Skip to main content

Application of Nutraceuticals in Pregnancy Complications: Does Epigenetics Play a Role?

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Handbook of Nutrition, Diet, and Epigenetics

Abstract

Nutraceuticals provide the prevention or treatment of diseases through dietary supplementation. These become especially important during pregnancy to prevent disorders secondary to nutrient deficiency. In the light of research accomplished in the recent years, it is now established that maternal nutrition affects pregnancy outcomes and disorders through epigenetics, which are heritable gene expression modifications that occur without a change in the DNA sequence. The most studied epigenetic modifications are DNA methylation, histone modifications, and small noncoding RNAs (microRNAs). Recent research has started to unveil how nutraceuticals may prevent pregnancy complications such as preeclampsia, intrauterine growth restriction (IUGR), preterm delivery, and miscarriage through epigenetic mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

CYP27B1:

Cytochrome P450 family 27 subfamily B member 1

CYP24A1:

Cytochrome P450 family 24 subfamily B member 1

DHA:

Docosahexaenoic acid

DNMTs:

DNA methyltransferases

EPA:

Eicosapentaenoic acid

HATs:

Histone acetyltransferases

HDACs:

Histone deacetylases

HMTs:

Histone methyltransferases

IUGR:

Intrauterine growth restriction

LDL:

Low density lipoprotein

PPARγ:

Peroxisome proliferator-activated receptor gamma

PTH:

Parathyroid hormone

RXR:

Retinoid X receptor

SAH:

S-adenosylhomocysteine

SAM:

S-adenosylmethionine

Setd8:

SET domain containing (lysine methyltransferase) 8

TET:

Ten-eleven translocation

UTRs:

Untranslated regions

UVB:

Ultraviolet B

VDRE:

Vitamin D response element

References

  • Agrawal S, Fledderjohann J, Vellakkal S, Stuckler D (2015) Adequately diversified dietary intake and iron and folic acid supplementation during pregnancy is associated with reduced occurrence of symptoms suggestive of pre-eclampsia or eclampsia in Indian women. PLoS One 10(3):e0119120. https://doi.org/10.1371/journal.pone.0119120

    Article  PubMed  PubMed Central  Google Scholar 

  • Al-Dughaishi T, Nikolic D, Zadjali F, Al-Hashmi K, Al-Waili K, Rizzo M et al (2016) Nutraceuticals as lipid-lowering treatment in pregnancy and their effects on the metabolic syndrome. Curr Pharm Biotechnol 17(7):614–623

    Article  CAS  PubMed  Google Scholar 

  • Amhed R, Dunford J, Mehran R, Robson S, Kunadian V (2014) Pre-eclampsia and future cardiovascular risk among women: a review. J Am Coll Cardiol 63(18):1815–1822

    Article  Google Scholar 

  • Anderson CM, Ralph JL, Johnson L, Scheett A, Wright ML, Taylor JY et al (2015) First trimester vitamin D status and placental epigenomics in preeclampsia among Northern Plains primiparas. Life Sci 129:10–15

    Article  CAS  PubMed  Google Scholar 

  • Armelagos GJ (2014) Brain evolution, the determinates of food choice, and the omnivore’s dilemma. Crit Rev Food Sci Nutr 54(10):1330–1341

    Article  PubMed  Google Scholar 

  • Aubard Y, Darodes N, Cantaloube M (2000) Hyperhomocysteinemia and pregnancy – review of our present understanding and therapeutic implications. Eur J Obstet Gynecol Reprod Biol 93(2):157–165

    Article  CAS  PubMed  Google Scholar 

  • Baker BC, Mackie FL, Lean SC, Greenwood SL, Heazell AE, Forbes K et al (2017) Placental dysfunction is associated with altered microRNA expression in pregnant women with low folate status. Mol Nutr Food Res. https://doi.org/10.1002/mnfr.201600646

  • Balogun OO, da Silva LK, Ota E, Takemoto Y, Rumbold A, Takegata M et al (2016) Vitamin supplementation for preventing miscarriage. Cochrane Database Syst Rev 5:CD004073. https://doi.org/10.1002/14651858.CD004073.pub4

    Google Scholar 

  • Bouillon R, Van Cromphaut S, Carmeliet G (2003) Intestinal calcium absorption: molecular vitamin D mediated mechanisms. J Cell Biochem 88(2):332–339

    Article  CAS  PubMed  Google Scholar 

  • Brower V (1998) Nutraceuticals: poised for a healthy slice of the healthcare market? Nat Biotechnol 16(8):728–731

    Article  CAS  PubMed  Google Scholar 

  • Brown SB, Reeves KW, Bertone-Johnson ER (2014) Maternal folate exposure in pregnancy and childhood asthma and allergy: a systematic review. Nutr Rev 72(1):55–64

    Article  PubMed  Google Scholar 

  • Calvo MS, Whiting SJ, Barton CN (2005) Vitamin D intake: a global perspective of current status. J Nutr 135(2):310–316

    CAS  PubMed  Google Scholar 

  • Cetin I, Giovannini N, Alvino G, Agostoni C, Riva E, Giovannini M et al (2002) Intrauterine growth restriction is associated with changes in polyunsaturated fatty acid fetal-maternal relationships. Pediatr Res 52(5):750–755

    Article  CAS  PubMed  Google Scholar 

  • Chango A, Pogribny IP (2015) Considering maternal dietary modulators for epigenetic regulation and programming of the fetal epigenome. Forum Nutr 7(4):2748–2770

    CAS  Google Scholar 

  • Choi SW, Mason JB (2002) Folate status: effects on pathways of colorectal carcinogenesis. J Nutr 132(Suppl 8):2413S–2418S

    CAS  PubMed  Google Scholar 

  • Christakos S, Dhawan P, Peng X, Obukhov AG, Nowycky MC, Benn BS et al (2007) New insights into the function and regulation of vitamin D target proteins. Steroid Biochem Mol Biol 103(3–5):405–410

    Article  CAS  Google Scholar 

  • Dang J, Arcot J, Shrestha A (2000) Folate retention in selected processed legumes. Food Chem 68(3):295–298

    Article  CAS  Google Scholar 

  • DeLuca HF, Zierold C (1998) Mechanisms and functions of vitamin D. Nutr Rev 56(2 Pt 2):S4–10; discussion S 54–75

    Google Scholar 

  • De-Regil LM, Palacios C, Lombardo LK, Pena-Rosas JP (2016) Vitamin D supplementation for women during pregnancy. Cochrane Database Syst Rev 1:CD008873. https://doi.org/10.1002/14651858.CD008873.pub3

    Google Scholar 

  • DeVilbiss EA, Gardner RM, Newschaffer CJ, Lee BK (2015) Maternal folate status as a risk factor for autism spectrum disorders: a review of existing evidence. Br J Nutr 114(5):663–672

    Article  CAS  PubMed  Google Scholar 

  • Dhobale M, Joshi S (2012) Altered maternal micronutrients (folic acid, vitamin B(12)) and omega 3 fatty acids through oxidative stress may reduce neurotrophic factors in preterm pregnancy. J Matern Fetal Neonatal Med 25(4):317–323

    Article  CAS  PubMed  Google Scholar 

  • Enquobahrie DA, Williams MA, Qiu C, Siscovick DS, Sorensen TK (2011) Global maternal early pregnancy peripheral blood mRNA and miRNA expression profiles according to plasma 25-hydroxyvitamin D concentrations. J Matern Fetal Neonatal Med 24(8):1002–1012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fetahu IS, Hobaus J, Kallay E (2014) Vitamin D and the epigenome. Front Physiol 5:164

    Article  PubMed  PubMed Central  Google Scholar 

  • Fleet JC, Schoch RD (2010) Molecular mechanisms for regulation of intestinal calcium absorption by vitamin D and other factors. Crit Rev Clin Lab Sci 47(4):181–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friso S, Udali S, De Santis D, Choi SW (2016) One-carbon metabolism and epigenetics. Mol Asp Med. https://doi.org/10.1016/j.mam.2016.11.007

  • Gage TB, O’Connor K (1994) Nutrition and the variation in level and age patterns of mortality. Hum Biol 66(1):77–103

    CAS  PubMed  Google Scholar 

  • Garcia BA, Luka Z, Loukachevitch LV, Bhanu NV, Wagner C (2016) Folate deficiency affects histone methylation. Med Hypotheses 88:63–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gladyshev MI, Sushchik NN, Makhutova ON (2013) Production of EPA and DHA in aquatic ecosystems and their transfer to the land. Prostaglandins Other Lipid Mediat 107:117–126

    Article  CAS  PubMed  Google Scholar 

  • Goh YI, Koren G (2008) Folic acid in pregnancy and fetal outcomes. J Obstet Gynaecol 28(1):3–13

    Article  CAS  PubMed  Google Scholar 

  • Goyal R, Zhang L, Blood AB, Baylink DJ, Longo LD, Oshiro B et al (2014) Characterization of an animal model of pregnancy-induced vitamin D deficiency due to metabolic gene dysregulation. Am J Physiol Endocrinol Metab 306(3):E256–E266

    Article  CAS  PubMed  Google Scholar 

  • Gul K, Singh AK, Jabeen R (2016) Nutraceuticals and functional foods: the foods for the future world. Crit Rev Food Sci Nutr 56(16):2617–2627

    Article  CAS  PubMed  Google Scholar 

  • Handy DE, Castro R, Loscalzo J (2011) Epigenetic modifications: basic mechanisms and role in cardiovascular disease. Circulation 123(19):2145–2156

    Article  PubMed  PubMed Central  Google Scholar 

  • Hardy G (2000) Nutraceuticals and functional foods: introduction and meaning. Nutrition 16(7–8):688–689

    Article  CAS  PubMed  Google Scholar 

  • He L, Hannon GJ (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5(7):522–531

    Article  CAS  PubMed  Google Scholar 

  • Huppertz B, Weiss G, Moser G (2014) Trophoblast invasion and oxygenation of the placenta: measurements versus presumptions. J Reprod Immunol 101–102:74–79

    Article  PubMed  Google Scholar 

  • Jones ML, Mark PJ, Waddell BJ (2014) Maternal dietary omega-3 fatty acids and placental function. Reproduction 147(5):R143–R152

    Article  CAS  PubMed  Google Scholar 

  • Joss-Moore LA, Wang Y, Baack ML, Yao J, Norris AW, Yu X et al (2010) IUGR decreases PPARgamma and SETD8 expression in neonatal rat lung and these effects are ameliorated by maternal DHA supplementation. Early Hum Dev 86(12):785–791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalani A, Kamat PK, Givvimani S, Brown K, Metreveli N, Tyagi SC et al (2014) Nutri-epigenetics ameliorates blood-brain barrier damage and neurodegeneration in hyperhomocysteinemia: role of folic acid. J Mol Neurosci 52(2):202–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalra EK (2003) Nutraceutical – definition and introduction. AAPS PharmSci 5(3):E25

    Article  PubMed  Google Scholar 

  • Kar S, Wong M, Rogozinska E, Thangaratinam S (2016) Effects of omega-3 fatty acids in prevention of early preterm delivery: a systematic review and meta-analysis of randomized studies. Eur J Obstet Gynecol Reprod Biol 198:40–46

    Article  CAS  PubMed  Google Scholar 

  • Kemse NG, Kale AA, Joshi SR (2014) A combined supplementation of omega-3 fatty acids and micronutrients (folic acid, vitamin B12) reduces oxidative stress markers in a rat model of pregnancy induced hypertension. PLoS One 9(11):e111902. https://doi.org/10.1371/journal.pone.0111902

    Article  PubMed  PubMed Central  Google Scholar 

  • Konings EJ, Roomans HH, Dorant E, Goldbohm RA, Saris WH, van den Brandt PA (2001) Folate intake of the Dutch population according to newly established liquid chromatography data for foods. Am J Clin Nutr 73(4):765–776

    CAS  PubMed  Google Scholar 

  • Kulkarni A, Dangat K, Kale A, Sable P, Chavan-Gautam P, Joshi S (2011) Effects of altered maternal folic acid, vitamin B12 and docosahexaenoic acid on placental global DNA methylation patterns in Wistar rats. PLoS One 6(3):e17706. https://doi.org/10.1371/journal.pone.0017706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewis S, Lucas RM, Halliday J, Ponsonby AL (2010) Vitamin D deficiency and pregnancy: from preconception to birth. Mol Nutr Food Res 54(8):1092–1102

    CAS  PubMed  Google Scholar 

  • Lillycrop KA, Phillips ES, Jackson AA, Hanson MA, Burdge GC (2005) Dietary protein restriction of pregnant rats induces and folic acid supplementation prevents epigenetic modification of hepatic gene expression in the offspring. J Nutr 135(6):1382–1386

    CAS  PubMed  Google Scholar 

  • Lucock M (2000) Folic acid: nutritional biochemistry, molecular biology, and role in disease processes. Mol Genet Metab 71(1–2):121–138

    Article  CAS  PubMed  Google Scholar 

  • Mentch SJ, Locasale JW (2016) One-carbon metabolism and epigenetics: understanding the specificity. Ann N Y Acad Sci 1363:91–98

    Article  CAS  PubMed  Google Scholar 

  • Mouillet JF, Chu T, Sadovsky Y (2011) Expression patterns of placental microRNAs. Birth Defects Res A Clin Mol Teratol 91(8):737–743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mozurkewich EL, Klemens C (2012) Omega-3 fatty acids and pregnancy: current implications for practice. Curr Opin Obstet Gynecol 24(2):72–77

    Article  PubMed  Google Scholar 

  • Novakovic B, Sibson M, Ng HK, Manuelpillai U, Rakyan V, Down T et al (2009) Placenta-specific methylation of the vitamin D 24-hydroxylase gene: implications for feedback autoregulation of active vitamin D levels at the fetomaternal interface. J Biol Chem 284(22):14838–14848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Omotayo MO, Dickin KL, O’Brien KO, Neufeld LM, De Regil LM, Stoltzfus RJ (2016) Calcium supplementation to prevent preeclampsia: translating guidelines into practice in low-income countries. Adv Nutr 7(2):275–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ortega FJ, Cardona-Alvarado MI, Mercader JM, Moreno-Navarrete JM, Moreno M, Sabater M et al (2015) Circulating profiling reveals the effect of a polyunsaturated fatty acid-enriched diet on common microRNAs. J Nutr Biochem 26(10):1095–1101

    Article  CAS  PubMed  Google Scholar 

  • Perez-Lopez FR (2007) Vitamin D: the secosteroid hormone and human reproduction. Gynecol Endocrinol 23(1):13–24

    Article  CAS  PubMed  Google Scholar 

  • Peterson CL, Laniel MA (2004) Histones and histone modifications. Curr Biol 14(14):R546–R551

    Article  CAS  PubMed  Google Scholar 

  • Poniedzialek-Czajkowska E, Mierzynski R, Kimber-Trojnar Z, Leszczynska-Gorzelak B, Oleszczuk J (2014) Polyunsaturated fatty acids in pregnancy and metabolic syndrome: a review. Curr Pharm Biotechnol 15(1):84–99

    Article  CAS  PubMed  Google Scholar 

  • Saini RK, Nile SH, Keum Y (2016) Folates: chemistry, analysis, occurrence, biofortification and bioavailability. Food Res Int 89:1–13

    Article  PubMed  Google Scholar 

  • Scorletti E, Byrne CD (2013) Omega-3 fatty acids, hepatic lipid metabolism, and nonalcoholic fatty liver disease. Annu Rev Nutr 33:231–248

    Article  CAS  PubMed  Google Scholar 

  • Shahbazian N, Jafari RM, Haghnia S (2016) The evaluation of serum homocysteine, folic acid, and vitamin B12 in patients complicated with preeclampsia. Electron Physician 8(10):3057–3061

    Article  PubMed  PubMed Central  Google Scholar 

  • Stea TH, Johansson M, Jägerstad M, Frølich W (2006) Retention of folates in cooked, stored and reheated peas, broccoli and potatoes for use in modern large-scale service systems. Food Chem 101:1095–1107

    Article  Google Scholar 

  • Sutton AL, MacDonald PN (2003) Vitamin D: more than a “bone-a-fide” hormone. Mol Endocrinol 17(5):777–791

    Article  CAS  PubMed  Google Scholar 

  • Tammen SA, Friso S, Choi SW (2013) Epigenetics: the link between nature and nurture. Mol Asp Med 34(4):753–764

    Article  CAS  Google Scholar 

  • Tokunaga M, Takahashi T, Singh RB, De Meester F, Wilson DW (2013) Nutrition and epigenetics. Med Epigenet 1:70–77

    Article  CAS  Google Scholar 

  • Tsukiyama T, Wu C (1997) Chromatin remodeling and transcription. Curr Opin Genet Dev 7(2):182–191

    Article  CAS  PubMed  Google Scholar 

  • Wiktorowska-Owczarek A, Berezinska M, Nowak JZ (2015) PUFAs: structures, metabolism and functions. Adv Clin Exp Med 24(6):931–941

    Article  PubMed  Google Scholar 

  • Winkels RM, Brouwer IA, Siebelink E, Katan MB, Verhoef P (2007) Bioavailability of food folates is 80% of that of folic acid. Am J Clin Nutr 85(2):465–473

    CAS  PubMed  Google Scholar 

  • Wolffe AP, Matzke MA (1999) Epigenetics: regulation through repression. Science 286(5439):481–486

    Article  CAS  PubMed  Google Scholar 

  • Zhang MX, Pan GT, Guo JF, Li BY, Qin LQ, Zhang ZL (2015) Vitamin D deficiency increases the risk of gestational diabetes mellitus: a meta-analysis of observational studies. Forum Nutr 7(10):8366–8375

    Google Scholar 

  • Zhong Y, Tuuli M, Odibo AO (2010) First-trimester assessment of placenta function and the prediction of preeclampsia and intrauterine growth restriction. Prenat Diagn 30(4):293–308

    PubMed  Google Scholar 

Download references

Acknowledgments

Mahua Choudhury is supported by Morris L Lichtenstein Jr Medical Research Foundation for diabetes and obesity research and Texas A & M Health Science Center Faculty Development Fund

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahua Choudhury .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Cite this entry

Schütz, L.F. et al. (2018). Application of Nutraceuticals in Pregnancy Complications: Does Epigenetics Play a Role?. In: Patel, V., Preedy, V. (eds) Handbook of Nutrition, Diet, and Epigenetics. Springer, Cham. https://doi.org/10.1007/978-3-319-31143-2_81-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31143-2_81-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31143-2

  • Online ISBN: 978-3-319-31143-2

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Application of Nutraceuticals in Pregnancy Complications: Does Epigenetics Play a Role?
    Published:
    10 October 2017

    DOI: https://doi.org/10.1007/978-3-319-31143-2_81-2

  2. Original

    Application of Nutraceuticals in Pregnancy Complications: Does Epigenetics Play a Role?
    Published:
    21 June 2017

    DOI: https://doi.org/10.1007/978-3-319-31143-2_81-1