article  Google Scholar 

  • Przyborski SA (2005) Differentiation of human embryonic stem cells after transplantation in immune-deficient mice. Stem Cells 23:1242–1250

    Article  Google Scholar 

  • Ramirez JM, Gerbal-Chaloin S, Milhavet O, Qiang B, Becker F, Assou S, Lemaitre JM, Hamamah S, De Vos J (2011) Brief report: benchmarking human pluripotent stem cell markers during differentiation into the three germ layers unveils a striking heterogeneity: all markers are not equal. Stem Cells 29:1469–1474

    Google Scholar 

  • Rao TP, Kuhl M (2010) An updated overview on Wnt signaling pathways: a prelude for more. Circ Res 106:1798–1806

    Article  Google Scholar 

  • Reubinoff BE, Pera MF, Fong CY, Trounson A, Bongso A (2000) Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat Biotechnol 18:399–404

    Article  Google Scholar 

  • Rezania A, Bruin JE, Riedel MJ, Mojibian M, Asadi A, Xu J, Gauvin R, Narayan K, Karanu F, O’Neil JJ, Ao Z, Warnock GL, Kieffer TJ (2012) Maturation of human embryonic stem cell-derived pancreatic progenitors into functional islets capable of treating pre-existing diabetes in mice. Diabetes 61:2016–2029

    Article  Google Scholar 

  • Rezania A, Bruin JE, Arora P, Rubin A, Batushansky I, Asadi A, O’dwyer S, Quiskamp N, Mojibian M, Albrecht T, Yang YH, Johnson JD, Kieffer TJ (2014) Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells. Nat Biotechnol 32:1121–1133

    Article  Google Scholar 

  • Richards M, Tan SP, Tan JH, Chan WK, Bongso A (2004) The transcriptome profile of human embryonic stem cells as defined by SAGE. Stem Cells 22:51–64

    Article  Google Scholar 

  • Rodin S, Domogatskaya A, Strom S, Hansson EM, Chien KR, Inzunza J, Hovatta O, Tryggvason K (2010) Long-term self-renewal of human pluripotent stem cells on human recombinant laminin-511. Nat Biotechnol 28:611–615

    Article  Google Scholar 

  • Rodin S, Antonsson L, Niaudet C, Simonson OE, Salmela E, Hansson EM, Domogatskaya A, Xiao Z, Damdimopoulou P, Sheikhi M, Inzunza J, Nilsson AS, Baker D, Kuiper R, Sun Y, Blennow E, Nordenskjold M, Grinnemo KH, Kere J, Betsholtz C, Hovatta O, Tryggvason K (2014) Clonal culturing of human embryonic stem cells on laminin-521/E-cadherin matrix in defined and xeno-free environment. Nat Commun 5:3195

    Article  Google Scholar 

  • Roelandt P, Pauwelyn KA, Sancho-Bru P, Subramanian K, Bose B, Ordovas L, Vanuytsel K, Geraerts M, Firpo M, De Vos R, Fevery J, Nevens F, Hu WS, Verfaillie CM (2010) Human embryonic and rat adult stem cells with primitive endoderm-like phenotype can be fated to definitive endoderm, and finally hepatocyte-like cells. PLoS One 5:e12101

    Article  Google Scholar 

  • Roost MS, Van Iperen L, Ariyurek Y, Buermans HP, Arindrarto W, Devalla HD, Passier R, Mummery CL, Carlotti F, De Koning EJ, Van Zwet EW, Goeman JJ, Chuva De Sousa Lopes SM (2015) KeyGenes, a tool to probe tissue differentiation using a human fetal transcriptional atlas. Stem Cell Rep 4:1112–1124

    Article  Google Scholar 

  • Rosowski KA, Mertz AF, Norcross S, Dufresne ER, Horsley V (2015) Edges of human embryonic stem cell colonies display distinct mechanical properties and differentiation potential. Sci Rep 5:14218

    Article  Google Scholar 

  • Rubin LL (2008) Stem cells and drug discovery: the beginning of a new era? Cell 132:549–552

    Article  Google Scholar 

  • Santangelo P, Nitin N, Bao G (2006) Nanostructured probes for RNA detection in living cells. Ann Biomed Eng 34:39–50

    Article  Google Scholar 

  • Sato N, Sanjuan IM, Heke M, Uchida M, Naef F, Brivanlou AH (2003) Molecular signature of human embryonic stem cells and its comparison with the mouse. Dev Biol 260:404–413

    Article  Google Scholar 

  • Schiffer CA (2001) Diagnosis and management of refractoriness to platelet transfusion. Blood Rev 15:175–180

    Article  Google Scholar 

  • Schulz TC (2015) Concise review: manufacturing of pancreatic endoderm cells for clinical trials in type 1 diabetes. Stem Cells Transl Med 4:927–931

    Article  Google Scholar 

  • Schwartz SD, Hubschman JP, Heilwell G, Franco-Cardenas V, Pan CK, Ostrick RM, Mickunas E, Gay R, Klimanskaya I, Lanza R (2012) Embryonic stem cell trials for macular degeneration: a preliminary report. Lancet 379:713–720

    Article  Google Scholar 

  • Schwartz SD, Regillo CD, Lam BL, Eliott D, Rosenfeld PJ, Gregori NZ, Hubschman JP, Davis JL, Heilwell G, Spirn M, Maguire J, Gay R, Bateman J, Ostrick RM, Morris D, Vincent M, Anglade E, Del Priore LV, Lanza R (2015) Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt’s macular dystrophy: follow-up of two open-label phase 1/2 studies. Lancet 385:509–516

    Article  Google Scholar 

  • Seltmann S, Lekschas F, Muller R, Stachelscheid H, Bittner MS, Zhang W, Kidane L, Seriola A, Veiga A, Stacey G, Kurtz A (2016) hPSCreg – the human pluripotent stem cell registry. Nucleic Acids Res 44:D757–D763

    Article  Google Scholar 

  • Serra M, Brito C, Sousa MF, Jensen J, Tostoes R, Clemente J, Strehl R, Hyllner J, Carrondo MJ, Alves PM (2010) Improving expansion of pluripotent human embryonic stem cells in perfused bioreactors through oxygen control. J Biotechnol 148:208–215

    Article  Google Scholar 

  • Shi Y, Kirwan P, Livesey FJ (2012) Directed differentiation of human pluripotent stem cells to cerebral cortex neurons and neural networks. Nat Protoc 7:1836–1846

    Article  Google Scholar 

  • Shirane K, Kurimoto K, Yabuta Y, Yamaji M, Satoh J, Ito S, Watanabe A, Hayashi K, Saitou M, Sasaki H (2016) Global landscape and regulatory principles of DNA methylation reprogramming for germ cell specification by mouse pluripotent stem cells. Dev Cell 39:87–103

    Article  Google Scholar 

  • Sinagoga KL, Wells JM (2015) Generating human intestinal tissues from pluripotent stem cells to study development and disease. EMBO J 34:1149–1163

    Article  Google Scholar 

  • Singh U, Quintanilla RH, Grecian S, Gee KR, Rao MS, Lakshmipathy U (2012) Novel live alkaline phosphatase substrate for identification of pluripotent stem cells. Stem Cell Rev 8:1021–1029

    Article  Google Scholar 

  • Skalli O, Pelte MF, Peclet MC, Gabbiani G, Gugliotta P, Bussolati G, Ravazzola M, Orci L (1989) Alpha-smooth muscle actin, a differentiation marker of smooth muscle cells, is present in microfilamentous bundles of pericytes. J Histochem Cytochem 37:315–321

    Article  Google Scholar 

  • Smith JR, Vallier L, Lupo G, Alexander M, Harris WA, Pedersen RA (2008) Inhibition of activin/nodal signaling promotes specification of human embryonic stem cells into neuroectoderm. Dev Biol 313:107–117

    Article  Google Scholar 

  • Solomon S, Pitossi F, Rao MS (2015) Banking on iPSC – is it doable and is it worthwhile. Stem Cell Rev 11:1–10

    Article  Google Scholar 

  • Solter D, Knowles BB (1975) Immunosurgery of mouse blastocyst. Proc Natl Acad Sci U S A 72:5099–5102

    Article  Google Scholar 

  • Soteriou D, Iskender B, Byron A, Humphries JD, Borg-Bartolo S, Haddock MC, Baxter MA, Knight D, Humphries MJ, Kimber SJ (2013) Comparative proteomic analysis of supportive and unsupportive extracellular matrix substrates for human embryonic stem cell maintenance. J Biol Chem 288:18716–18731

    Article  Google Scholar 

  • Spence JR, Mayhew CN, Rankin SA, Kuhar MF, Vallance JE, Tolle K, Hoskins EE, Kalinichenko VV, Wells SI, Zorn AM, Shroyer NF, Wells JM (2011) Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature 470:105–109

    Article  Google Scholar 

  • Sperger JM, Chen X, Draper JS, Antosiewicz JE, Chon CH, Jones SB, Brooks JD, Andrews PW, Brown PO, Thomson JA (2003) Gene expression patterns in human embryonic stem cells and human pluripotent germ cell tumors. Proc Natl Acad Sci U S A 100:13350–13355

    Article  Google Scholar 

  • Stacey GN (2011) Cell culture contamination. Methods Mol Biol 731:79–91

    Article  Google Scholar 

  • Stacey G (2012) Banking stem cells for research and clinical applications. Prog Brain Res 200:41–58

    Article  Google Scholar 

  • Stacey G, Hunt CJ (2006) The UK stem cell bank: a UK government-funded, international resource center for stem cell research. Regen Med 1:139–142

    Article  Google Scholar 

  • Steiner D, Khaner H, Cohen M, Even-Ram S, Gil Y, Itsykson P, Turetsky T, Idelson M, Aizenman E, Ram R, Berman-Zaken Y, Reubinoff B (2010) Derivation, propagation and controlled differentiation of human embryonic stem cells in suspension. Nat Biotechnol 28:361–364

    Article  Google Scholar 

  • Steward MM, Lee JS, O’Donovan A, Wyatt M, Bernstein BE, Shilatifard A (2006) Molecular regulation of H3K4 trimethylation by ASH2L, a shared subunit of MLL complexes. Nat Struct Mol Biol 13:852–854

    Article  Google Scholar 

  • Strom S, Inzunza J, Grinnemo KH, Holmberg K, Matilainen E, Stromberg AM, Blennow E, Hovatta O (2007) Mechanical isolation of the inner cell mass is effective in derivation of new human embryonic stem cell lines. Hum Reprod 22:3051–3058

    Article  Google Scholar 

  • Studeny M, Marini FC, Champlin RE, Zompetta C, Fidler IJ, Andreeff M (2002) Bone marrow-derived mesenchymal stem cells as vehicles for interferon-beta delivery into tumors. Cancer Res 62:3603–3608

    Google Scholar 

  • Suo G, Han J, Wang X, Zhang J, Zhao Y, Zhao Y, Dai J (2005) Oct4 pseudogenes are transcribed in cancers. Biochem Biophys Res Commun 337:1047–1051

    Article  Google Scholar 

  • Swistowski A, Peng J, Han Y, Swistowska AM, Rao MS, Zeng X (2009) Xeno-free defined conditions for culture of human embryonic stem cells, neural stem cells and dopaminergic neurons derived from them. PLoS One 4:e6233

    Article  Google Scholar 

  • Tachibana M, Amato P, Sparman M, Gutierrez NM, Tippner-Hedges R, Ma H, Kang E, Fulati A, Lee HS, Sritanaudomchai H, Masterson K, Larson J, Eaton D, Sadler-Fredd K, Battaglia D, Lee D, Wu D, Jensen J, Patton P, Gokhale S, Stouffer RL, Wolf D, Mitalipov S (2013) Human embryonic stem cells derived by somatic cell nuclear transfer. Cell 153:1228–1238

    Article  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  Google Scholar 

  • Takasato M, Er PX, Becroft M, Vanslambrouck JM, Stanley EG, Elefanty AG, Little MH (2014) Directing human embryonic stem cell differentiation towards a renal lineage generates a self-organizing kidney. Nat Cell Biol 16:118–126

    Article  Google Scholar 

  • Takeuchi H, Nakatsuji N, Suemori H (2014) Endodermal differentiation of human pluripotent stem cells to insulin-producing cells in 3D culture. Sci Rep 4:4488

    Article  Google Scholar 

  • Tannenbaum SE, Turetsky TT, Singer O, Aizenman E, Kirshberg S, Ilouz N, Gil Y, Berman-Zaken Y, Perlman TS, Geva N, Levy O, Arbell D, Simon A, Ben-Meir A, Shufaro Y, Laufer N, Reubinoff BE (2012) Derivation of xeno-free and GMP-grade human embryonic stem cells – platforms for future clinical applications. PLoS One 7:e35325

    Article  Google Scholar 

  • TAPBIOSYSTEMS (n.d.) Available: http://www.tapbiosystems.com/tap/cell_culture/CompacT_SelecT.htm. Accessed 14-10-2016

  • Taylor CJ, Bolton EM, Pocock S, Sharples LD, Pedersen RA, Bradley JA (2005) Banking on human embryonic stem cells: estimating the number of donor cell lines needed for HLA matching. Lancet 366:2019–2025

    Article  Google Scholar 

  • Taylor CJ, Peacock S, Chaudhry AN, Bradley JA, Bolton EM (2012) Generating an iPSC bank for HLA-matched tissue transplantation based on known donor and recipient HLA types. Cell Stem Cell 11:147–152

    Article  Google Scholar 

  • TECAN (n.d.) Available: http://ww3.tecan.com/platform/content/element/5549/Tecan%20Cellerity_Package.pdf. Accessed 14-10-2016

  • Tesar PJ, Chenoweth JG, Brook FA, Davies TJ, Evans EP, Mack DL, Gardner RL, Mckay RD (2007) New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature 448:196–199

    Article  Google Scholar 

  • Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147

    Article  Google Scholar 

  • Tieng V, Stoppini L, Villy S, Fathi M, Dubois-Dauphin M, Krause KH (2014) Engineering of midbrain organoids containing long-lived dopaminergic neurons. Stem Cells Dev 23:1535–1547

    Article  Google Scholar 

  • Toh WS, Yang Z, Heng BC, Cao T (2007) Differentiation of human embryonic stem cells toward the chondrogenic lineage. Salamanders Regen Res Methods Protocol 407:333–349

    Google Scholar 

  • Toh WS, Guo XM, Choo AB, Lu K, Lee EH, Cao T (2009) Differentiation and enrichment of expandable chondrogenic cells from human embryonic stem cells in vitro. J Cell Mol Med 13:3570–3590

    Article  Google Scholar 

  • Touboul T, Hannan NR, Corbineau S, Martinez A, Martinet C, Branchereau S, Mainot S, Strick-Marchand H, Pedersen R, Di Santo J, Weber A, Vallier L (2010) Generation of functional hepatocytes from human embryonic stem cells under chemically defined conditions that recapitulate liver development. Hepatology 51:1754–1765

    Article  Google Scholar 

  • Trounson A, Dewitt ND (2016) Pluripotent stem cells progressing to the clinic. Nat Rev Mol Cell Biol 17:194–200

    Article  Google Scholar 

  • Tsankov AM, Akopian V, Pop R, Chetty S, Gifford CA, Daheron L, Tsankova NM, Meissner A (2015) A qPCR ScoreCard quantifies the differentiation potential of human pluripotent stem cells. Nat Biotechnol 33:1182–1192

    Article  Google Scholar 

  • Turetsky T, Aizenman E, Gil Y, Weinberg N, Shufaro Y, Revel A, Laufer N, Simon A, Abeliovich D, Reubinoff BE (2008) Laser-assisted derivation of human embryonic stem cell lines from IVF embryos after preimplantation genetic diagnosis. Hum Reprod 23:46–53

    Article  Google Scholar 

  • Turner N, Grose R (2010) Fibroblast growth factor signalling: from development to cancer. Nat Rev Cancer 10:116–129

    Article  Google Scholar 

  • Vallier L, Reynolds D, Pedersen RA (2004) Nodal inhibits differentiation of human embryonic stem cells along the neuroectodermal default pathway. Dev Biol 275:403–421

    Article  Google Scholar 

  • Van Hoof D, Liku ME (2013) Directed differentiation of human pluripotent stem cells along the pancreatic endocrine lineage. Methods Mol Biol 997:127–140

    Article  Google Scholar 

  • Vaskova EA, Stekleneva AE, Medvedev SP, Zakian SM (2013) “Epigenetic memory” phenomenon in induced pluripotent stem cells. Acta Nat 5:15–21

    Google Scholar 

  • Vegas AJ, Veiseh O, Gurtler M, Millman JR, Pagliuca FW, Bader AR, Doloff JC, Li J, Chen M, Olejnik K, Tam HH, Jhunjhunwala S, Langan E, Aresta-Dasilva S, Gandham S, Mcgarrigle JJ, Bochenek MA, Hollister-Lock J, Oberholzer J, Greiner DL, Weir GC, Melton DA, Langer R, Anderson DG (2016) Long-term glycemic control using polymer-encapsulated human stem cell-derived beta cells in immune-competent mice. Nat Med 22:306–311

    Article  Google Scholar 

  • Vendrame F, Pileggi A, Laughlin E, Allende G, Martin-Pagola A, Molano RD, Diamantopoulos S, Standifer N, Geubtner K, Falk BA, Ichii H, Takahashi H, Snowhite I, Chen Z, Mendez A, Chen L, Sageshima J, Ruiz P, Ciancio G, Ricordi C, Reijonen H, Nepom GT, Burke GW 3rd, Pugliese A (2010) Recurrence of type 1 diabetes after simultaneous pancreas-kidney transplantation, despite immunosuppression, is associated with autoantibodies and pathogenic autoreactive CD4 T-cells. Diabetes 59:947–957

    Article  Google Scholar 

  • Vescovi AL, Parati EA, Gritti A, Poulin P, Ferrario M, Wanke E, Frolichsthal-Schoeller P, Cova L, Arcellana-Panlilio M, Colombo A, Galli R (1999) Isolation and cloning of multipotential stem cells from the embryonic human CNS and establishment of transplantable human neural stem cell lines by epigenetic stimulation. Exp Neurol 156:71–83

    Article  Google Scholar 

  • Vestergaard ML, Awan A, Warzecha CB, Christensen ST, Andersen CY (2016) Immunofluorescence microscopy and mRNA analysis of human embryonic stem cells (hESCs) including primary cilia associated signaling pathways. Methods Mol Biol 1307:123–140

    Article  Google Scholar 

  • Vitillo L, Baxter M, Iskender B, Whiting P, Kimber SJ (2016) Integrin-associated focal adhesion kinase protects human embryonic stem cells from apoptosis, detachment, and differentiation. Stem Cell Rep 7:167–176

    Article  Google Scholar 

  • Wakitani S, Takaoka K, Hattori T, Miyazawa N, Iwanaga T, Takeda S, Watanabe TK, Tanigami A (2003) Embryonic stem cells injected into the mouse knee joint form teratomas and subsequently destroy the joint. Rheumatology (Oxford) 42:162–165

    Article  Google Scholar 

  • Wang X, Lin G, Martins-Taylor K, Zeng H, Xu RH (2009) Inhibition of caspase-mediated anoikis is critical for basic fibroblast growth factor-sustained culture of human pluripotent stem cells. J Biol Chem 284:34054–34064

    Article  Google Scholar 

  • Wang Y, Chou BK, Dowey S, He C, Gerecht S, Cheng L (2013) Scalable expansion of human induced pluripotent stem cells in the defined xeno-free E8 medium under adherent and suspension culture conditions. Stem Cell Res 11:1103–1116

    Article  Google Scholar 

  • Watanabe K, Ueno M, Kamiya D, Nishiyama A, Matsumura M, Wataya T, Takahashi JB, Nishikawa S, Nishikawa S, Muguruma K, Sasai Y (2007) A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nat Biotechnol 25:681–686

    Article  Google Scholar 

  • Weathersbee PS, Pool TB, Ord T (1995) Synthetic serum substitute (SSS): a globulin-enriched protein supplement for human embryo culture. J Assist Reprod Genet 12:354–360

    Article  Google Scholar 

  • Weinberger L, Ayyash M, Novershtern N, Hanna JH (2016) Dynamic stem cell states: naive to primed pluripotency in rodents and humans. Nat Rev Mol Cell Biol 17:155–169

    Article  Google Scholar 

  • Weissbein U, Benvenisty N, Ben-David U (2014) Quality control: genome maintenance in pluripotent stem cells. J Cell Biol 204:153–163

    Article  Google Scholar 

  • Whiting P, Kerby J, Coffey P, Da Cruz L, Mckernan R (2015) Progressing a human embryonic stem-cell-based regenerative medicine therapy towards the clinic. Philos Trans R Soc Lond Ser B Biol Sci 370:20140375

    Article  Google Scholar 

  • Wichterle H, Lieberam I, Porter JA, Jessell TM (2002) Directed differentiation of embryonic stem cells into motor neurons. Cell 110:385–397

    Article  Google Scholar 

  • Widuchowski W, Widuchowski J, Trzaska T (2007) Articular cartilage defects: study of 25,124 knee arthroscopies. Knee 14:177–182

    Article  Google Scholar 

  • Williams RC, Opelz G, Mcgarvey CJ, Weil EJ, Chakkera HA (2016) The risk of transplant failure with HLA mismatch in first adult kidney allografts from deceased donors. Transplantation 100:1094–1102

    Article  Google Scholar 

  • Wolf DP, Morey R, Kang E, Ma H, Hayama T, Laurent LC, Mitalipov S (2016) Embryonic stem cells derived by somatic cell nuclear transfer: a horse in the race? Stem Cells 35(1):26–34

    Article  Google Scholar 

  • Wu L, Bluguermann C, Kyupelyan L, Latour B, Gonzalez S, Shah S, Galic Z, Ge S, Zhu Y, Petrigliano FA, Nsair A, Miriuka SG, Li X, Lyons KM, Crooks GM, Mcallister DR, Van Handel B, Adams JS, Evseenko D (2013) Human developmental chondrogenesis as a basis for engineering chondrocytes from pluripotent stem cells. Stem Cell Rep 1:575–589

    Article  Google Scholar 

  • Xia Y, Nivet E, Sancho-Martinez I, Gallegos T, Suzuki K, Okamura D, Wu MZ, Dubova I, Esteban CR, Montserrat N, Campistol JM, Izpisua Belmonte JC (2013) Directed differentiation of human pluripotent cells to ureteric bud kidney progenitor-like cells. Nat Cell Biol 15:1507–1515

    Article  Google Scholar 

  • Xu C, Inokuma MS, Denham J, Golds K, Kundu P, Gold JD, Carpenter MK (2001) Feeder-free growth of undifferentiated human embryonic stem cells. Nat Biotechnol 19:971–974

    Article  Google Scholar 

  • Yamashita A, Morioka M, Yahara Y, Okada M, Kobayashi T, Kuriyama S, Matsuda S, Tsumaki N (2015) Generation of scaffoldless hyaline cartilaginous tissue from human iPSCs. Stem Cell Rep 4:404–418

    Article  Google Scholar 

  • Yan Y, Yang D, Zarnowska ED, Du Z, Werbel B, Valliere C, Pearce RA, Thomson JA, Zhang SC (2005) Directed differentiation of dopaminergic neuronal subtypes from human embryonic stem cells. Stem Cells 23:781–790

    Article  Google Scholar 

  • Yang L, Soonpaa MH, Adler ED, Roepke TK, Kattman SJ, Kennedy M, Henckaerts E, Bonham K, Abbott GW, Linden RM, Field LJ, Keller GM (2008) Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population. Nature 453:524–528

    Article  Google Scholar 

  • Ye J, Bates N, Soteriou D, Grady L, Edmond C, Ross A, Kerby A, Lewis PA, Adeniyi T, Wright R, Poulton KV, Lowe M, Kimber SJ, Brison DR (2017) High quality clinical grade human embryonic stem cell lines derived from fresh discarded embryos. Stem Cell Res Ther 8:128

    Article  Google Scholar 

  • Ying QL, Wray J, Nichols J, Batlle-Morera L, Doble B, Woodgett J, Cohen P, Smith A (2008) The ground state of embryonic stem cell self-renewal. Nature 453:519–523

    Article  Google Scholar 

  • Young L, Sung J, Stacey G, Masters JR (2010) Detection of mycoplasma in cell cultures. Nat Protoc 5:929–934

    Article  Google Scholar 

  • Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920

    Article  Google Scholar 

  • Zhang X, Stojkovic P, Przyborski S, Cooke M, Armstrong L, Lako M, Stojkovic M (2006) Derivation of human embryonic stem cells from developing and arrested embryos. Stem Cells 24:2669–2676

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Nicola Bates, Jila Ajeian, Christopher A. Smith, and Alan Kerby for the use of their data in our figures. We thank the UK Medical Research Council (Grants MR/M017344 and MR/L004992/1), the UK Regenerative Medicine Platform hub programme (MR/KO26666/1), BBSRC (BB/D014530/1), and Arthritis Research UK (Grant 20786) for funding the work from our own laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip Lewis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Cite this entry

Lewis, P., Silajdžić, E., Brison, D.R., Kimber, S.J. (2018). Embryonic Stem Cells. In: Gimble, J., Marolt, D., Oreffo, R., Redl, H., Wolbank, S. (eds) Cell Engineering and Regeneration. Reference Series in Biomedical Engineering(). Springer, Cham. https://doi.org/10.1007/978-3-319-37076-7_19-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-37076-7_19-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-37076-7

  • Online ISBN: 978-3-319-37076-7

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics