Skip to main content

Genetics of Human Hydrocephalus

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Pediatric Hydrocephalus
  • 238 Accesses

Abstract

Congenital hydrocephalus (CH) represents one of the most common congenital defects, with an incidence of 4.65 per 10,000 live-born neonates. It is estimated that about 40% of all congenital cases recognize a possible genetic etiology with few genetic forms of non-syndromic, isolated CH described today. On the other hand, thousands of genetic diseases including chromosomal aberration, monogenic disorders, associations, and methylation disorders can cause it. The wide range of genetic diseases associated with pediatric hydrocephalus reflects the high number of genes and pathways related to its pathophysiology, some of which are overlapping. Moreover next-generation sequencing and animal models are enriching knowledge, continuously broadening the number of molecular mechanisms involved into cerebrospinal fluid flux and hydrocephalus pathogenesis. This chapter focuses on genetic diseases that can be associated with hydrocephalus in children offering to reader elements for a proper clinical approach and genetic counseling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Adle-Biassette H, Saugier-Veber P, Fallet-Bianco C et al (2013) Neuropathological review of 138 cases genetically tested for X-linked hydrocephalus: evidence for closely related clinical entities of un- known molecular bases. Acta Neuropathol 126:427–442

    Article  CAS  PubMed  Google Scholar 

  • Al-Dosari MS, Al-Owain M, Tulbah M et al (2013) Mutation in MPDZ causes severe congenital hydrocephalus. J Med Genet 50:54–58

    Article  CAS  PubMed  Google Scholar 

  • Aolad HM, Inouye M, Darmanto W et al (2000) Hydrocephalus in mice following X-irradiation at early gestational stage: possibly due to persistent deceleration of cell proliferation. J Radiat Res (Tokyo) 41:213–226

    Article  CAS  Google Scholar 

  • Asthagiri AR, Parry DM, Butman JA et al (2009) Neurofibromatosis type 2. Lancet 373:1974–1986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barker AR, Thomas R, Dawe HR (2014) Meckel-Gruber syndrome and the role of primary cilia in kidney, skeleton, and central nervous system development. Organogenesis 10:96–107

    Article  PubMed  Google Scholar 

  • Barresi R, Campbell KP (2006) Dystroglycan: from biosynthesis to pathogenesis of human disease. J Cell Sci 119:199–207

    Article  CAS  PubMed  Google Scholar 

  • Baser ME, Friedman JM, Aeschliman D et al (2002) Predictors of the risk of mortality in neurofibromatosis 2. Am J Hum Genet 71:715–723

    Article  PubMed  PubMed Central  Google Scholar 

  • Baser ME, Kuramoto L, Joe H et al (2004) Genotype-phenotype correlations for nervous system tumors in neurofibromatosis 2: a population-based study. Am J Hum Genet 75:231–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baser ME, Kuramoto L, Woods R et al (2005) The location of constitutional neurofibromatosis 2 (NF2) splice site mutations is associated with the severity of NF2. J Med Genet 42:540–546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baser ME, Friedman JM, Joe H et al (2011) Empirical development of improved diagnostic criteria for neurofibromatosis 2. Genet Med 13:576–581

    Article  CAS  PubMed  Google Scholar 

  • Bay C, Kerzin L, Hall BD (1979) Recurrence risk in hydrocephalus. Birth Defects Orig Artic Ser 15:95–105

    CAS  PubMed  Google Scholar 

  • Bayri Y, Soylemez B, Seker A et al (2015) Neural tube defect family with recessive trait linked to chromosome 9q21.12-21.31. Childs Nerv Syst 31:1367–1370

    Article  PubMed  Google Scholar 

  • Becamel C, Figge A, Poliak S et al (2001) Interaction of serotonin 5-hydroxytryptamine type 2C receptors with PDZ10 of the multi-PDZ domain protein MUPP1. J Biol Chem 276:12974–12982

    Article  CAS  PubMed  Google Scholar 

  • Bianchine JW, Lewis RC Jr (1974) The MASA syndrome: a new heritable mental retardation syndrome. Clin Genet 5:298–306

    Article  CAS  PubMed  Google Scholar 

  • Bott L, Boute O, Mention K, Vinchon M et al (2004) Congenital idiopathic intestinal pseudo-obstruction and hydrocephalus with stenosis of the aqueduct of Sylvius. Am J Med Genet 130A:84–87

    Article  CAS  PubMed  Google Scholar 

  • Bowen P (1974) Achondroplasia in two sisters with normal parents. Birth Defects Orig Artic Ser 10(12):31–36

    CAS  PubMed  Google Scholar 

  • Burton BK (1979a) Empiric recurrence risks for congenital hydrocephalus. Birth Defects Orig Artic Ser 15: 107–115

    CAS  PubMed  Google Scholar 

  • Burton BK (1979b) Recurrence risks for congenital hydrocephalus. Clin Genet 16:47–53

    Article  CAS  PubMed  Google Scholar 

  • Buysse K, Riemersma M, Powell G et al (2013) Missense mutations in beta-1,3- N-acetylglucosaminyltransferase 1 (B3GNT1) cause Walker-Warburg syndrome. Hum Mol Genet 22:1746–1754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cacciagli P, Desvignes JP, Girard N et al (2014) AP1S2 is mutated in X-linked Dandy-Walker malformation with intellectual disability, basal ganglia disease and seizures (Pettigrew syndrome). Eur J Hum Genet 22:363–368

    Article  CAS  PubMed  Google Scholar 

  • Cappuccio G, Pinelli M, Torella A (2017) An extremely severe phenotype attributed to WDR81 nonsense mutations. Ann Neurol 82:650–651

    Article  PubMed  Google Scholar 

  • Chae TH, Kim S, Marz KE et al (2004) The hyh mutation uncovers roles for alpha snap in apical protein localization and control of neural cell fate. Nat Genet 36:264–270

    Article  CAS  PubMed  Google Scholar 

  • Chen H (2012) Atlas of genetic diagnosis and counseling. Humana Press, Totowa

    Book  Google Scholar 

  • Chitayat D, Moore L, Del Bigio MR et al (1994) Familial Dandy-Walker malformation associated with macrocephaly, facial anomalies, developmental delay, and brain stem dysgenesis: prenatal diagnosis and postnatal outcome in brothers. A new syndrome? Am J Med Genet 52:406–415

    Article  CAS  PubMed  Google Scholar 

  • Choi JW, Lee JY, Phi JH, Wang KC, Chung HT, Paek SH, Kim DG, Park SH, Kim SK (2014) Clinical course of vestibular schwannoma in pediatric neurofibromatosis type 2. J Neurosurg Pediatr 13(6):650–657

    Article  PubMed  Google Scholar 

  • Cinalli G, Sainte-Rose C, Kollar EM et al (1998) Hydrocephalus and craniosynostosis. J Neurosurg 88: 209–214

    Article  CAS  PubMed  Google Scholar 

  • Collmann H, Sorensen N, Krauss J (2005) Hydrocephalus in craniosynostosis: a review. Childs Nerv Syst 21: 902–912

    Article  CAS  PubMed  Google Scholar 

  • Copp A, Greene ND (2010) Genetics and development of neural tube defects. J Pathol 220:217–230

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cuevas E, Rybak-Wolf A, Rohde AM et al (2015) Lin41/Trim71 is essential for mouse development and specifically ex- pressed in postnatal ependymal cells of the brain. Front Cell Dev Biol 3:20

    Article  PubMed  PubMed Central  Google Scholar 

  • Dabora SL, Jozwiak S, Franz DN et al (2001) Mutational analysis in a cohort of 224 tuberous sclerosis patients indicates increased severity of TSC2, compared with TSC1, disease in multiple organs. Am J Hum Genet 68:64–80

    Article  CAS  PubMed  Google Scholar 

  • Dahme M, Bartsch U, Martini R, Anliker B, Schachner M, Mantei N (1997) Disruption of the mouse L1 gene leads to malformations of the nervous system. Nat Genet 17(3):346–349

    Article  CAS  PubMed  Google Scholar 

  • De Angelis E, Watkins A, Schafer M et al (2002) Disease-associated mutations in L1 CAM interfere with ligand interactions and cell-surface expression. Hum Mol Genet 11:1–12

    Article  PubMed  Google Scholar 

  • Dessaud E, Yang LL, Hill K et al (2007) Interpretation of the sonic hedgehog morphogen gradient by a temporal adaptation mechanism. Nature 450:717–720

    Article  CAS  PubMed  Google Scholar 

  • Demyanenko GP, Tsai AY, Maness PF (1999) Abnormalities in neuronal process extension, hippocampal development, and the ventricular system of L1 knockout mice. J Neurosci 19(12):4907–4920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeMyer WE, Zeman W (1963) Alobar holoprosencephaly (arhinencephaly) with median cleft lip and palate: clinical, electroencephalographic and nosologic considerations. Confin Neurol 23:1–36

    Article  CAS  PubMed  Google Scholar 

  • Drielsma A, Jalas C, Simonis N et al (2012) Two novel CCDC88C mutations confirm the role of DAPLE in autosomal recessive congenital hydrocephalus. J Med Genet 49:708–712

    Article  CAS  PubMed  Google Scholar 

  • Ecsedi M, Grosshans H (2013) LIN-41/TRIM71: emancipation of a miRNA target. Genes Dev 27:581–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ekici AB, Hilfinger D, Jatzwauk M et al (2010) Disturbed Wnt signalling due to a mutation in CCDC88C causes an autosomal recessive non-syndromic hydrocephalus with medial diverticulum. Mol Syndromol 1:99–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evans DG, Huson SM, Donnai D, Neary W, Blair V, Newton V, Strachan T, Harris R (1992) A genetic study of type 2 neurofibromatosis in the United Kingdom. II. Guidelines for genetic counselling. J Med Genet 29(12):847–852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evans DG, Sainio M, Baser ME (2000) Neurofibromatosis type 2. J Med Genet 37:897–904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farschtschi S, Merker VL, Wolf D et al (2016) Bevacizumab treatment for symptomatic spinal ependymomas in neurofibromatosis type 2. Acta Neurol Scand 133:475–480

    Article  CAS  PubMed  Google Scholar 

  • Ferese R, Zampatti S, Griguoli AM et al (2016) A new splicing mutation in the L1CAM gene responsible for X-linked hydrocephalus (HSAS). J Mol Neurosci 59:376–381

    Article  CAS  PubMed  Google Scholar 

  • Ferner RE, Gutmann DH (2002) International consensus statement on malignant peripheral nerve sheath tumors in neurofibromatosis. Cancer Res 62:1573–1577

    CAS  PubMed  Google Scholar 

  • Ferner RE, Huson SM, Thomas N et al (2007) Guidelines for the diagnosis and management of individuals with neurofibromatosis 1. J Med Genet 44:81–88

    Article  CAS  PubMed  Google Scholar 

  • Eggenschwiler JT, Anderson KV (2007) Cilia and developmental signaling. Annu Rev Cell Dev Biol 23:345–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forzano F, Mansour S, Ierullo A et al (2007) Posterior fossa malformation in fetuses: a report of 56 further cases and a review of the literature. Prenat Diagn 27:495–501

    Article  CAS  PubMed  Google Scholar 

  • Fransen E, Lemmon V, Van Camp G et al (1995) CRASH syndrome: clinical spectrum of corpus callosum hypoplasia, retardation, adducted thumbs, spastic paraparesis and hydrocephalus due to mutations in one single gene, L1. Eur J Hum Genet 3:273–284

    Article  CAS  PubMed  Google Scholar 

  • Ericson J, Morton S, Kawakami A, Roelink H, Jessell TM (1996) Two critical periods of Sonic hedgehog signaling required for the specification of motor neuron identity. Cell 87:661–673

    Article  CAS  PubMed  Google Scholar 

  • Euskirchen G, Auerbach RK, Snyder M (2012) SWI/SNF chromatin-remodeling factors: multiscale analyses and diverse functions. J Biol Chem 287:30897–30905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garne E, Loane M, Addor MC et al (2010) Congenital hydrocephalus – prevalence, prenatal diagnosis and outcome of pregnancy in four European regions. Eur J Paediatr Neurol 14:150–155

    Article  PubMed  Google Scholar 

  • Geis T, Marquard K, Rodl T et al (2013) Homozygous dystroglycan mutation associated with a novel muscle-eye-brain disease-like phenotype with multicystic leucodystrophy. Neurogenetics 14:205–213

    Article  CAS  PubMed  Google Scholar 

  • Gezer C, Ekin A, Ozeren M et al (2014) Chromosome abnormality incidence in fetuses with cerebral ventriculomegaly. J Obstet Gynaecol 34:387–391

    Article  CAS  PubMed  Google Scholar 

  • Godfrey C, Foley AR, Clement E et al (2011) Dystroglycanopathies: coming into focus. Curr Opin Genet Dev 21:278–285

    Article  CAS  PubMed  Google Scholar 

  • Goetzinger KR, Stamilio DM, Dicke JM et al (2008) Evaluating the incidence and likelihood ratios for chromosomal abnormalities in fetuses with common central nervous system malformations. Am J Obstet Gynecol 199:285.e1–285.e6

    Article  CAS  Google Scholar 

  • Gonseth S, Roy R, Houseman EA, de Smith AJ et al (2015) Periconceptional folate consumption is associated with neonatal DNA methylation modifications in neural crest regulatory and cancer development genes. Epigenetics 10:1166–1176

    Article  PubMed  PubMed Central  Google Scholar 

  • Graham E, Duhl A, Ural S, Allen M, Blakemore K, Witter F (2001) The degree of antenatal ventriculomegaly is related to pediatric neurological morbidity. J Matern Fetal Med 10(4):258–263

    Article  CAS  PubMed  Google Scholar 

  • Greene ND, Copp AJ (2009) Development of the vertebrate central nervous system: formation of the neural tube. Prenat Diagn 29:303–311

    Article  CAS  PubMed  Google Scholar 

  • Greene ND, Stanier P, Moore GE (2011) The emerging role of epigenetic mechanisms in the etiology of neural tube defects. Epigenetics 6:875–883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grill J, Laithier V, Rodriguez D et al (2000) When do children with optic pathway tumours need treatment? An oncological perspective in 106 patients treated in a single Centre. Eur J Pediatr 159:692–696

    Article  CAS  PubMed  Google Scholar 

  • Guibaud L, Larroque A, Ville D et al (2012) Prenatal diagnosis of ‘isolated’ Dandy-Walker malformation: imaging findings and prenatal counselling. Prenat Diagn 32:185–193

    Article  PubMed  Google Scholar 

  • Gulsuner S, Tekinay AB, Doerschner K et al (2011) Homozygosity mapping and targeted genomic sequencing reveal the gene responsible for cerebellar hypoplasia and quadrupedal locomotion in a consanguineous kindred. Genome Res 21:1995–2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hahn H, Wicking C, Zaphiropoulous PG et al (1996) Mutations of the human homolog of Drosophila patched in the nevoid basal cell carcinoma syndrome. Cell 85:841–851

    Article  CAS  PubMed  Google Scholar 

  • Harmacek L, Watkins-Chow DE, Chen J et al (2014) A unique missense allele of BAF155, a core BAF chromatin remodeling complex protein, causes neural tube closure defects in mice. Dev Neurobiol 74:483–497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall JG, Solehdin F (1998) Genetics of neural tube defects. Ment Retard Dev Disabil Res Rev 4:269–281

    Article  Google Scholar 

  • Han C, Yang WZ, Zhang HT et al (2015) Clinical characteristics and long-term outcomes of moyamoya syndrome associated with neurofibromatosis type 1. J Clin Neurosci 22:286–290

    Article  PubMed  Google Scholar 

  • Haverkamp F, Wolfle J, Aretz M et al (1999) Congenital hydrocephalus internus and aqueduct stenosis: aetiology and implications for genetic counselling. Eur J Pediatr 158:474–478

    Article  CAS  PubMed  Google Scholar 

  • Hecht JT, Francomano CA, Horton WA et al (1987) Mortality in achondroplasia. Am J Hum Genet 41:454–464

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hikasa H, Sekido Y, Suzuki A (2016) Merlin/NF2-Lin28B-let-7 is a tumor-suppressive pathway that is cell-density dependent and hippo independent. Cell Rep 14:2950–2961

    Article  CAS  PubMed  Google Scholar 

  • Hirbe AC, Gutmann DH (2014) Neurofibromatosis type 1: a multidisciplinary approach to care. Lancet Neurol 13:834–843

    Article  PubMed  Google Scholar 

  • Holden ST, Cox JJ, Kesterton I et al (2006) Fanconi anaemia complementation group B presenting as X linked VACTERL with hydrocephalus syndrome. J Med Genet 43:750–754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holmes GL, Stafstrom CE, Tuberous Sclerosis Study Group (2007) Tuberous sclerosis complex and epilepsy: recent developments and future challenges. Epilepsia 48:617–630

    Article  PubMed  Google Scholar 

  • Hoogeveen-Westerveld M, Ekong R, Povey S, Karbassi I, Batish SD, den Dunnen JT, van Eeghen A, Thiele E, Mayer K, Dies K, Wen L, Thompson C, Sparagana SP, Davies P, Aalfs C, van den Ouweland A, Halley D, Nellist M (2012) Functional assessment of TSC1 missense variants identified in individuals with tuberous sclerosis complex. Hum Mutat 33(3):476–479

    Article  CAS  PubMed  Google Scholar 

  • Hoogeveen-Westerveld M, Ekong R, Povey S, Mayer K, Lannoy N, Elmslie F, Bebin M, Dies K, Thompson C, Sparagana SP, Davies P, van Eeghen AM, Thiele EA, van den Ouweland A, Halley D, Nellist M (2013) Functional assessment of TSC2 variants identified in individuals with tuberous sclerosis complex. Hum Mutat 34(1):167–175

    Article  CAS  PubMed  Google Scholar 

  • Huson SM, Acosta MT, Belzberg AJ et al (2010) Back to the future: proceedings from the 2010 NF conference. Am J Med Genet A 155:307–321

    Article  Google Scholar 

  • Ibanez-Tallon I, Pagenstecher A, Fliegauf M et al (2004) Dysfunction of axonemal dynein heavy chain Mdnah5 inhibits ependymal flow and reveals a novel mechanism for hydrocephalus formation. Hum Mol Genet 13:2133–2141

    Article  CAS  PubMed  Google Scholar 

  • Joubert BR, den Dekker HT, Felix JF et al (2016) Maternal plasma folate impacts differential DNA methylation in an epigenome-wide meta-analysis of newborns. Nat Commun 7:10577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jóźwiak S, Nabbout R, Curatolo P et al (2013) Management of subependymal giant cell astrocytoma (SEGA) associated with tuberous sclerosis complex (TSC): clinical recommendations. Eur J Paediatr Neurol 17: 348–352

    Article  PubMed  Google Scholar 

  • Khoshnood B, Loane M, de Walle H et al (2015) Long term trends in prevalence of neural tube defects in Europe: population based study. BMJ 351:h5949

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kibar Z, Vogan KJ, Groulx N et al (2001) Ltap, a mammalian homolog of Drosophila Strabismus/Van Gogh, is altered in the mouse neural tube mutant loop-tail. Nat Genet 28:251–255

    Article  CAS  PubMed  Google Scholar 

  • Kibar Z, Torban E, McDearmid JR et al (2007) Mutations in VANGL1 associated with neural-tube defects. N Engl J Med 356:1432–1437

    Article  CAS  PubMed  Google Scholar 

  • Kibar Z, Bosoi CM, Kooistra M et al (2009) Novel mutations in VANGL1 in neural tube defects. Hum Mutat 30:E706–E715

    Article  PubMed  PubMed Central  Google Scholar 

  • Kibar Z, Salem S, Bosoi CM et al (2011) Contribution of VANGL2 mutations to isolated neural tube defects. Clin Genet 80:76–82

    Article  CAS  PubMed  Google Scholar 

  • Kielar M, Tuy FPD, Bizzotto S et al (2014) Mutations in Eml1 lead to ectopic progenitors and neuronal heterotopia in mouse and human. Nat Neurosci 17:923–933

    Article  CAS  PubMed  Google Scholar 

  • Kim JK, Huh SO, Choi H et al (2001) Srg3, a mouse homolog of yeast SWI3, is essential for early embryogenesis and involved in brain development. Mol Cell Biol 21:7787–7795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klezovitch O, Fernandez TE, Tapscott SJ et al (2004) Loss of cell polarity causes severe brain dysplasia in Lgl1 knockout mice. Genes Dev 18:559–571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolble N, Wisser J, Kurmanavicius J et al (2000) Dandy-Walker malformation: prenatal diagnosis and outcome. Prenat Diagn 20:318–327

    Article  CAS  PubMed  Google Scholar 

  • Koontz NA, Wiens AL, Agarwal A et al (2013) Schwannomatosis: the overlooked neurofibromatosis? AJR Am J Roentgenol 200:W646–W653

    Article  PubMed  Google Scholar 

  • Korf BR (2000) Malignancy in neurofibromatosis type 1. Oncologist 5(6):477–485

    Article  CAS  PubMed  Google Scholar 

  • Korf BR (2001) Diagnosis and management of neurofibromatosis type 1. Curr Neurol Neurosci Rep 1:162–167

    Article  CAS  PubMed  Google Scholar 

  • Kosaki K, Ikeda K, Miyakoshi K et al (2004) Absent inner dynein arms in a fetus with familial hydrocephalus-situs abnormality. Am J Med Genet 129A:308–311

    Article  PubMed  Google Scholar 

  • Kousi M, Katsanis N (2016) The genetic basis of hydrocephalus. Annu Rev Neurosci 39:409–435

    Article  CAS  PubMed  Google Scholar 

  • Lekic T, Klebe D, Poblete R et al (2015) Neonatal brain hemorrhage (NBH) of prematurity: translational mechanisms of the vascular-neural network. Curr Med Chem 22:1214–1238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leshchyns’ka I, Sytnyk V (2016) Reciprocal interactions between cell adhesion molecules of the immunoglobulin superfamily and the cytoskeleton in neurons. Front Cell Dev Biol 4:9

    PubMed  PubMed Central  Google Scholar 

  • Liu K, Jian Y, Sun X (2016) Negative regulation of phosphatidylinositol 3-phosphate levels in early-to-late endosome conversion. J Cell Biol 212:181–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Logan CV, Abdel-Hamed Z, Johnson CA et al (2011) Molecular genetics and pathogenic mechanisms for the severe ciliopathies: insights into neurodevelopment and pathogenesis of neural tube defects. Mol Neurobiol 43:12–26

    Article  CAS  PubMed  Google Scholar 

  • Manzini MC, Tambunan DE, Hill RS et al (2012) Exome sequencing and functional validation in zebrafish identify GTDC2 mutations as a cause of Walker-Warburg syndrome. Am J Hum Genet 91:541–547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mautner VF, Tatagiba M, Lindenau M, Fünsterer C, Pulst SM, Baser ME, Kluwe L, Zanella FE (1995) Spinal tumors in patients with neurofibromatosis type 2: MR imaging study of frequency, multiplicity, and variety. AJR Am J Roentgenol 165(4):951–955

    Article  CAS  PubMed  Google Scholar 

  • McAllister JP 2nd, Williams MA, Walker ML et al (2015) Hydrocephalus symposium expert panel. An update on research priorities in hydrocephalus: overview of the third National Institutes of Health-sponsored symposium “opportunities for hydrocephalus research: pathways to better outcomes”. J Neurosurg 123:1427–1438

    Article  CAS  PubMed  Google Scholar 

  • Mitchell LE (2005) Epidemiology of neural tube defects. Am J Med Genet C Semin Med Genet 135C:88–94

    Article  PubMed  Google Scholar 

  • Moavero R, Coniglio A, Garaci F et al (2013) Is mTOR inhibition a systemic treatment for tuberous sclerosis? Ital J Pediatr 39:57

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Murray JC, Johnson JA, Bird TD (1985) Dandy-Walker malformation: etiologic heterogeneity and empiric recurrence risks. Clin Genet 28:272–283

    Article  CAS  PubMed  Google Scholar 

  • Narita K, Takeda S (2015) Cilia in the choroid plexus: their roles in hydrocephalus and beyond. Front Cell Neurosci 9:39

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Narita K, Kawate T, Kakinuma N et al (2010) Multiple primary cilia modulate the fluid transcytosis in choroid plexus epithelium. Traffic 11:287–301

    Article  CAS  PubMed  Google Scholar 

  • National Institutes of Health (1988) Consensus development conference: neurofibromatosis conference statement. Arch Neurol 45:575–578

    Article  Google Scholar 

  • Needham LK, Thelen K, Maness PF (2001) Cytoplasmic domain mutations of the L1 cell adhesion molecule reduce L1-ankyrin interactions. J Neurosci 21: 1490–1500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newton R, Loughna SC, Stanier PM et al (1991) X-linked spina bifida: a linkage analysis. Miami short reports. In: Advances in gene technology: the molecular biology of human genetic disease, vol vol 1. IRL Press, New York, p 33

    Google Scholar 

  • Nguyen DTT, Richter D, Michel G et al (2017) The ubiquitin ligase LIN41/TRIM71 targets p53 to antagonize cell death and differentiation pathways during stem cell differentiation. Cell Death Differ 24:1063–1078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Northrup H, Krueger DA, International Tuberous Sclerosis Complex Consensus Group (2013) International tuberous sclerosis complex consensus group. Tuberous sclerosis complex diagnostic criteria update: recommendations of the 2012 international tuberous sclerosis complex consensus conference. Pediatr Neurol 49: 243–254

    Article  PubMed  PubMed Central  Google Scholar 

  • Novarino G, Akizu N, Gleeson JG (2011) Modeling human disease in humans: the ciliopathies. Cell 147:70–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nunes FP, Merker VL, Jennings D et al (2013) Bevacizumab treatment for meningiomas in NF2: a retrospective analysis of 15 patients. PLoS One 8:e59941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Obeid R, Pietrzik K, Oakley GP Jr et al (2015) Preventable spina bifida and anencephaly in Europe. Birth Defects Res A Clin Mol Teratol 103:763–771

    Article  CAS  PubMed  Google Scholar 

  • Ohata S, Nakatani J, Herranz-Pérez V, Cheng J, Belinson H, Inubushi T, Snider WD, García-Verdugo JM, Wynshaw-Boris A, Alvarez-Buylla A (2014) Loss of Dishevelleds disrupts planar polarity in ependymal motile cilia and results in hydrocephalus. Neuron 83(3):558–571. https://doi.org/10.1016/j.neuron.2014.06.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osenbach RK, Menezes AH (1992) Diagnosis and management of the Dandy-Walker malformation: 30 years of experience. Pediatr Neurosurg 18:179–189

    Article  CAS  PubMed  Google Scholar 

  • Oshita A, Kishida S, Kobayashi H et al (2003) Identification and characterization of a novel Dvl-binding protein that suppresses Wnt signalling pathway. Genes Cells 8:1005–1017

    Article  CAS  PubMed  Google Scholar 

  • Parker MJ, Budd JLS, Draper ES et al (2003) Trisomy 13 and trisomy 18 in a defined population: epidemiological, genetic and prenatal observations. Prenat Diagn 23:856–860

    Article  CAS  PubMed  Google Scholar 

  • Philip N, Auger M, Mattei JF et al (1988) Achondroplasia in sibs of normal parents. J Med Genet 25:857–859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plotkin SR, Stemmer-Rachamimov AO, Barker FG 2nd et al (2009) Hearing improvement after bevacizumab in patients with neurofibromatosis type 2. N Engl J Med 361:358–367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plotkin SR, Merker VL, Halpin C et al (2012) Bevacizumab for progressive vestibular schwannoma in neurofibromatosis type 2: a retrospective review of 31 patients. Otol Neurotol 33:1046–1052

    Article  PubMed  Google Scholar 

  • Purandare SM, Ware SM, Kwan KM et al (2002) A complex syndrome of left-right axis, central nervous system and axial skeleton defects in Zic3 mutant mice. Development 129:2293–2302

    CAS  PubMed  Google Scholar 

  • Raam MS, Solomon BD, Muenke M (2011) Holoprosencephaly: a guide to diagnosis and clinical management. Indian Pediatr 48:457–466

    Article  PubMed  PubMed Central  Google Scholar 

  • Radtke HB, Sebold CD, Allison C et al (2007) Neurofibromatosis type 1 in genetic counseling practice: recommendations of the national society of genetic counselors. J Genet Couns 16:387–407

    Article  PubMed  PubMed Central  Google Scholar 

  • Rasmussen SA, Wong LY, Yang Q et al (2003) Population-based analyses of mortality in trisomy 13 and trisomy 18. Pediatrics 111:777–784

    Article  PubMed  Google Scholar 

  • Reardon W, Zhou XP, Eng C (2001) A novel germline mutation of the PTEN gene in a patient with macrocephaly, ventricular dilatation, and features of VATER association. J Med Genet 38:820–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rendtorff ND, Bjerregaard B, Frödin M et al (2005) Analysis of 65 tuberous sclerosis complex (TSC) patients by TSC2 DGGE, TSC1/TSC2 MLPA, and TSC1 long-range PCR sequencing, and report of 28 novel mutations. Hum Mutat 26:374–383

    Article  CAS  PubMed  Google Scholar 

  • Roscioli T, Kamsteeg EJ, Buysse K et al (2012) Mutations in ISPD cause Walker-Warburg syndrome and defective glycosylation of a-dystroglycan. Nat Genet 44:581–585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenthal A, Joulet M, Kenwrick S (1992) Aberrant splicing of neural cell adhesion molecule L1 mRNA in a family with X-linked hydrocephalus. Nat Genet 2:107–112. Note: Erratum: Nature Genet 3:273 only, 1993

    Article  CAS  PubMed  Google Scholar 

  • Ruggieri M (1999) The different forms of neurofibromatosis. Childs Nerv Syst 15:295–308

    Article  CAS  PubMed  Google Scholar 

  • Ruggieri M, Praticò AD, Evans DG (2015) Diagnosis, management, and new therapeutic options in childhood Neurofibromatosis type 2 and related forms. Semin Pediatr Neurol 22:240–258

    Article  PubMed  Google Scholar 

  • Sakata-Haga H, Sawada K, Ohnishi T et al (2004) Hydrocephalus following prenatal exposure to ethanol. Acta Neuropathol (Berl) 108:393–398

    Article  Google Scholar 

  • Salonen R, Norio R (1984) The Meckel syndrome in Finland: epidemiologic and genetic aspects. Am J Med Genet 18(4):691–698

    Article  CAS  PubMed  Google Scholar 

  • Salonen R, Herva R, Norio R (1981) The hydrolethalus syndrome: delineation of a ‘new’ lethal malformation syndrome, based on 28 patients. Clin Genet 19: 321–330

    Article  CAS  PubMed  Google Scholar 

  • Santoro C, Maietta A, Giugliano T et al (2015) Arg(1809) substitution in neurofibromin: further evidence of a genotype-phenotype correlation in neurofibromatosis type 1. Eur J Hum Genet 23:1460–1461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schrander-Stumpel C, Fryns JP (1998) Congenital hydrocephalus: nosology and guidelines for clinical approach and genetic counselling. Eur J Pediatr 157:355–362

    Article  CAS  PubMed  Google Scholar 

  • Seo JH, Zilber Y, Babayeva S et al (2011) Mutations in the planar cell polarity gene, Fuzzy, are associated with neural tube defects in humans. Hum Mol Genet 20:4324–4333

    Article  CAS  PubMed  Google Scholar 

  • Sgulò FG, Spennato P, Aliberti F et al (2017) Contemporary occurrence of hydrocephalus and Chiari I malformation in sagittal craniosynostosis. Case report and review of the literature. Childs Nerv Syst 33:187–192

    Article  PubMed  Google Scholar 

  • Shikata Y, Okada T, Hashimoto M et al (2011) Ptch1-mediated dosage-dependent action of Shh signaling regulates neural progenitor development at late gestational stages. Dev Biol 349:147–159

    Article  CAS  PubMed  Google Scholar 

  • Simmons K, Hashmi SS, Scheuerle A et al (2014) Mortality in babies with achondroplasia: revisited. Birth Defects Res A Clin Mol Teratol 100:247–249

    Article  CAS  PubMed  Google Scholar 

  • Solomon BD (2011) VACTERL/VATER association. Orphanet J Rare Dis 6:56

    Article  PubMed  PubMed Central  Google Scholar 

  • Stevens E, Carss KJ, Cirak S et al (2013) Mutations in B3GALNT2 cause congenital muscular dystrophy and hypoglycosylation of alpha-dystroglycan. Am J Hum Genet 92:354–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stevenson DA, Schill L, Schoyer L et al (2016) The fourth international symposium on genetic disorders of the Ras/MAPK pathway. Am J Med Genet A 170: 1959–1966

    Article  PubMed  PubMed Central  Google Scholar 

  • Stoll C, Alembik Y, Dott B et al (1992) An epidemiologic study of environmental and genetic factors in congenital hydrocephalus. Eur J Epidemiol 8:797–803

    Article  CAS  PubMed  Google Scholar 

  • Sun L, Wu Q, Jiang SW et al (2015) Prenatal diagnosis of central nervous system anomalies by high-resolution chromosomal microarray analysis. Biomed Res Int 2015:426379

    PubMed  PubMed Central  Google Scholar 

  • Svard J, Rozell B, Toftgard R, Teglund S (2009) Tumor suppressor gene co-operativity in compound Patched1 and suppressor of fused heterozygous mutant mice. Mol Carcinog 48:408–419

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Szudek J, Birch P, Friedman JM (2000) Growth charts for young children with neurofibromatosis 1 (NF1). Am J Med Genet 92:224–228

    Article  CAS  PubMed  Google Scholar 

  • Tarpey PS, Stevens C, Teague J et al (2006) Mutations in the gene encoding the sigma 2 subunit of the adaptor protein 1 complex, AP1S2, cause X-linked mental retardation. Am J Hum Genet 79:1119–1124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thelen K, Kedar V, Panicker AK et al (2002) The neural cell adhesion molecule L1 potentiates integrin-dependent cell migration to extracellular matrix proteins. J Neurosci 22:4918–3491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toriello HV (1984) Report of a third kindred with X-linked anencephaly/spina bifida. (Letter). Am J Med Genet 19:411–412

    Article  CAS  PubMed  Google Scholar 

  • Tort J, Lelong N, Prunet C et al (2013) Maternal and health care determinants of preconceptional use of folic acid supplementation in France: results from the 2010 National Perinatal Survey. BJOG 120:1661–1667

    Article  CAS  PubMed  Google Scholar 

  • Trotter TL, Hall JG (2005) American Academy of Pediatrics Committee on Genetics Health supervision for children with achondroplasia. Pediatrics 116:771–783

    Article  PubMed  Google Scholar 

  • Tsoi H, Yu AC, Chen ZS et al (2014) A novel missense mutation in CCDC88C activates the JNK pathway and causes a dominant form of spinocerebellar ataxia. J Med Genet 51:590–595

    Article  CAS  PubMed  Google Scholar 

  • Tsunoda I, McCright IJ, Kuang LQ et al (1997) Hydrocephalus in mice infected with a Theiler’s murine encephalomyelitis virus variant. J Neuro-Oncol 56: 1302–1313

    CAS  Google Scholar 

  • Tüzel E, Samli H, Kuru I et al (2007) Association of hypospadias with hypoplastic synpolydactyly and role of HOXD13 gene mutations. Urology 70:161–164

    Article  PubMed  Google Scholar 

  • Ullrich NJ (2015) Neurocutaneous syndromes and brain tumors. J Child Neurol 31:1399–1411

    Article  PubMed  Google Scholar 

  • von Renesse A, Petkova MV, Lutzkendorf S et al (2014) POMK mutation in a family with congenital muscular dystrophy with merosin deficiency, hypomyelination, mild hearing deficit and intellectual disability. J Med Genet 51:275–282

    Article  CAS  Google Scholar 

  • Vos YJ, Hofstra RM (2010) An updated and upgraded L1CAM mutation database. Hum Mutat 31(1):E1102–E1109. https://doi.org/10.1002/humu.21172

    Article  PubMed  Google Scholar 

  • Vos YJ, de Walle HE, Bos KK et al (2010) Genotype-phenotype correlations in L1 syndrome: a guide for genetic counselling and mutation analysis. J Med Genet 47:169–175

    Article  CAS  PubMed  Google Scholar 

  • Waller DK, Correa A, Vo TM et al (2008) The population-based prevalence of achondroplasia and thanatophoric dysplasia in selected regions of the US. Am J Med Genet A 146A:2385–2389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang T, Liu Y, Xu XH et al (2011) Lgl1 activation of rab10 promotes axonal membrane trafficking underlying neuronal polarization. Dev Cell 21:431–444

    Article  CAS  PubMed  Google Scholar 

  • Webster MK, Donoghue DJ (1996) Constitutive activation of fibroblast growth factor receptor 3 by the transmembrane domain point mutation found in achondroplasia. EMBO J 15:520–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weller S, Gartner J (2001) Genetic and clinical aspects of X-linked hydrocephalus (L1 disease): mutations in the L1CAM gene. Hum Mutat 18:1–12

    Article  CAS  PubMed  Google Scholar 

  • Wetmore C, Eberhart DE, Curran T (2000) The normal patched allele is expressed in medulloblastomas from mice with heterozygous germ-line mutation of patched. Cancer Res 60:2239–2246

    CAS  PubMed  Google Scholar 

  • Witters I, Fryns JP (2008) Trisomy 18 presenting with severe limb deformations. Prenat Diagn 28:549–550

    Article  PubMed  Google Scholar 

  • Yamakasi M, Thompson P, Lemmon V (1997) CRASH syndrome: mutations in L1CAM correlate with severity of the disease. Neuropediatrics 28:175–178

    Article  Google Scholar 

  • Yamamoto GL, Aguena M, Gos M et al (2015) Rare variants in SOS2 and LZTR1 are associated with Noonan syndrome. J Med Genet 52:413–421

    Article  CAS  PubMed  Google Scholar 

  • Yamasaki M, Kanemura Y (2015) Molecular biology of pediatric hydrocephalus and hydrocephalus-related diseases. Neurol Med Chir (Tokyo) 55:640–646

    Article  Google Scholar 

  • Zhang J, Williams MA, Rigamonti D (2006) Genetics of human hydrocephalus. J Neurol 253:1255–1266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Santoro .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Santoro, C. (2019). Genetics of Human Hydrocephalus. In: Cinalli, G., Ozek, M., Sainte-Rose, C. (eds) Pediatric Hydrocephalus. Springer, Cham. https://doi.org/10.1007/978-3-319-31889-9_1-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31889-9_1-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31889-9

  • Online ISBN: 978-3-319-31889-9

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Genetics of Human Hydrocephalus
    Published:
    13 December 2018

    DOI: https://doi.org/10.1007/978-3-319-31889-9_1-2

  2. Original

    Genetics of Human Hydrocephalus
    Published:
    20 September 2018

    DOI: https://doi.org/10.1007/978-3-319-31889-9_1-1