Skip to main content

The Conventional Gait Model - Success and Limitations

Handbook of Human Motion

Abstract

The Conventional Gait Model (CGM) is a generic name for a family of closely related and very widely used biomechanical models for gait analysis. After describing its history, the core attributes of the model are described followed by evaluation of its strengths and weaknesses. An analysis of the current and future requirements for practical biomechanical models for clinical and other gait analysis purposes which have been rigorously calibrated suggests that the CGM is better suited for this purpose than any other currently available model. Modifications are required, however, and a number are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Akbarshahi M, Schache AG, Fernandez JW, Baker R, Banks S, Pandy MG (2010) Non-invasive assessment of soft-tissue artifact and its effect on knee joint kinematics during functional activity. J Biomech 43(7):1292–1301. doi:10.1016/j.jbiomech.2010.01.002

    Article  Google Scholar 

  • Baker R (2001) Pelvic angles: a mathematically rigorous definition which is consistent with a conventional clinical understanding of the terms. Gait Posture 13(1):1–6. doi:10.1016/S0966-6362(00)00083-7

    Article  Google Scholar 

  • Baker R (2011) Globographic visualisation of three dimensional joint angles. J Biomech 44(10):1885–1891. doi:10.1016/j.jbiomech.2011.04.031

    Article  Google Scholar 

  • Baker R, Finney L, Orr J (1999) A new approach to determine the hip rotations profile from clinical gait analysis data. Hum Mov Sci 18:655–667. doi:10.1016/S0167-9457(99)00027-5

    Article  Google Scholar 

  • Barre A, Thiran JP, Jolles BM, Theumann N, Aminian K (2013) Soft tissue artifact assessment during treadmill walking in subjects with total knee arthroplasty. IEEE Trans Biomed Eng 60(11):3131–3140. doi:10.1109/TBME.2013.2268938

    Article  Google Scholar 

  • Cappozzo A, Catani F, Croce UD, Leardini A (1995) Position and orientation in space of bones during movement: anatomical frame definition and determination. Clin Biomech 10(4):171–178. doi:10.1016/0268-0033(95)91394-T

    Article  Google Scholar 

  • Carson MC, Harrington ME, Thompson N, O’Connor JJ, Theologis TN (2001) Kinematic analysis of a multi-segment foot model for research and clinical applications: a repeatability analysis. J Biomech 34(10):1299–1307. doi:10.1016/S0021-9290(01)00101-4

    Article  Google Scholar 

  • Chao EY (1980) Justification of triaxial goniometer for the measurement of joint rotation. J Biomech 13:989–1006. doi:10.1016/0021-9290(80)90044-5

    Article  Google Scholar 

  • Charlton IW, Tate P, Smyth P, Roren L (2004) Repeatability of an optimised lower body model. Gait Posture 20(2):213–221. doi:10.1016/j.gaitpost.2003.09.004

    Article  Google Scholar 

  • Clauser C, McConville J, Young J (1969) Weight volume and centre of mass of segments of the human body (AMRL Technical Report). Wright-Patterson Air Force Base, Ohio

    Google Scholar 

  • Davis RB, Ounpuu S, Tyburski D, Gage J (1991) A gait analysis data collection and reduction technique. Hum Mov Sci 10:575–587. doi:10.1016/0167-9457(91)90046-Z

    Article  Google Scholar 

  • Dempster W (1955) Space requirements of the seated operator (WADC Technical Report :55–159). Wright-Patterson Airforce Base, Ohio

    Google Scholar 

  • Eames M, Cosgrove A, Baker R (1999) Comparing methods of estimating the total body centre of mass in three-dimensions in normal and pathological gait. Hum Mov Sci 18:637–646. doi:10.1016/S0167-9457(99)00022-6

    Article  Google Scholar 

  • Foti T, Davis RB, Davids JR, Farrell ME (2001) Assessment of methods to describe the angular position of the pelvis during gait in children with hemiplegic cerebral palsy. Gait Posture 13:270

    Google Scholar 

  • Harrington ME, Zavatsky AB, Lawson SE, Yuan Z, Theologis TN (2007) Prediction of the hip joint centre in adults, children, and patients with cerebral palsy based on magnetic resonance imaging. J Biomech 40(3):595–602. doi:10.1016/j.jbiomech.2006.02.003

    Article  Google Scholar 

  • Hicks JL, Richards JG (2005) Clinical applicability of using spherical fitting to find hip joint centers. Gait Posture 22(2):138–145. doi:10.1016/j.gaitpost.2004.08.004

    Article  Google Scholar 

  • Hinrichs RN (1985) Regression equations to predict segmental moments of inertia from anthropometric measurements: an extension of the data of Chandler et al. (1975). J Biomech 18(8):621–624. doi:10.1016/0021-9290(85)90016-8

    Article  Google Scholar 

  • Kadaba MP, Ramakrishnan HK, Wootten ME, Gainey J, Gorton G, Cochran GV (1989) Repeatability of kinematic, kinetic, and electromyographic data in normal adult gait. J Orthop Res 7(6):849–860. doi:10.1002/jor.1100070611

    Article  Google Scholar 

  • Kadaba MP, Ramakrishnan HK, Wootten ME (1990) Measurement of lower extremity kinematics during level walking. J Orthop Res 8(3):383–392. doi:10.1002/jor.1100080310

    Article  Google Scholar 

  • Leardini A, Cappozzo A, Catani F, Toksvig-Larsen S, Petitto A, Sforza V, Cassanelli G, Giannini S (1999) Validation of a functional method for the estimation of hip joint centre location. J Biomech 32(1):99–103. doi:10.1016/S0021-9290(98)00148-1

    Article  Google Scholar 

  • Leardini A, Chiari L, Della Croce U, Cappozzo A (2005) Human movement analysis using stereophotogrammetry. Part 3. Soft tissue artifact assessment and compensation. Gait Posture 21(2):212–225. doi:10.1016/j.gaitpost.2004.05.002

    Article  Google Scholar 

  • Leardini A, Sawacha Z, Paolini G, Ingrosso S, Nativo R, Benedetti MG (2007) A new anatomically based protocol for gait analysis in children. Gait Posture 26(4):560–571. doi:10.1016/j.gaitpost.2006.12.018

    Article  Google Scholar 

  • Lu TW, O’Connor JJ (1999) Bone position estimation from skin marker co-ordinates using global optimisation with joint constraints. J Biomech 32(2):129–134. doi:10.1016/S0021-9290(98)00158-4

    Article  Google Scholar 

  • McGinley JL, Baker R, Wolfe R, Morris ME (2009) The reliability of three-dimensional kinematic gait measurements: a systematic review. Gait Posture 29(3):360–369. doi:10.1016/j.gaitpost.2008.09.003

    Article  Google Scholar 

  • Ounpuu S, Gage J, Davis R (1991) Three-dimensional lower extremity joint kinetics in normal pediatric gait. J Pediatr Orthop 11:341–349

    Article  Google Scholar 

  • Ounpuu O, Davis R, Deluca P (1996) Joint kinetics: methods, interpretation and treatment decision-making in children with cerebral palsy and myelomeningocele. Gait Posture 4:62–78. doi:10.1016/0966-6362(95)01044-0

    Article  Google Scholar 

  • Passmore E, Sangeux M (2016) Defining the medial-lateral axis of an anatomical femur coordinate system using freehand 3D ultrasound imaging. Gait Posture 45:211–216. doi:10.1016/j.gaitpost.2016.02.006

    Article  Google Scholar 

  • Pearsall DJ, Costigan PA (1999) The effect of segment parameter error on gait analysis results. Gait Posture 9(3):173–183

    Article  Google Scholar 

  • Peters A, Sangeux M, Morris ME, Baker R (2009) Determination of the optimal locations of surface-mounted markers on the tibial segment. Gait Posture 29(1):42–48. doi:10.1016/j.gaitpost.2008.06.007

    Article  Google Scholar 

  • Peters A, Baker R, Sangeux M (2010) Validation of 3-D freehand ultrasound for the determination of the hip joint centre. Gait Posture 31:530–532. doi:10.1016/j.gaitpost.2010.01.014

    Article  Google Scholar 

  • Peters A, Baker R, Morris ME, Sangeux M (2012) A comparison of hip joint centre localisation techniques with 3-DUS for clinical gait analysis in children with cerebral palsy. Gait Posture 36(2):282–286. doi:10.1016/j.gaitpost.2012.03.011

    Article  Google Scholar 

  • Pillet H, Sangeux M, Hausselle J, El Rachkidi R, Skalli W (2014) A reference method for the evaluation of femoral head joint center location technique based on external markers. Gait Posture 39(1):655–658. doi:10.1016/j.gaitpost.2013.08.020

    Article  Google Scholar 

  • Pinzone O, Schwartz MH, Thomason P, Baker R (2014) The comparison of normative reference data from different gait analysis services. Gait Posture 40(2):286–290. doi:10.1016/j.gaitpost.2014.03.185

    Article  Google Scholar 

  • Rao G, Amarantini D, Berton E, Favier D (2006) Influence of body segments’ parameters estimation models on inverse dynamics solutions during gait. J Biomech 39(8):1531–1536. doi:10.1016/j.jbiomech.2005.04.014

    Article  Google Scholar 

  • Reinbolt JA, Haftka RT, Chmielewski TL, Fregly BJ (2007) Are patient-specific joint and inertial parameters necessary for accurate inverse dynamics analyses of gait? IEEE Trans Biomed Eng 54(5):782–793. doi:10.1109/TBME.2006.889187

    Article  Google Scholar 

  • Sangeux M, Peters A, Baker R (2011) Hip joint centre localization: Evaluation on normal subjects in the context of gait analysis. Gait Posture 34(3):324–328. doi:10.1016/j.gaitpost.2011.05.019

    Article  Google Scholar 

  • Sangeux M, Pillet H, Skalli W (2014) Which method of hip joint centre localisation should be used in gait analysis? Gait Posture 40(1):20–25. doi:10.1016/j.gaitpost.2014.01.024

    Article  Google Scholar 

  • Sauret C, Pillet H, Skalli W, Sangeux M (2016) On the use of knee functional calibration to determine the medio-lateral axis of the femur in gait analysis: Comparison with EOS biplanar radiographs as reference. Gait Posture 50:180–184. doi:10.1016/j.gaitpost.2016.09.008

    Article  Google Scholar 

  • Scally G, Donaldson L (1998) Clinical governance and the drive for quality improvement in the new NHS in England. Br Med J 317:61–65. doi:10.1136/bmj.317.7150.61

    Article  Google Scholar 

  • Schwartz MH, Rozumalski A (2005) A new method for estimating joint parameters from motion data. J Biomech 38(1):107–116. doi:10.1016/j.jbiomech.2004.03.009

    Article  Google Scholar 

  • Seth A, Sherman M, Reinbolt JA, Delp SL (2011) OpenSim: a musculoskeletal modeling and simulation framework for in silico investigations and exchange. Procedia IUTAM 2:212–232. doi:10.1016/j.piutam.2011.04.021

    Article  Google Scholar 

  • Shoemaker P (1978) Measurements of relative lower body segment positions in gait analysis. University of California, San Diego

    Google Scholar 

  • Sutherland D, Hagy J (1972) Measurement of gait movements from motion picture film. J Bone Joint Surg 54A(4):787–797

    Article  Google Scholar 

  • Tsai T-Y, Lu T-W, Kuo M-Y, Hsu H-C (2009) Quantification of three-dimensional movement of skin markers realtive to the underlying bones during functional activities. Biomed Eng: Appl Basis Commun 21(3):223–232. doi:10.4015/S1016237209001283

    Google Scholar 

  • Winter D, Robertson D (1978) Joint torque and energy patterns in normal gait. Biol Cybern 29:137–142. doi:10.1007/BF00337349

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Baker .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Baker, R., Leboeuf, F., Reay, J., Sangeux, M. (2017). The Conventional Gait Model - Success and Limitations. In: Müller, B., et al. Handbook of Human Motion. Springer, Cham. https://doi.org/10.1007/978-3-319-30808-1_25-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30808-1_25-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30808-1

  • Online ISBN: 978-3-319-30808-1

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics

Chapter history

  1. Latest

    The Conventional Gait Model - Success and Limitations
    Published:
    05 May 2017

    DOI: https://doi.org/10.1007/978-3-319-30808-1_25-2

  2. Original

    The Success and Limitations
    Published:
    02 January 2017

    DOI: https://doi.org/10.1007/978-3-319-30808-1_25-1